Incentive-Compatible Online Mechanisms for Resource Prowioning and Allocation

in Clouds
Lena Mashayekhy, Mahyar Movahed Nejad, Daniel Grosu Athanasios V. Vasilakos
Department of Computer Science Department of Computer Science
Wayne State University University of Western Macedonia
Detroit, Ml 48202, USA Greece
{m ena, mahyar, dgrosu}@ayne. edu vasi | ako@t h. forthnet. gr

Abstract—Cloud providers provision their various resources storage, etc.). Our proposed mechanisms are online and
such as CPUs, memory, and storage in the form of Virtual thus, make no assumptions about future demand and supply
Machine (VM) instances which are then allocated to the users. of VMs, which is the case in real cloud settings. Online

We design online mechanisms for VM provisioning and alloca- . .

tion in clouds that consider several types of available resources. mephamsms calculate the aIIocaupn and payment as users
Our proposed online mechanisms make no assumptions about arrive at the system and place their requests. Therefage, th
future demand of VMs, which is the case in real cloud settings. cloud provider provisions and allocates VM instances as the
The proposed mechanisms are invoked as soon as a user places resources become available.

a request or some of the allocated resources are released))))

and become available. The mechanisms allocate VM instances In online settings, each user submits a bid for a bundle of

to selected users for the period they are requested for, and VM instances, and specifies the amount of time the bundle
ensure that the users will continue using their VM instances myst be allocated and a deadline. Each user has a private
for the_entlre requested period. In addition, the mechanlsr_ns value (privatetypd for her requested bundle. The users are
determine the payment the users have to pay for using | ffish in th hat th L hei
the allocated resources. We prove that the mechanisms are /SO Seliish in the sense that they want to maximize their
incentive-compatible, that is, they give incentives to the users Own utility. It may be beneficial for them to manipulate the
to reveal their true valuations for their requested bundles of system by declaring a false type (i.e., different bundles or
VM instances. We investigate the performance of our proposed pids from their actual request). One of the key properties
mechanisms through extensive experiments. of our proposed mechanisms is to give incentives to users
Keywords-cloud computing; online truthful mechanism; re- so that they reveal their true valuations for their requeste
source allocation. bundles. The objective of the mechanisms is to allocate
|. INTRODUCTION resources to 'the users such that the social welfare (i®., th
sum of users’ valuations for the requested bundles of VMSs)

Designing efficient mechanisms for Virtual Machine 5 o imized. The mechanisms also determine the payments
(VM) provisioning and allocation is a major problem in for each user.

cloud computing. Such mechanisms should consider eco-
nomic incentives for both cloud users and cloud provider€Our Contribution. We address the problem of online VM
in finding the market equilibrium.Current cloud providers provisioning and allocation in clouds in the presence of
such as Amazon EC2 and Microsoft Azure employ fixed-multiple types of resources. This is a strongly NP-hard prob
price and auction-based mechanisms in order to provisiotem. We design an offline incentive-compatible mechanism
resources in the form of VM instances and sell them toand a family of online incentive-compatible mechanisms
the users. These mechanisms are offline mechanisms, thier VM provisioning and allocation that give incentives to
they need to collect the information about all user requestthe users to reveal their true valuations for their requeste
and then decide the allocation of VM instances to usersbundles of VM instances. The proposed offline mechanism is
However, cloud users request VM instances over time, thugptimal given that the information on all the future reqgest
creating an online setting for the provisioning and allamoat is known a priori. However, our proposed online mechanisms
problem. Therefore, cloud providers need to design onlinanake no assumptions about future demand of VMs, which
provisioning and allocation mechanisms in order to provides the case in real cloud settings. Our proposed online
faster services to the users and allocate their resourcasechanisms are invoked as soon as a user places a request or
efficiently. some allocated resources are released and become available
In this paper, we design mechanisms for the VM pro-The mechanisms not only provision and allocate resources
visioning and allocation problem in clouds in the pres-dynamically, but also determine the users’ payments such
ence of multiple types of resources (e.g., cores, memorythat the incentive-compatibility property is guarante€&te

proposed online mechanisms provide very fast solutions Taple |: VM instance types offered by Amazon EC2.
making them suitable for execution in real-time settings. W

perform extensive experiments showing that the proposed ‘ ,ST"l ‘ “ﬂ?‘i‘”;“ ,,Llar:g% ‘ Eﬁra:laige
online mechanisms are able to find near optimal allocations CPU 1 2 4 8

while satisfying the incentive-compatible property. gg:;%g ((SBB)) 11(52 ‘Hg ;550 1}530
Related WorkDue to space limitation we will only discuss i

briefly the closest related work. The reader is referred tdffering a set ofR types of resourcesy = {1,..., R}, to

