
Mobility-aware computation offloading in edge
computing using prediction

Erfan Farhangi Maleki
Department of Computer and

Information Sciences
University of Delaware

Newark, Delaware, USA
Email: erfanf@udel.edu

Lena Mashayekhy
Department of Computer and

Information Sciences
University of Delaware

Newark, Delaware, USA
Email: mlena@udel.edu

Abstract—A key use case of edge computing is computation
offloading that augments the capabilities of resource-constrained
mobile devices by conserving their energy consumption and
reducing latency of their applications. Edge computing resources,
called cloudlets, are resource-rich computing infrastructures
nearby users that aim at mitigating the overload of mobile
devices and providing low-latency services. A main challenge
in computation offloading to cloudlets is how to assign mobile
applications to cloudlets efficiently such that the assignment
captures the mobility inherent of mobile devices and leads to
minimum latency during runtime of the applications. We address
this problem by proposing a novel offloading approach that
considers dynamics of mobile applications including mobility
and changing specifications, and fully assigns applications to
cloudlets, while minimizing their turnaround time (latency and
execution time). We first formulate the problem as an integer
programming model to minimize the turnaround time of mobile
applications. This problem is an NP-hard problem. To tackle
the intractability, we design a computation offloading algorithm,
called OAMC, utilizing future specifications of mobile applica-
tions to obtain smart mobility-aware offloading decisions based
on our prediction models. We conduct several experiments to
evaluate the performance of our proposed approach. The results
reveal that OAMC leads to near-optimal turnaround time in a
reasonable running time.

Index Terms—Edge Computing, Computation Offloading, Mo-
bility, Dynamic Programming

I. INTRODUCTION

The restrictions of mobile devices by weight, size, battery
life, and heat dissipation impose a severe constraint on their
computational resources such as processor speed, memory
size, and disk capacity. Resource limitation is not just a
temporary constraint but a fundamental limitation due to the
convenience of mobility of mobile devices, and it hinders
execution of many applications that have the potential to
augment human cognition such as speech recognition, natural
language processing, and augmented reality [1].

Edge computing (EC) is a promising distributed paradigm
allowing computation to be performed at the edge of the
network [2]. Computation offloading in edge computing is
the process of enhancing the capacity of mobile devices
by migrating their computing tasks to EC [3]. Despite the
advantages of computation offloading to EC in addressing
response time requirements, battery life constraints, bandwidth

usage, as well as data safety and privacy [2], spatio-temporal
uncertainties due to user mobility bring the most challenging
obstacles in providing these benefits.

EC consists of several cloudlets, where a cloudlet is a mini
data center in the vicinity of mobile devices at the edge
of the network. Cloudlets help to mitigate the overload of
mobile devices by accepting offloaded computation. However,
due to the mobility of mobile users and dynamic changes
(e.g., load of cloudlets), a primarily assigned cloudlet to
a device might not be optimal over time. Therefore, the
migration of computation between cloudlets is perceived as
a necessary solution to resolve this concern. However, such
frequent migration incurs additional data movement over the
network and results in degraded performance and increased
latency and turnaround time of the offloaded applications.

In this paper, we address this problem by designing an
efficient mobility-aware computation offloading in order to
minimize the turnaround time of mobile applications over
their lifetime. Our proposed approach utilizes the prediction
of unsteady specifications of mobile applications to obtain
a smart offloading assignment that requires less migration
of computation in the future and consequently obtains low
turnaround time. We first formulate an optimal integer pro-
gramming (IP) model for this problem. We then design an
efficient online offloading approach, called OAMC, to obtain
near-optimal turnaround time in a reasonable running time.
OAMC is a dynamic programming-based approach providing
a bounded turnaround time. The main contributions of this
paper include the following:

• The feasibility of migration between cloudlets is consid-
ered as a technique for mobility management of mobile
devices.

• Prediction algorithms are proposed to predict the speci-
fications of mobile applications in the future (e.g., loca-
tions, bandwidth, processing speed requirements) to make
better offloading decisions.

