
Incentive-Compatible Online Mechanisms for Resource Provisioning and Allocation
in Clouds

Lena Mashayekhy, Mahyar Movahed Nejad, Daniel Grosu
Department of Computer Science

Wayne State University
Detroit, MI 48202, USA

{mlena, mahyar, dgrosu}@wayne.edu

Athanasios V. Vasilakos
Department of Computer Science
University of Western Macedonia

Greece
vasilako@ath.forthnet.gr

Abstract—Cloud providers provision their various resources
such as CPUs, memory, and storage in the form of Virtual
Machine (VM) instances which are then allocated to the users.
We design online mechanisms for VM provisioning and alloca-
tion in clouds that consider several types of available resources.
Our proposed online mechanisms make no assumptions about
future demand of VMs, which is the case in real cloud settings.
The proposed mechanisms are invoked as soon as a user places
a request or some of the allocated resources are released
and become available. The mechanisms allocate VM instances
to selected users for the period they are requested for, and
ensure that the users will continue using their VM instances
for the entire requested period. In addition, the mechanisms
determine the payment the users have to pay for using
the allocated resources. We prove that the mechanisms are
incentive-compatible, that is, they give incentives to the users
to reveal their true valuations for their requested bundles of
VM instances. We investigate the performance of our proposed
mechanisms through extensive experiments.

Keywords-cloud computing; online truthful mechanism; re-
source allocation.

I. I NTRODUCTION

Designing efficient mechanisms for Virtual Machine
(VM) provisioning and allocation is a major problem in
cloud computing. Such mechanisms should consider eco-
nomic incentives for both cloud users and cloud providers
in finding the market equilibrium.Current cloud providers
such as Amazon EC2 and Microsoft Azure employ fixed-
price and auction-based mechanisms in order to provision
resources in the form of VM instances and sell them to
the users. These mechanisms are offline mechanisms, thus
they need to collect the information about all user requests
and then decide the allocation of VM instances to users.
However, cloud users request VM instances over time, thus,
creating an online setting for the provisioning and allocation
problem. Therefore, cloud providers need to design online
provisioning and allocation mechanisms in order to provide
faster services to the users and allocate their resources
efficiently.

In this paper, we design mechanisms for the VM pro-
visioning and allocation problem in clouds in the pres-
ence of multiple types of resources (e.g., cores, memory,

storage, etc.). Our proposed mechanisms are online and
thus, make no assumptions about future demand and supply
of VMs, which is the case in real cloud settings. Online
mechanisms calculate the allocation and payment as users
arrive at the system and place their requests. Therefore, the
cloud provider provisions and allocates VM instances as the
resources become available.

In online settings, each user submits a bid for a bundle of
VM instances, and specifies the amount of time the bundle
must be allocated and a deadline. Each user has a private
value (privatetype) for her requested bundle. The users are
also selfish in the sense that they want to maximize their
own utility. It may be beneficial for them to manipulate the
system by declaring a false type (i.e., different bundles or
bids from their actual request). One of the key properties
of our proposed mechanisms is to give incentives to users
so that they reveal their true valuations for their requested
bundles. The objective of the mechanisms is to allocate
resources to the users such that the social welfare (i.e., the
sum of users’ valuations for the requested bundles of VMs)
is maximized. The mechanisms also determine the payments
for each user.

Our Contribution. We address the problem of online VM
provisioning and allocation in clouds in the presence of
multiple types of resources. This is a strongly NP-hard prob-
lem. We design an offline incentive-compatible mechanism
and a family of online incentive-compatible mechanisms
for VM provisioning and allocation that give incentives to
the users to reveal their true valuations for their requested
bundles of VM instances. The proposed offline mechanism is
optimal given that the information on all the future requests
is known a priori. However, our proposed online mechanisms
make no assumptions about future demand of VMs, which
is the case in real cloud settings. Our proposed online
mechanisms are invoked as soon as a user places a request or
some allocated resources are released and become available.
The mechanisms not only provision and allocate resources
dynamically, but also determine the users’ payments such
that the incentive-compatibility property is guaranteed.The

proposed online mechanisms provide very fast solutions
making them suitable for execution in real-time settings. We
perform extensive experiments showing that the proposed
online mechanisms are able to find near optimal allocations
while satisfying the incentive-compatible property.