Parkes [1] for an introduction to online mechanisms. OnlingUSers in the form of VM instances. These types of resources

variants of Vickrey-Clarke-Groves (VCG) mechanisms werelnclude cores, memory, storage, etc. The cloud provider has

proposed by Gershkov and Moldovanu [2] and by Parkedestricted capacity(,., on each resource € R available

and Singh [3]. These mechanisms focus on Bayesian—NasfF?r allocation. The cloud provider offers these resources i

incentive compatibility. However, these studies rely on athe form of M types of VMs, VM = {1,..., M}, where

model of future availability, as well as future supply. each VM of typem € VM provides a specific amount of
The problem of resource provisioning and allocation in®2ch type of resource € R. The amount of resources of

clouds has been investigated by several researchers. K{yper that one VM mstanc.e of type: provides is denoted

et al. [4] proposed a 3-approximation algorithm for thePY wmr. AS an example, in Table I, we present the four
VM placement problem to minimize the maximum accessYPeS of VM instances offered by Amazon EC2 at the time
latency. Leslie et al. [5] proposed a framework for resource®! Writing this paper. If we consider that CPU represents the
allocation and job scheduling of VMs aiming to cost effi- YPe 1 resource, memory, the type 2 resource, and storage,
ciently execute deadline-constrained jobs. In our pre;/iouthe type 3 resource, we can characterize, for example, the

studies, we proposed truthful mechanisms for VM alloca-Medium instancerfy = 2) by: w1y = 2, wi2 = 3.75 GB,

tion in clouds in periodic-time settings [6], [7]. However, andw1s = 410 GB. , _
none of these studies consider online settings. Zhang et A S€tU of N users are requesting a set of VM instances

al. [8] proposed an online auction mechanism for resourcd®! @ certain amount of time in order to execute their appli-
allocation in clouds. The preemption is not allowed, andcations (jobs) on the cloud. Uséri € U/, requests a bundle

there are assumptions that job lengths and bids are withifli = <ki1’,ki2’“"kiM> of M types of VM Instances,
known intervals. In addition, they considered only one type"VN€re ki» is the number of requested VM instances of
of resources. Zaman and Grosu [9] proposed a truthful onlin&/P€ 7 € VM. In addition, she specifies a b for her
mechanism for provisioning and allocation of VM instances'@duested bundle;. User: is characterized by her type
in clouds. However, their mechanism assumes that the clou@ = (5i» @i, li, i, b;), wherea; is the arrival time of her
provider offers only one type of resources, computationaf€duest!; is the amount of time for which the requested

resources. The current work is different from the two aboveundle must be allocated, anilis the deadline for her job

mentioned studies since it considers the existence of alevercOmpletion. For example, typ&4, 3, 1,2),2,1,7, $15) rep-

resource types, being more suitable for use in real cloudSents a user requesting 4 Small VM instances, 3 Medium

settings. Note that considering one resource makes th¥M instances, 1 Large VM instance, and 2 Extra large
problem NP-hard, while in our study, we tackle a muchVM instances; the request arrives at time 2, needs 1 unit
more challenging problem which is strongly NP-hard. InOf time to execute, expires at time 7, and her bid 15.$

addition, satisfying incentive-compatibility in our setgs Ve denote by, =5_,), v kimwm, the total amount of
brings about more challenges. each resource of type that user; has requested.

L . , We defined; = d; — [; as the time by whichS; must
Orgamz_atlon.The rest O.f the Paper s orgamze_d _as_follows.be allocated to user in order for her job to complete its
In Section I, we describe the online VM provisioning and execution. If the cloud provider allocates a requested leund

Ellogat|on proble:cn n cLouds. Ir;Sgctlon ”(;’ we introdubet o request is never preempted. Usemlues her requested
asic concepts of mechanism design, and we present our prBl_Jnd|eS7; atb;, which is the maximum price a user is willing

posed offline optlmal mechamsm. In Section IV, we presenEO pay for using the requested bundle if it is allocated withi
the proposed online mechanisms, and we characterize thejf o Wwindow la;, 6,]. The users are assumed to siagle-

proper?ies. In S_ection V. we e\(aluate the mechani_sms b}‘ninded That means, user desires onlyS; and derives a
extensive experiments. I_n Se(.:tlon. VI, we summarize OUL,41ue of b; if she getsS;, or any superset of it, for the
results and present possible directions for future rebearc specified time before its deadline, and zero value, otherwis

To design incentive-compatible mechanisms, we consider
the standard mechanism design objective, that is, maximiz-
We define the problem of online VM provisioning and ing the social welfare [10]. Maximizing social welfare can
allocation in clouds (OVMPAC) in the presence of multiple help a cloud provider increase its revenue by allocating the
types of resources as follows. We consider a cloud provide¥Ms to the users who value them the most. We denote

II. VM PROVISIONING AND ALLOCATION PROBLEM

by V' the social welfare which is defined as the sum of incentive-compatible mechanisms that solve the OVMPAC
users’ valuations}’ = 3, b; - x;, wherex;, i € U, are problem.

decision variables defined as follows: = 1, if bundle S; is
allocated to usef within time window [a;, d;]; andx; = 0,
otherwise. Our goal is to design online incentive-compatib In this section, we first present the basic concepts of
mechanisms maximizind’, that is, mechanisms that solve mechanism design and then propose an offline optimal
OVMPAC. mechanism.