• A novel computation offloading approach, called OAMC,
is proposed to minimize the turnaround time of the mobile
applications, while reducing the number of migrations
and the overall data movement.

• We evaluate the performance of the proposed approach



showing that OAMC is able to find near optimal
turnaround time with lower migration rate.

In the next section, we provide an overview of existing work
in this domain. We then formulate our problem in Section III.
We describe our proposed approach, OAMC, in Section IV,
and evaluate its properties in Section V. Finally, we summarize
our results and present possible directions for future research.

II. RELATED WORK

A group of studies focuses on the latency minimization
in edge computing. Liu et al. [4] proposed an efficient one-
dimensional search algorithm to find the optimal stochastic
computation offloading policy. Sharghivand et al. [5] pro-
posed efficient two-sided matching solutions to assign user
applications to cloudlets considering their QoS and to de-
termine dynamic pricing of the edge services. Bhatta and
Mashayekhy [6] proposed a cost-aware cloudlet placement
approach to guarantee minimum latency.

Several studies concentrate on setting a tradeoff between
a mixture of objectives for computation offloading. Chen
et al. [7] considered both energy consumption and latency,
and proposed a game-theoretic approach for the computation
offloading decision-making problem among multiple mobile
devices. De Maio et al. [8] proposed ECHO, Edge Cloud
Heuristic Offloading, to find a tradeoff solution between
running time, user cost, and battery lifetime according to the
user’s preferences. Ma et al. [9] designed a game-theoretic
solution for offloading tasks among a swarm of Unmanned
Aerial Vehicles (UAVs) to reduce their energy consumption
while guaranteeing QoS for users.

Mobility is a significant challenge in edge computing, and
a few studies take into account user mobility while offloading.
Bahreini et al. [10] proposed an offline IP model and an
online heuristic algorithm for component placement of one
application to multiple cloudlets considering the dynamic
distances between the user and cloudlets. Wang et al. [11]
proposed a Markov decision process (MDP) to formulate the
real-time (live) migration of an edge application (service) of
a single user considering the distances between the user and
the cloudlets before possible migration. Bittencourt et al. [12]
considered multiple application classes and proposed resource
management policies to allocate resources between cloudlets
and cloud to handle variable demand due to users mobility.
Goncalves et al. [13] modeled an optimal VM placement
and migration based on mobility prediction. However, as
their model represents an NP-hard problem, they did not
design any algorithm. Zhang et al. [14] proposed a deep
reinforcement learning approach to migrate tasks according to
users’ mobility. However, their approach only considers one
user moving from one place to another, and also it does not
include any guarantee on learning time and running time.

To the best of our knowledge, our work is the only one
that considers a general realistic case with multiple users
and exploits efficient prediction methods to provide smart
decisions on the computation offloading in order to reduce
turnaround time of the applications considering user mobility.

III. SYSTEM MODEL

The system model consists of a set of mobile applications
and a set of cloudlets. A set of n mobile applications repre-
sented by U = {u1, u2, . . . , un} requires offloading, and a set
of m cloudlets C = {c1, c2, . . . , cm} is available to offer edge
services to users. Computation offloading happens over a time
period that can be viewed as a sequence of time slots 1, . . . , T .

Each application ui ∈ U at time t has the following speci-
fications: uti = (xti, y

t
i , md

t
i, id

t
i, ω

t
i , p

t
i, b

t
i), where xti and yti

indicate the location (latitude and longitude coordinates) of
the mobile device ui ∈ U at time t; mdti indicates the code
and the metadata of the application ui that is either assigned
or migrated to a cloudlet at time t; idti is the size of the
intermediate data that is sent to a cloudlet in the middle of ui’s
execution at time t; ωti is the computation requirement of ui in
terms of number of instructions (or cycles) needed at time t; pti
represents the processing speed requirement of ui at time t;
and bti indicates the bandwidth requirement of ui at time t.
For simplicity of formulation, we consider id1

i = md1
i and

only use mdti when a migration happens (i.e., t ≥ 2).
Each cloudlet cj ∈ C has the following specifications: cj

= (xj , yj , ρj , βj), where xj and yj indicate the location of
the cloudlet; ρj represents the total processing speed of the
cloudlet, and βj is the total bandwidth of the cloudlet.

Our objective is to minimize the overall turnaround time
of computation offloading. The turnaround time consists of
latency of communicating with a cloudlet when sending the
application’s code and data, migration time if needed, and
execution time of the application on a cloudlet. Generally,
latency is defined as follows:

l =
d

θ
+
s

β
, (1)

where d represents the distance, θ is the propagation speed, s
denotes the data size, and β represents the bandwidth. The
first part of the formula computes the propagation time, and
the second part computes the transmission time. We use the
notation f td(ui, cj) to show the distance between application ui
and cloudlet cj . We use Haversine formula to calculate the
distance as follows:

f td(ui, cj) =

2re arcsin

√
sin2(

xti−xj
2 ) + cos(xti) cos(xj) sin2(

yti−yj
2 ),

where re is the Earth radius (6,371 km). Similarly, fd(cj , ck)
is used for showing the distance between a pair of cloudlets.

The computation offloading problem is to find an optimal
assignment of all mobile applications in U to existing cloudlets
in C minimizing the turnaround time of all applications con-
sidering their specifications. To optimally model this problem,
we first define decision variables µtij and αtijk, where µtij = 1
signifies that application ui ∈ U is assigned to cloudlet cj ∈ C
at time t, and αtijk = 1 signifies that application ui migrates
from cloudlet cj to cloudlet ck at time t. We formulate the
computation offloading problem as an integer program (IP) as



follows:

Minimize
n∑
i=1

m∑
j=1

T∑
t=1

(
f td(ui, cj)

θ
+
idti
bti

+
ωti
pti

)µtij+

n∑
i=1

m∑
j=1

m∑
k=1

T∑
t=2

(
fd(cj , ck)

θ
+
mdti
bti

)αtijk (2)

Subject to:
m∑
j=1

µtij = 1 ∀ui ∈ U, t ∈ T (3)

n∑
i=1

ptiµ
t
ij ≤ ρj ∀cj ∈ C, t ∈ T (4)

n∑
i=1

btiµ
t
ij ≤ βj ∀cj ∈ C, t ∈ T (5)

αtijk ≥ µt−1
ij + µtik − 1 ∀ui ∈ U, cj , ck ∈ C, t ∈ T (6)

µtij ∈ {0, 1} ∀ui ∈ U, cj ∈ C, t ∈ T (7)

αtijk ∈ {0, 1} ∀ui ∈ U, cj , ck ∈ C, t ∈ T (8)

The objective function (Eq. (2)) minimizes the total turnaround
time for all applications. The first term calculates both the
offloading time (latency) and the computation time, and the
second term calculates the migration time. If a migration hap-
pens, previous states (metadata) of the application along with
its code will be transferred to the new cloudlet. Constraints (3)
guarantee that each application is assigned to exactly one
cloudlet at each time slot. Constraints (4) and (5) ensure that
the total requested processing speed and bandwidth of the
assigned applications to a cloudlet do not exceed the available
processing speed and bandwidth of that cloudlet at each time
slot. Constraints (6) ensure that αtijk is one if µtik and µt−1

ij

are one, which means application ui ∈ U migrates from
cloudlet cj ∈ C to cloudlet ck ∈ C at time t; otherwise,
it is zero. Constraints (7) and (8) guarantee that the decision
variables are binary.

Our proposed IP finds the optimal offloading assignment of
the applications to cloudlets minimizing the turnaround time
(offloading, computation, and migration). Our goal is to design
an efficient algorithm to find such assignments on the fly.