We also define the offline version of OVMPAC, called
VMPAC, which considers that the information on all the
future requests is known a priori. In order to formulate In general, a deterministic mechanisM, is defined as
VMPAC as an integer program we define the decisiond tuple(A,P), where A = (Ay,..., Ay) is the allocation
variables over time € 7 as follows: X;; = 1, if S; is function that determines which users receive their reqaest
allocated toi at t; and X;; = 1, otherwise. In addition, bundles, andP = (Py,...,Py) is the payment rule that
we define indicator parameters as followg; = 1, if determines the amount that each user must pay for the
a; <t < 6;; andy;; = 1, otherwise. The feasibility of allocated bundles. In our model, each uset U/ is char-
the allocation to usef is indicated byy;,. This indicator — acterized by her true type denoted By Each user's type
parameter ensures that the allocation of the requestedeéounds private knowledge. The users may declare different types
is within time window [a;, &;]. from their true types. We denote Wy = (5;, a, l;, d;, b;)

We formulate the problem of offline VM provisioning and Useri's declared type. Note that, = (S5;,a;,l;, d;, b;) is
allocation in clouds (VMPAC) as an Integer Program (calledUseri's true type. The valuation function; (¢ ;) of useri

I11. M ECHANISM DESIGN FRAMEWORK

A. Preliminaries of Mechanism Design

VMPAC-IP) as follows:

is defined as follows'uz(o) = b, if S; is allocated byA

A(S; € 85) A (t; < 6;); andw;(6;) = 0, otherwise, where;
Maximize Z Z b - yir - Xit (1) is the time at whichS; has been allocated to usefThe goal
ieu teT is to design incentive-compatible mechanisms that maxdmiz
Subject to: the social welfare/, whereV = 3", ,, vi(6;) - ;.
. The utility function of user: is quasi-linear and thus,
ZX” <l Vviel (2) it is defined as the difference between her valuation and

teT) payment,u;(6;) = v;(6;) — P;(6;), where P;(0;) is the
<C payment for useri calculated by the mechanism using
Z Z Z KimWmrYiw Xiw < Cr, the payment ruleP. The goal of a user is to maximize
icU w=t—1l;+1 meVvM . . .
her utility, and she may manipulate the mechanism by
vreR, vteT (3 lying about her true type to increase her utility. In our
X ={0,1},\VieU,vteT (4) case, the type of a user consists of a bundle, an arrival
yie = {0,1},Vi eU,Vt €T (5) time, an amount of time for which the requested bundle
must be allocated, a deadline, and a value. As a result,
The objective function is to maximize social welfafg, a user can lie about any of these parameters in the hope
wherex; = 3, vit - Xit. Constraints (2) ensure that the to increase her utility. These manipulations by the users
request of each user is fulfilled at most once. Constraints (3will lead to inefficient allocation of resources and ultimigt
guarantee that the allocation of each resource type doesill reduce the revenue obtained by the cloud provider. We
not exceed the available capacity of that resource for anwant to prevent such manipulations by designing incentive-
given time. Constraints (4) and (5) represent the integrali compatible mechanisms for solving OVMPAC. We denote
requirements for the decision variables and indicatormpara by 8 = (64,...,0y) the vector of types of all users. In
eters. These constraints force the cloud provider to pimvis addition,8_; is the vector of all types except usés type
the whole bundle of VM instances and to allocate bundlegi.e., 6_;, = (61,...,6;—1,60;+1,...,0x)). A mechanism is
to the selected users. The VMPAC problem is stronglyincentive-compatibléf all users have incentives to reveal
NP-hard by a simple reduction from the multidimensionaltheir true types.
knapsack problem [11]. Note that VMPAC-IP assumes that Definition 1 (Incentive compatibility)A mechanismM
the information about all users’ requests is available ais incentive-compatibl€or truthful) if for every useri, for
the time of solving it. As a result, if solved, VMPAC- every type declaration of the other uséts;, a true type
IP finds the optimal allocation of cloud resources in andeclarationd; and any other declaratio; of useri, we
offline setting. However, in an online setting, we do nothave thatu,(0;,0_;) > u;(0;,0_;).
have the information about future requests (such as asjival In other words, a mechanism is incentive-compatible if
and thus, we have to rely on online mechanisms that solveuthful reporting is a dominant strategy for the userst tha
the OVMPAC problem. Our goal is to design such onlineis, the users maximize their utilities by truthful repogin

independently of what the other users are reporting. Talgorithm 1 VCG-VMPAC Mechanism C)
obtain an incentive-compatible mechanism the allocation 1: {Collect user requests offline (typef).
function A must be monotone and the payment rule must 2: for all i € ¢/ do

be based on the critical value. if {Aﬁgéft?é#fef type); = (S, ai, li, di, b;) from useri
For our model, we define monotonicity in terms of the ¢ (V*, x*) = Solve IP-VMPAC@, C)
following preference relation on the set of typest; = 0; 6: Provisions and allocates VM instances accordingto
if S; =S5l a <ayl, <l d,>d;, andb, > b; for user 7: {Payment
8: for all : € U do