IV. ONLINE OFFLOADING TO CLOUDLETS

We design a prediction-based algorithm for Online Assign-
ment of Mobile Applications to Cloudlets, called OAMC.
The pseudo code of our proposed algorithm is presented in
Algorithm 1. OAMC assigns every application to a cloudlet
at each time slot such that it leads to a low turnaround time
during the application lifetime (note that turnaround time is
comprised of computation, offloading, and migration time). In
doing so, it uses the near-future predicted specifications of the
applications to make their offloading decisions.

Algorithm 1 Online Assignment of Mobile applications to
Cloudlets (OAMC)

1: Input: w: window size, γ : discount factor
2: Û0

i = ∅, ∀ ui ∈ U
3: R̂0

i = ∅, ∀ ui ∈ U
4: for all t ∈ T do
5: for all ui ∈ U do
6: Û ti = Û t−1

i ∪ uti
7: if t mod w = 0 then
8: {ūit+1, .., ūi

t+w} =PREDICT(Û ti , t, w)

9: V ti ←∞
10: for all cj ∈ C adjacent to ui do
11: vtij = f

t
d(ui,cj)
θ +

idti
bti

+
ωti
pti

12: vtij+=
∑w
τ=1 γ

τ (
ft+τd (ūi,cj)

θ +
¯idi
t+τ

b̄i
t+τ + ω̄i

t+τ

p̄it+τ
)

13: if t ≥ 2 and j 6= R̂t−1
i then

14: k = R̂t−1
i

15: vtij+= f
t
d(cj ,ck)
θ +

mdti
bti

16: if t mod w = 0 then
17: do
18: St = ASSIGN(V t, U t, C)
19: R̂t ← St

20: Update V t, U t, C
21: while ∃ R̂ti ∈ R̂t which is not assigned
22: else
23: for all ui ∈ U do
24: R̂ti = R̂t−1

i

25: Return:
⋃T
t=1 R̂

t

OAMC receives window size w and discount factor γ
as inputs (line 1), where w indicates the number of future
time slots taken into account, meaning that next predicted w
specifications will be used for the offloading decisions. To
reduce the impact of the later time slots on the offloading
decision and decrease the prediction inaccuracy, OAMC uses
the notion of γ. This is set to a value between 0 and 1, and a
future time slot τ (1 ≤ τ ≤ w) has the impact of γτ . Therefor,
the impact decreases by increasing the value of τ .

OAMC uses set Û ti to maintain the specifications of ap-
plication ui from the first time slot to time slot t, which is
initially set to the empty set (line 2), i.e., Û ti =

⋃t
δ=1 u

δ
i ,

where uδi denotes the specification of application ui at time
slot δ. Similarly, R̂ti maintains the cloudlet assigned to appli-
cation ui at time slot t, which is initially set to the empty
set (line 3). For example, R̂ti = j means application ui is
assigned to cloudlet cj at time t. These sets serve as the
history of specifications and assignments. For simplicity, we
use notations with the hat operator (e.g., Û ) to show the history
and the bar operator (e.g., Ū ) to show the predicted values.

OAMC intends to minimize the total turnaround time by
minimizing computation and offloading time when deciding on



the assignment of applications to cloudlets and by minimizing
the total number of migrations required in the lifetime of the
applications considering the future specifications of the appli-
cations. In doing so, OAMC uses the next w specifications
and determines offloading assignments that do not require
frequent reassignments and migrations leading to minimum
total turnaround time. Therefore, OAMC uses predicted spec-
ifications of all ui ∈ U in next w time slots based on a history
of specifications (Û ti ,∀ ui) that has been collected. It first
updates Û ti by adding uti at time t to the set to include the most
recent specification of application ui (line 6). Then, it checks
whether or not the current time slot is a multiple of w (line 7).
That is done to ensure that the decision about the assignment
is carried out every w time slots and the obtained assignment
is valid for w time slots. Subsequently, function PREDICT,
presented in Algorithm 2, outputs the predicted specifications
of the applications in next w time slots (line 8).

In the next step, OAMC computes the expected cost (the
expected turnaround time considering the discount factor) of
assigning applications to cloudlets in a period of time that
starts from the current time slot and continuous to next w
time slots. It initializes all the cost values to infinity (line 9)
and only updates the cost for cloudlets that are close to (or in
the area of) the user. The cost is computed based on the actual
specifications in the current time slot and the predicted ones in
next w time slots assuming applications are assigned to same
cloudlets during this period, and migration can only happen at
time t ≥ 2. The expected cost of assigning application ui to
cloudlet cj at time slot t is represented by vtij , which covers
offloading and computation time (lines 11-12) and migration
time (line 15). The offloading and computation time is the
summation of offloading and computation time at the current
time slot (line 11) and next w time slots (line 12). By using γ,
the impact of further time slots is decreased. Therefore, more
weight is given to the closest time slots, and less weight is
given to the furthest time slots. For example, the weight of the
first future time slot is γ1 while the weight of the last future
time slot is γw. Additionally, OAMC checks whether or not
cloudlet cj is different from the currently assigned cloudlet
to the application ui. If it is different, OAMC adds up the
migration cost to vtij as well (lines 13-15); otherwise, there is
no migration cost.

When the current time slot is a multiple of w (line 16), hav-
ing the predicted future specifications and all the calculated ex-
pected costs, the next step of OAMC is to assign applications
to cloudlets in order to minimize the total turnaround time.
Hence, OAMC calls ASSIGN function (line 18) using V t, U t,
and C as input parameters, where V t is a matrix corresponding
to all cost vti,j , i.e., V t =

⋃n
i=1

⋃m
j=1 v

t
i,j , U t is a matrix

corresponding to all specifications uti, i.e., U t =
⋃n
i=1 u

t
i,

and C is a matrix corresponding to all cloudlet specifica-
tions cj , i.e., C =

⋃m
j=1 cj . ASSIGN returns St, which is a

set of offloading decisions that determines the assignment of
applications to each cloudlet. For example, given 2 cloudlets
and 2 applications U = {u1, u2}, St = ({}, {u1, u2})
indicates no application is assigned to cloudlet c1, while both

Algorithm 2 PREDICT(Û ti , t, w)

1: for all h = 1 to w do
2: x̄i

t+h = xti + h
t−1 (xti − x1

i )

3: ¯idi
t+h = t×idti+(t−1)×idt−1

i +...+id1i
t+(t−1)+...+1

4: Calculate ȳit+h similar to line 2
5: Calculate m̄di

t+h, ω̄it+h, p̄it+h, b̄i
t+h similar to line 3

6: ūi
t+h = (x̄it+h, ȳi

t+h, m̄di
t+h, ¯idi

t+h,
ω̄i
t+h, p̄it+h, b̄i

t+h)
7: Return:

⋃w
h=1 ūi

t+h

applications u1 and u2 are assigned to cloudlet c2.
OAMC converts St to R̂t, where R̂t is a set corresponding

to all R̂ti (i.e., R̂t =
⋃n
i=1 R̂

t
i), and it maintains the assigned

cloudlets to all applications (line 19). Moreover, the algorithm
removes the specifications of assigned applications from U t

and also updates the specification of the cloudlets in order to
reflect their available resources (ρ and β). Similarly, it updates
the cost matrix (V t) by eliminating the rows in the matrix that
refer to the assigned applications (line 20). This loop (lines 17-
21) is repeated until there is no unassigned application.

If the current time slot is not a multiple of w, all appli-
cations remain assigned to their current cloudlets (lines 22-
24). Finally, OAMC returns the assignments of cloudlets to
the applications in all time slots (line 25). More details about
PREDICT and ASSIGN functions will be given next.

1) Forecasting Methods of OAMC: To predict future speci-
fications of application ui for the next w time slots, we propose
PREDICT function, presented in Algorithm 2. The specifi-
cation of the applications composed of x, y, md, id, ω, p,
and b. Due to user mobility, x and y values are expected
to change over time. However, data and processing require-
ments of applications are expected to remain close to their
recent requirements, and the critical factor in determining the
requirements is the type of applications. Therefore, we use
two forecasting methods, Drift method to predict x and y, and
Weighted Moving Average method to predict other parameters.