i. Moreover,S! = S, if o/, < 0., ¥r € R. That means the
type ég is more preferred thaé; if useri requests a smaller - -
. . : sumi = suma =0

bundle, submits an earlier request, the bundle for a shortef;. ¢ 411 jEU,j+ido
time period, a later deadline, and submits a higher valuess. sumy = sum; +1;jx;*
In our setting, users cannot report an earlier arrival,(i.e.13: sSuma = Sums +1;jx;
a; < a;), a shorter length (i.el; < [;), or a later deadline 14: P; = sum; — suma
(i.e., d; > d;) than their true arrival time, true length, and 15: Output: V*; x™, P = (P1, Pa, ..., Pn)
true deadlmg. There is no reason fpr a user to Sme't. hevrvould have been obtained had ugemot participated, and
request earlier than when her job is ready for execution R ,(g.) is the sum of all users valuations excent
Declaring a shorter length does not allow the completion of=i€A(8).j7 VilY P
the job. Reporting a later deadline may result in getting her
bundle too late to complete her job on time. We define the VCG-based mechanism that solves the

Definition 2 (Monotonicity): An allocation funcgionA is VMPAC problem as follows:
monotonéf it allocates the resources to usewith 6; as her o _)
declared type, then it also allocates the resources toiuser Definition 4: The VCG-VMPAC mechanism consists of

(V'*, x'*) = Solve IP-VMPAC@_;, C)

N
(SRS

with &/, whered’ = 6. the optimal allocation algorithm that solves IP-VMPAC and
In other words,A is monotone if any winning user who the payment function defined by the VCG payment rule.
receives her requested bundle by declaring a #pis still The VCG-VMPAC mechanism is given in Algorithm 1.

wining if she requests a more preferred type. Any incentive\/CG-VMPAC has one input parameter, the vector of

compatible mechanismM has a payment rul@ such that resource capacitie€C — (Ci,...,Cr), and three out-

the payment of any uséy P;, is independent of her request. put parametersy’*, the optir;"nal ’social welfarex* —
Definition 3 (Critical value): Let A be a monotone allo- (@],25, ..., 2%), thé optimal allocation of VM instances to

cation funct?qn, then for ever;, there exist a unique value the users, an@® the payments. The mechanism collects the
bj, called C”_t'03|dVa||Ue such thagvei = (Suaivliad'? bza) requests from the users, expressed as types (lines 1-3), and
0; |s|a _Nlnndlngl eclaration, ando; < (Si,ai, li; di,0), 0 getermines the optimal allocation by solving the IP-VMPAC
I‘?ha osm(ﬁ ec aration. K foll It f . h given in Equations (1) to (5) (line 5). Once the optimal allo-

e mechanism\ works as ollows. [t first receives the 44 is determined the mechanism provisions the required
declared typ.es from each partlplpat|ng user, aqd then_’dbasqwmber and types of VM instances and determines the
on the. receweql types determines the allpcatlon using thﬁayments. The users are then charged the amount determined
allocation functionA and the_ payments using t_h_e paymentby the mechanism (lines 8-14). The VCG payment of a user
rulg P.dT?.e %aymtfar}lt rulep és lia;fd,fon th(.a.cntlllcal Vacljt_'e is calculated by solving the IP-VMPAC to find the allocation
and IOS ehme as HO Oévcgf)i(h) = i | Iuselrz |sfa ocgte '’ and welfare obtained without usés participation (line 9).
and 0, otherwise. Here, is the critical value of user. (ﬁased on the optimal allocation to the users with and without

In the next subsection, we incorporate our propose iy o ; .
) S) seri's participation, the mechanism finds the payment for
VMPAC-IP in the design of a VCG-based optimal meCh'useri, wheresum; is the sum of all values without usés

anism which computes the allocation and payment Om'ne'participation in the mechanism, asdm, is the sum of all

B. Incentive-Compatible Offline Optimal Mechanism except usei’s value in the optimal case (lines 10-14).

We introduce a VCG-based incentive-compatible opti- Being a VCG-based mechanism, VCG-VMPAC is
mal mechanism that solves VMPAC, the offline versionj,centive-compatible [10], and it determines the optimal
of OVMPAC problem. Since the setting is offline, the 4 5cation. However, the VMPAC is strongly NP-hard, and
VCG-based mechanism has all the information about the,s the execution time of VCG-VMPAC becomes pro-
users, and thus, it finds the optimal solution. A VCG-based,jpitive for large instances of VMPAC. In addition, VCG-
mechanism [10] requires an optimal allocation algorithmy\pac computes the allocation and payment offline since
implementing the allocation functiod and a payment rule it 55 4l the information about future demands. However, in
given by:P;(0;) = ZZeA(é_,;) i) =2 e a(6),52:Vil0i): areal settings this information is not available to the dlou
where). 16 ,)vi(0;) is the optimal social welfare that providers and requires designing online mechanisms.