Drift method [15] allows changes (decrease or increase)
over time in the amount of the forecasting parameter, where
the amount of changes depends on the average change in the
historical data. Therefore, it calculates the average change
between the first and last observations, and then assumes
every single future observation will be changed as much as
that amount compared to the last observation. The forecasting
value for x axis of application ui is defined as follows:

x̄t+hi = xti + h
t−1

∑t
t′=2(xt

′

i − x
t′−1
i ) = xti + h

t−1 (xti − x1
i ), (9)

where x̄t+hi represents the value of the forecasting parameter
at time t+h, assuming h is the number of time slots ahead, t
is the current time slot, and the real values of forecasting
parameter are known up to time slot t (i.e., x1

i , x2
i , ..., xti)

(line 2).
Weighted Moving Average [15] considers the recent obser-

vations more valuable and the old observations less valuable



by considering greater coefficients for the recent observations
and smaller coefficients for the old observations. It assumes
the value of a forecasting parameter is likely to be close to its
recent values. Using this approach, the forecasting value for
the id parameter of application ui is presented in line 3. The
forecasting value is computed based on t recent observations,
such that the most recent observation is idti, the second recent
observation is idt−1

i and so on.
The predicted values of other specifications of application ui

in next w time slots are calculated, and PREDICT function
returns these values.

2) OAMC Assignment: OAMC calls ASSIGN function to
find the offloading assignment of the applications to the
cloudlets. This function needs to solve an instance of the
Generalized Assignment Problem (GAP), which is a well-
known NP-hard problem. Approximate algorithms have been
proposed to solve GAP, however, they mostly require exponen-
tial preprocessing time and complicated rounding techniques.
In this paper, ASSIGN uses the local-ratio technique, adopted
from [16] to provide 2 + ε-approximate with a better running
time. It receives the cost functions (V t), specifications of
the applications (U t), specifications of the cloudlets (C) and
returns S =

⋃m
j=1 Sj as a set of offloading assignments,

where Sj is the set of assigned applications to cloudlet cj .

V. EXPERIMENTAL EVALUATION

We conduct a set of experiments to evaluate the effective-
ness of our proposed approach in computation offloading of
mobile applications.

Experimental Setup. We compare the performance of OAMC
with the following methods to assess its efficiency.

• IP: We use our IP model, presented in equations (2-8), as
a benchmark. This IP is implemented using IBM ILOG
Concert Technology API for C++ [17].

• Best Fit Decreasing (BFD): This method first sorts the
applications in decreasing order of required resources
including processing speed and bandwidth. In fact, appli-
cations requiring higher processing speed and bandwidth
come before other applications in the sorted list. Then,
each application is offloaded to a cloudlet that has the
smallest resources (processing speed and bandwidth), but
enough for that application.

• OAMC Without using Prediction (OAMC-WP): This
method uses the same assignment function as in OAMC.
However, the concept of prediction is not incorporated in
OAMC-WP.

The algorithms are implemented in C++, and the experiments
are conducted on a desktop PC with 2.67 GHz Intel Core i5-
480M with 4GB RAM.

For the mobile applications, we use mobility traces of taxi
cabs in San Francisco [18] to determine the coordinates of
users’ locations at each time slot. For the cloudlets, each is
located randomly in a position within all positions of the
mobile applications. We use uniform distribution to obtain the
coordinates of their locations. For other specifications of the

TABLE I: Statistics of each user ui and cloudlet cj

Spec. Mean SDev Dist.

mdti (Mb) µ = U(8,48) σ = U(0,8) N (µ, σ2)

idti (Mb) µ = U(8,160) σ = U(0,16) N (µ, σ2)

ωt
i (M) µ = U(1,80) σ = U(0,20) N (µ, σ2)

bti (Mbps) µ = U(750,1500) σ = U(100,200) N (µ, σ2)

βj (Mbps) - - U(7500,15000)

mobile applications at each time slot and cloudlet, we use a
dataset [19] that contains the performance metrics of 1750
virtual machines of a mid-size datacenter managed by Bit-
brains, which is a service provider. We assume each cloudlet
has a total processing speed equivalent to the cumulative pro-
cessing speed of U(1,20) number of virtual machines, where
the statistics of the virtual machines are presented in [19].
Similarly, we use the processing speed usage statistic in the
dataset as processing speed requirements of the applications.
Other specifications of the mobile applications at each time
slot and cloudlet are represented in Table I.

For the experiments, we consider five scenarios in 20 time
slots and window size of 5, Exp 1 with 50 applications
and 10 cloudlets, Exp 2 with 75 applications and 12 cloudlets,
Exp 3 with 100 applications and 15 cloudlets, Exp 4 with 150
applications and 20 cloudlets, and Exp 5 with 200 applica-
tions and 30 cloudlets. The values of γ, θ, and ε are set
to 0.3, 3× 108, 0.5, respectively.

Comparative Analysis. We use turnaround, migration rate, and
runtime as metrics to compare our proposed approach OAMC
with IP, BFD, and OAMC-WP. Note that in some cases, IP
does not have any results as it could not obtain a solution in
a feasible time (60 minutes).

Our optimization criterion is to minimize the turnaround
time of mobile applications. The average turnaround time
of applications per time slot is presented in Fig. 1a, which
is measured in milliseconds. The results show that OAMC
obtains turnaround time close to the optimal results obtained
by IP. Moreover, OAMC obtains a lower turnaround time
than OAMC-WP and BFD in all the experiments. OAMC-
WP and BFD that are not prediction-based methods have the
worst turnaround time for the applications, and they lead to
similar results. Note that IP is unable to solve the problem for
experiments 3, 4, and 5, which shows IP lacks scalability.

We compare the migration rate (per application per time
slot) obtained by each method. The results are presented in
Fig. 1b. The results show that IP obtains lower migration
rates, even though minimizing the migration rate is not the
direct objective of our IP. However, we believe that methods
with lower migration rates will result in closer to optimal
turnaround time due to the decrease in their migration cost.
OAMC leads to comparable low migration rates compared to
IP and significantly lower migration rates compared to other
approaches. OAMC-WP and BFD obtain high migration rates
as they are not prediction-based methods.



0

50

100

150

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Experiments

T
u

rn
a

ro
u

n
d

 T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Methods

IP

OAMC

OAMC−WP

BFD

(a) Turnaround Time

0.00

0.25

0.50

0.75

1.00

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Experiments

M
ig

ra
ti
o

n
 R

a
te

Methods

IP

OAMC

OAMC−WP

BFD

(b) Migration Rate

10
−2

0.1

1

10

10
+2

10
+3

10
+4

10
+5

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Experiments

R
u

n
ti
m

e
 (

m
ill

is
e

c
o

n
d

s
)

Methods

IP

OAMC

OAMC−WP

BFD

(c) Runtime

Fig. 1: Performance Analysis of OAMC

Fig. 1c shows the average runtime of the methods per
time slot on a logarithmic scale. The runtime is measured in
milliseconds. The results show that BFD performs the fastest
compared to other methods since it is a trivial algorithm with
a lower time complexity than others. IP obtains the worse
running time as we expect due to the intractability of our NP-
hard problem. OAMC obtains a polynomially scalable running
time, and it finds the results in less than 10 sec for the largest
experiment and below 0.1 sec for the smallest experiment.
Moreover, the average runtime of OAMC-WP is about 52 sec
for experiment 5 since it does not use any predictions, and it
needs to find assignments in each time slot.

To sum up, the results show our proposed method OAMC
results in close to optimal turnaround time, and it is polyno-
mial in the size of the input. It also obtains significantly lower
migration rates than OAMC-WP and BFD.