IV. ONLINE MECHANISMS FORVM PROVISIONING AND Algorithm 2 OVMPAC-X Mechanisms (Eventd, P)
ALLOCATION 1: ¢t «— Current time

o i desian i . bl d h 2: Q" «— {0;i e U, i has not been allocatgd
ur goal is to design incentive-compatible greedy mech- 5. 5 {0,]i € U, (i has been allocated)

anisms that solve the OVMPAC problem in online settings. ' (its job has not finished yet)
The VM instances hav& dimensions, where th& dimen- 4: for all i € U4 do
sions correspond to the types of resources. Since the cloud 5: for all r € R do
provider provisions resources in the form of VM instances, & Tir = 3, cym KimWnr

. . . 7: for all r € R do
any bundle of VMs can be seen as aRelimensional item. ¢ CteCr =Y. o

|6;€Qt “r

Without loss of generality, we consider that the smallest 9: C' — (CL,...,Ch): vector of resource capacities at time
item in the R-dimensional space contains one unit of eachlo; if O' = orCt = 0 then
resources. This assumption does not restrict our proposed: return
model since the resource capacities can be normalized t&: f <—AOV|\£I3AC-X-ALLOC(t7 Q',¢ct)
their units. As a result, the total volume of available items 13 A, — AUA e o
allocate to the users ig], . C.. In this section, we present 14: " — OVMPAC-X-PAY(t, @', A", CY)

) ; _ _ :) 15: P «— PUP*
a family of incentive-compatible online mechanisms for the 1¢: return 4, P

OVMPAC problem, called OVMPAC-X.
_ on the length of jobs, and the type of time (discrete or

A. OVMPAC-X Mechanisms continuous). Based on the settings of the two allocation-alg

The OVMPAC-X family is given in Algorithm 2. The rithms, we define a metric called théd density OVMPAC-
OVMPAC-X is an event handler, that is, it is invoked when X-ALLOC algorithm allocates the VM instances to users in
a new user request arrives or some allocated VM instancegecreasing order of their bid densities. We define OVMPAC-
become available. OVMPAC-X takes as input an Event, tha-ALLOC, and OVMPAC-II-ALLOC, as follows:
current allocation setl, and the payment s@. An Event is 1) OVMPAC-I-ALLOC: This algorithm considers the
either a release of resources or an arrival of a user requesietting in which a set/ of N users are requesting a
In lines 1 to 8, OVMPAC-X sets the current time taand heterogeneous set of VM instances tore unitof time in

initializes four variables as follows: order to execute their applications/jobs on the cloud.dbal
Q': the set of types of the users that have not beertonsiders a discrete-time model such that{0,1,--- ,T}.
allocateg. Formally, . R In this cased; = 1, and the bid density is:
Ot — {Oili eU,t <o; ANPti <t:(0;,t;) € A}, .
Q' the set of types of the users that have been allocated f; = _ b (6)
and their jobs have not finished yet. Formally, [Leroir
Q' —{Oili eUN3t; <t:(0i,t;) € ANt +1; >t} 2) OVMPAC-II-ALLOC: This algorithm considers the
oir: the amount of each resource of typaequested setting in which a set/ of N users are requesting a
by user:; ar_1d, _) heterogeneous set of VM instances fory lengthof time
Cy: the available capacity of the resourcat timet. jn order to execute their applications/jobs on the cloud. It

The mechanism stores the resource capacities atttiasea also considers a continuous-time model such that0, 7.

vectorC! (line 9). Then, it proceeds only if resources and re-Note that the request time length for any usds I; > 1.
quests are available. OVMPAC-X determines the allocationThe bid density is defined as follows:

by calling OVMPAC-X-ALLOC. The allocation function R

OVMPAC-X-ALLOC returns A?, the set of users who fi= - bi @)
would receive their requested bundles at timéine 12). i 11, er oir

The mechanism then updates the overall allocation.4et i . .
using the newly determined set'. Then, the mechanism The bid Qf user; for a bundle of 'VM instances for timg .
determines the payment of usersdf by calling OVMPAC- ¢an be interpreted as requesting a _hyper?rectangle with
X-PAY. The payment function OVMPAC-X-PAY returns set Volume [; - [].cr o in the (R + 1)-dimensional space
Pt containing the payment of users at timgine 14). The defined by theR resource types and the time. Useralues

mechanism updates the overall payment Beusing the this volume atb;, if allocated. Hence f; represents how

newly determined seP* (line 15). much useri values one ynit of volume from theR(+ 1)- '
) . dimensional space. In this setting, we consider that the bid
B. Allocation algorithms of OVMPAC-X are chosen from an intervdb, b] without assuming any

The allocation algorithm OVMPAC-X-ALLOC is given distribution, whereb andb are the minimum and maximum
in Algorithm 3. We consider two allocation algorithms, bids, respectively.
OVMPAC-I-ALLOC, and OVMPAC-II-ALLOC, where the OVMPAC-X-ALLOC sorts all types in non-increasing
settings of the two algorithms differ from each other basedrder of bid densities,f; (line 4). Then the algorithm