VI. CONCLUSION AND FUTURE WORK

Computation offloading to cloudlets is a beneficial approach
to augment the capabilities of mobile devices. However, a
decision on computation offloading concerning mobility in-
herent of mobile devices is a significant challenge. In this
paper, we addressed this challenge by proposing a novel
computation offloading approach called OAMC, which utilizes
dynamic predictions to obtain smart decisions on offloading.
Experimental evaluations show that our approach finds close
to optimal turnaround time in a reasonable running time.
Moreover, it reduces the number of migrations significantly
compared to other approaches. For the future work, we plan
to enhance the running time and scalability of our approach.

Acknowledgment. This research was supported in part by NSF
grant CNS-1755913.

REFERENCES

[1] M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE pervasive Computing,
2009.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646,
2016.

[3] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, 2017.

[4] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in Proc. of the
IEEE Intl. Symp. on Information Theory, pp. 1451–1455, 2016.

[5] N. Sharghivand, F. Derakhshan, and L. Mashayekhy, “Qos-aware match-
ing of edge computing services to Internet of Things,” in Proc. of the
IEEE 37th Intl. Performance Computing and Communications Conf.,
pp. 1–8, 2018.

[6] D. Bhatta and L. Mashayekhy, “Generalized cost-aware cloudlet place-
ment for vehicular edge computing systems,” in Proc. of the 11th IEEE
Intl. Conf. on Cloud Computing Technology and Science, pp. 1–8, 2019.

[7] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, 2015.

[8] V. De Maio and I. Brandic, “First hop mobile offloading of dag
computations,” in Proc. of the 18th IEEE/ACM Intl. Symp. on Cluster,
Cloud and Grid Computing, pp. 83–92, 2018.

[9] W. Ma, X. Liu, and L. Mashayekhy, “A strategic game for task offloading
among capacitated UAV-mounted cloudlets,” in Proc. of the IEEE Intl.
Congress on Internet of Things, pp. 61–68, 2019.

[10] T. Bahreini and D. Grosu, “Efficient placement of multi-component
applications in edge computing systems,” in Proc. of the 2nd ACM/IEEE
Symp. on Edge Computing, p. 5, 2017.

[11] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge computing based on markov
decision process,” IEEE/ACM Transactions on Networking, vol. 27,
no. 3, pp. 1272–1288, 2019.

[12] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar,
“Mobility-aware application scheduling in fog computing,” IEEE Cloud
Computing, vol. 4, no. 2, pp. 26–35, 2017.

[13] D. Gonçalves, K. Velasquez, M. Curado, L. Bittencourt, and E. Madeira,
“Proactive virtual machine migration in fog environments,” in Proc. of
the IEEE Symp. on Computers and Communications, pp. 742–745, 2018.

[14] C. Zhang and Z. Zheng, “Task migration for mobile edge computing us-
ing deep reinforcement learning,” Future Generation Computer Systems,
vol. 96, pp. 111–118, 2019.

[15] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and
practice. OTexts, 2018.

[16] R. Cohen, L. Katzir, and D. Raz, “An efficient approximation for
the generalized assignment problem,” Information Processing Letters,
vol. 100, no. 4, pp. 162–166, 2006.

[17] IBM, “Concert Technology version 12.1 C++ API Reference Man-
ual.” Available: ftp://public.dhe.ibm.com/software/websphere/ilog/docs/
optimization/cplex/refcppcplex.pdf, 2009. Accessed: 2019-05-25.

[18] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, “CRAW-
DAD dataset.” Available: https://crawdad.org/epfl/mobility/20090224.

[19] S. Shen, V. van Beek, and A. Iosup, “Statistical characterization of
business-critical workloads hosted in cloud datacenters,” in Proc. of the
15th IEEE/ACM Intl. Symp. on Cluster, Cloud and Grid Computing,
pp. 465–474, 2015.