Algorithm 3 OVMPAC-X-ALLOC(t, 9%, CY) Algorithm 4 OVMPAC-X-PAY (¢, Q*, A*,CY)

LAY) 1: Q= Q" U{hi|(0:,t) € A"}
2: for all i[0; € Q" do 2: for all i|0; € Q do
3 fi= Hbfa for OVMPAC-I-ALLOC; or 3 f; = 2% for OVMPAC-I-ALLOC; or
fi = W for OVMPAC-II-ALLOC fi = —2— for OVMPAC-II-ALLOC
i reRr Tir li'HreR Tir

4: Sort all §; € Q" in non-increasing order of; 4: for all (6;,t) € A" in non-increasing order of; do
5: for all 0; € Q" in non-increasing order of; do 5 (C—(t

6: C=C" 6: forall r e R do

7. flag — TRUE 7: Cr=Cr+o0ir

8 forall r ¢ R do 8 q=-1;

9

o Cr=Cr— oy : A« OVMPAC-X-ALLOC(t, Q \ 6;,C)
10: if C\. <0 then 10: for all ; € Q' N {0;](6;,t) € A} in non-increasing
11 flag — FALSE order of f;, wheref; < f; do
12: break; 11: q=7
13: if flag then 12 break';
ig: %: CAt Gt 13: if gthen

: — 2 14: P,Lt - ir
16: Output: A? 15: else o Lero

16: P —0

allocates bundles requested by the sorted use@ iwhile 17, output: Pt = (P1, Pas..., Px)
resources last (lines 5-15). The mechanism uses this otderi

for allocation since the cloud provider is interested inrese words, the payment of useris calculated by multiplying
who want to pay more per unit of their resources per unit, . [1,cx o« With the highest density among losing users,
of time. OVMPAC-X-ALLOC tries to maximize the sum (i_e_, that of userq)7 who would win if useri: would not
of the reported values of the users who get their requestegarticipate. This is the minimum value to be reported by

bundles. Finally, OVMPAC-X-ALLOC returns the sel’ yser; such that she gets her requested bundle. Finally, the
of users who are selected for allocation at tim@he time get P! is returned to the mechanism.

complexity of OVMPAC-X-ALLOC isO(N (log N+ MR)). . .
This is because sorting the types requi@$N log V), D. Incentive-compatibility of OVMPAC-X

while checking the feasibility of the allocation for eactens I order to prove that the mechanisms are incentive-
requiresO(NMR). compatible, we need to show that the allocation algorithms

are monotone, and the payment functions are based on the
C. Payment functions of OVMPAC-X critical value.

Theorem 1:0VMPAC-X mechanisms are incentive-
compatible.

Proof: (Sketch) We first show that the allocation algo-
rithm OVMPAC-X-ALLOC is monotone. If usei wins by
reporting 6;, then she will also win if she reports a more
4 Preferred typed, > ;. Clearly, if useri reportsB% > b, her
bid ¢; will be allocated ifé; is also allocated. Similarly, if a
user gets the allocation by reportidg, she will also get it
by reportingd; > d;. Similar reasoning applies for the other
parameters in the type of the user.

We now show that the payment function implemented
by OVMPAC-X-PAY is based on the critical value. The
payment function computes the minimum value that the
users must report to get the allocation. As a result, if dser
reports a bid below the minimum value, she loses; otherwise
she wins. This unique value is the critical value for user

Since the payment is the critical value payment and the
allocation function is monotone, it follows from Parkes [1]
that OVMPAC-X are incentive-compatible.]

The payment function OVMPAC-X-PAY is given in Al-
gorithm 4. This function calculates thaitical paymentof
each user if her requested bundle is allocated tatThe
critical payment of useris the minimum value that she must
report to get her requested bundle at timeOVMPAC-X-
PAY determines the s& of types of users who are allocate
or not allocated at (line 1). This set does not include types
of users who are allocated befoteand have not finished
their jobs (i.e., their deadlines are not passed yet). OVEIPA
X-PAY calculatesf; for all users inQ (lines 2-3). Then,
OVMPAC-X-PAY determines the payment for all users that
have been allocated at time In doing so, it updates the
vector of capacities of resourc€sto the capacities before
allocating to uset (lines 5-7). Then, it calls the allocation
algorithm, OVMPAC-X-ALLOC, without considering the
participation of usef (line 9). Then, OVMPAC-X-PAY tries
to find a user; who had not been allocated atwhen
useri participated, and would have been allocated ét
users: did not participate (lines 10-16). If OVMPAC-X-PAY
finds such a user, it stores her index(line 11), and it V. EXPERIMENTAL RESULTS
determines the payment of usétbased on the density of We perform extensive experiments with real workload
userq (line 14); otherwise user paysO (line 16). In other data in order to investigate the properties of our proposed

Table II: Statistics of workload logs.

Logfile Avg Range of | Range of | Range of Stor-| Available Memory Storage
jobs/ CPU memory age (MB) CPUs Capacity Capacity
hour (MB) (MB) (MB)

GWA-T-1 DAS-2 81 [1-128] [1-4,295] [10-51,070] 50 100 100

GWA-T-3 NorduGrid 34 1 [1-2,147] [10-1,053,072] | 24 1,400 50,000

GWA-T-4 AuverGrid 33 1 [1.7-3,668] | [10-259,316] 7 8,800 640,000

GWA-T-10 SHARCNET 147 [1-3000] | [1-32,021] [10-2,087,029] | 85 2,000 1,000

METACENTRUM-2009-2 42 [1-60] [1-61,538] [10-2,592,130] | 44 100 20,000

PIK-IPLEX-2009-1 36 [1-2560] | [1-29,360] [10-4,815,007] | 88 89,000 4,700

online mechanisms, OVMPAC-X, and offline optimal mech- 1) OVMPAC-I: We analyze the performance of

anism, VCG-VMPAC. For the VCG-VMPAC mechanism, OVMPAC-I and VCG-VMPAC in terms of social welfare

we use the CPLEX 12 solver provided by IBM to solve and execution time. Fig. 1la shows the social welfare for
the VMPAC problem optimally. The mechanisms are im-the selected logs. The results show that OVMPAC-I obtains
plemented in C++ and the experiments are conducted oa social welfare very close to that obtained by the optimal
AMD 2.4GHz Dual Proc Dual Core nodes with 16GB VCG-VMPAC mechanism. Fig. 1b shows the execution
RAM which are part of the WSU Grid System. In this times of the mechanisms on a logarithmic scale. As we
section, we describe the experimental setup and analyze tlexpected from the time complexity of the mechanism, the

experimental results. execution time of OVMPAC-I is very small. However,
the execution time of the optimal offline mechanism,
A. Experimental Setup VCG-VMPAC, is more than six order of magnitudes greater

Si I t data h t b bli Ithan that of OVMPAC-I for each of the logs.
ince real users request data have not been pu |cy2) OVMPACI. We analyze the performance of

anc sandardized workioads from both, the Grid Workload2VMPAC-I ad VEG-VMPAC in terms of social welare
Archive [12], and the Parallel Workloads Archive [13]. The and execution time. The optimal mechanism, VCG-VMPAC,

oo ﬁould not find the solutions even after 72 hours for three
logs are selected based on the availability of recorded CP . o

. .~ out of the six logs. This is due to the fact that the problem

and memory requests/usage. In our experiments, .ea}ch job [bcomes more complex for different job lengths, higher
a Iog_ represents a user request. We present statistics of t Simber of requests, and greater available capacity. Fig. 2a
Io%?/ n TabI% . o . f ¢ h shows the social welfare achieved by the mechanisms. The

€ consider each 10g as a Series Of requests, WNergyq s show that OVMPAC-II obtains a social welfare

the users can submit their requests over time to a clougery close to that obtained by the optimal VCG-VMPAC
provider. We select 100 hours of the logs containing 706, echanism. Fig. 2b shows the execution times of the

842, 1523, 1.865' 6717, and. 41.6 requests for the SeIec’[er‘l'%echanisms on a logarithmic scale. As we expected from
logs, respgctlvely. For each J.Ob in a log, we generate a USGhe time complexity of the mechanisms, the execution
requgst. Since the logs provide data on resource usage, Wifne of OVMPAC-II is very small. However, the execution
consider these as values for the requestgd the amount time of the optimal offline mechanism, VCG-VMPAC, is

of_eac_h resource Of_ type requested by user where is more than six order of magnitudes greater than that of
a job in a log and- is a resource type. As a result, a USer 5\ MPAC-II for each of the logs

request contains the requested number of CPUs, the amount
of memory and the amount of storage. To generate b'dﬁ/IETACENTRUM-ZOOQ-Z in this settingl(> 1, Vi € U)

compared to that of the setting with = 1 presented in
Fig. 1b is one order of magnitude greater. This due to the
haracteristics of the requests of this log which makes the
roblem more complex fok; > 1.
From the results of these experiments we can conclude
at OVMPAC-X achieves a social welfare closer to the
optimal (obtained by VCG-VMPAC). In addition to this
OVMPAC-X decides the allocation much faster than VCG-
VMPAC, thus making it very suitable for making allocation
We compare the performance of OVMPAC-X and VCG- decisions in real-time.
VMPAC for different workloads. For each workload, we
record the execution time and the social welfare for
each mechanism. We now present the results obtained by We proposed online incentive-compatible mechanisms for
OVMPAC-I and OVMPAC-II for the selected logs. VM provisioning and allocation in clouds that provide

between 1 and 10. For OVMPAC-II, we use the job’s runtime
as the requested length of the job, while for OVMPAC-I, c
we set the requested length to one. As a result, the optim?J
offline results are different in each settings. We also gateer

a deadline for each job request which is between 3 to 6 timett‘h
the job’s runtime.

B. Analysis of Results

VI. CONCLUSION

Figure 2: OVMPAC-II

10000

VCG-VMPAC ez
OVMPAC-| m
8000 4

6000 -

4000 -

Social welfare

2000 4

<,
O% O% O;ey O% 4’6)\ /4:/
59 59 5% 59 o, ,o(
Yy R 1, kS 2 R 6‘4//\ <(_‘1,
s %, %@ S, %, “’00
v e, R, T, R
% %y 04/ 2, ¥
S 2
" » Q
Workload file <
@

Figure 1: OVMPAC-I vs. VCG-VMPAC performance; (=

10000

VCG-VMPAC* sz
OVMPAC-I| mmm
8000 -

6000 -

4000

Social welfare

2000 +

04

A,
S S & G 4’&,\ %

RSN S SO SO %

y S S (o} <
Vo By v, o G, &

W % % % R
v, Ty, By, R
% (2 > b2
) Y
Workload file b
@

and thus, there are no bars in the plots for those cases)

vs. VCG-VMPAC Performance;(
(*VCG-VMPAC was not able to determine the allocation for GWA3 NorduGrid,

incentives to the users to reveal their true valuations for [5]
the requested bundles of VM instances. We investigated the
properties of our proposed mechanisms. The experimental
results showed that the proposed online mechanisms obtair®
close to optimal social welfare and decide the allocation

much faster than the offline optimal mechanism VCG-

100000 -
10000 +
1000 4
100 -
10 4

14

0.1 1
0.01 4
0.001 4
0.0001 -

% VCG-VMPAC &z
OVMPAC-| m

Execution time (Seconds)

Workload file
(b)
1): (@) Social welfare; (b) Execution time.

10000 4vCG-VMPAC* s
1000] OVYMPACHI

100 4
10 5
14
0.1 4
0.01 5

Execution time (Seconds)

0.001 +

0.0001 -

Workload file

(b)

> 1): (a) Social welfare; (b) Execution time.
GWA-T-4 AuverGrid, and GWA-T-10 SHARCNET feasible time,

L. M. Leslie, Y. C. Lee, P. Lu, and A. Y. Zomaya, “Exploiting
performance and cost diversity in the cloud,”Pnoc. of the
6th IEEE Intl. Conf. on Cloud Computing013, pp. 107-114.

] L. Mashayekhy, M. M. Nejad, and D. Grosu, “A truthful

VMPAC, thus making them very suitable for deployment [7]

by cloud providers. For future work, we plan to design and
investigate new monotone allocation functions that mag lea

to better performance for the online mechanisms.
AcknowledgmentThis research was supported in part by
NSF grants DGE-0654014 and CNS-1116787.

(1]

REFERENCES

D. C. Parkes, “Online mechanisms,” iAlgorithmic Game
Theory N. Nisan, T. RoughgarderEva Tardos, and V. V.
Vazirani, Eds. Cambridge University Press, 2007.

[2] A. Gershkov and B. Moldovanu, “Efficient sequential assign-

(3]

(4]

ment with incomplete information,Games and Economic
Behavior vol. 68, no. 1, pp. 144-154, 2010.

[8

]

9]

[10

approximation mechanism for autonomic virtual machine
provisioning and allocation in clouds,” iRroc. of the ACM
Cloud and Autonomic Computing Can2013, pp. 1-10.

M. M. Nejad, L. Mashayekhy, and D. Grosu, “A family
of truthful greedy mechanisms for dynamic virtual machine
provisioning and allocation in clouds,” iRroc. of the 6th
IEEE Intl. Conf. on Cloud Computin@013, pp. 188-195.

H. Zhang, B. Li, H. Jiang, F. Liu, A. V. Vasilakos, and
J. Liu, “A framework for truthful online auctions in cloud
computing with heterogeneous user demands,Pinc. of
IEEE INFOCOM 2013.

S. Zaman and D. Grosu, “An online mechanism for dynamic
vm provisioning and allocation in clouds,” IAroc. of the 5th
IEEE Intl. Conf. on Cloud Computing012, pp. 253-260.

] N. Nisan, T. Roughgarden, E. Tardos, and V. Vaziraugo-

(11]

D. C. Parkes and S. Singh, “An MDP-based approach t°[12]

online mechanism design,” iRroc. 17th Annual Conf. on
Neural Information Processing Systen2603.

J.-J. Kuo, H.-H. Yang, and M.-J. Tsai, “Optimal approxima-
tion algorithm of virtual machine placement for data latency
minimization in cloud systems,” iRroc. of IEEE INFOCOM
2014.

[13

—_

rithmic game theory Cambridge University Press, 2007.

H. Kellerer, U. Pferschy, and D. Pising&mnapsack Problems
Springer, 2004.

Grid workloads archive. [Online]. Available:
http://gwa.ewi.tudelft.nl
Parallel workloads archive. [Online]. Available:

http://www.cs.h-uji.ac.il/labs/parallel/workload/