Related Work.Due to space limitation we will only discuss
briefly the closest related work. The reader is referred to
Parkes [1] for an introduction to online mechanisms. Online
variants of Vickrey-Clarke-Groves (VCG) mechanisms were
proposed by Gershkov and Moldovanu [2] and by Parkes
and Singh [3]. These mechanisms focus on Bayesian-Nash
incentive compatibility. However, these studies rely on a
model of future availability, as well as future supply.

The problem of resource provisioning and allocation in
clouds has been investigated by several researchers. Kuo
et al. [4] proposed a 3-approximation algorithm for the
VM placement problem to minimize the maximum access
latency. Leslie et al. [5] proposed a framework for resource
allocation and job scheduling of VMs aiming to cost effi-
ciently execute deadline-constrained jobs. In our previous
studies, we proposed truthful mechanisms for VM alloca-
tion in clouds in periodic-time settings [6], [7]. However,
none of these studies consider online settings. Zhang et
al. [8] proposed an online auction mechanism for resource
allocation in clouds. The preemption is not allowed, and
there are assumptions that job lengths and bids are within
known intervals. In addition, they considered only one type
of resources. Zaman and Grosu [9] proposed a truthful online
mechanism for provisioning and allocation of VM instances
in clouds. However, their mechanism assumes that the cloud
provider offers only one type of resources, computational
resources. The current work is different from the two above-
mentioned studies since it considers the existence of several
resource types, being more suitable for use in real cloud
settings. Note that considering one resource makes the
problem NP-hard, while in our study, we tackle a much
more challenging problem which is strongly NP-hard. In
addition, satisfying incentive-compatibility in our settings
brings about more challenges.

Organization.The rest of the paper is organized as follows.
In Section II, we describe the online VM provisioning and
allocation problem in clouds. In Section III, we introduce the
basic concepts of mechanism design, and we present our pro-
posed offline optimal mechanism. In Section IV, we present
the proposed online mechanisms, and we characterize their
properties. In Section V, we evaluate the mechanisms by
extensive experiments. In Section VI, we summarize our
results and present possible directions for future research.

II. VM P ROVISIONING AND ALLOCATION PROBLEM

We define the problem of online VM provisioning and
allocation in clouds (OVMPAC) in the presence of multiple
types of resources as follows. We consider a cloud provider

Table I: VM instance types offered by Amazon EC2.

Small Medium Large Extralarge
m = 1 m = 2 m = 3 m = 4

CPU 1 2 4 8
Memory (GB) 1.7 3.75 7.5 15
Storage (GB) 160 410 850 1690

offering a set ofR types of resources,R = {1, . . . , R}, to
users in the form of VM instances. These types of resources
include cores, memory, storage, etc. The cloud provider has
restricted capacity,Cr, on each resourcer ∈ R available
for allocation. The cloud provider offers these resources in
the form of M types of VMs,VM = {1, . . . ,M}, where
each VM of typem ∈ VM provides a specific amount of
each type of resourcer ∈ R. The amount of resources of
type r that one VM instance of typem provides is denoted
by wmr. As an example, in Table I, we present the four
types of VM instances offered by Amazon EC2 at the time
of writing this paper. If we consider that CPU represents the
type 1 resource, memory, the type 2 resource, and storage,
the type 3 resource, we can characterize, for example, the
Medium instance (m = 2) by: w11 = 2, w12 = 3.75 GB,
andw13 = 410 GB.

A setU of N users are requesting a set of VM instances
for a certain amount of time in order to execute their appli-
cations (jobs) on the cloud. Useri, i ∈ U , requests a bundle
Si = 〈ki1, ki2, . . . , kiM 〉 of M types of VM instances,
where kim is the number of requested VM instances of
type m ∈ VM. In addition, she specifies a bidbi for her
requested bundleSi. User i is characterized by her type
θi = (Si, ai, li, di, bi), whereai is the arrival time of her
request,li is the amount of time for which the requested
bundle must be allocated, anddi is the deadline for her job
completion. For example, type(〈4, 3, 1, 2〉, 2, 1, 7, $15) rep-
resents a user requesting 4 Small VM instances, 3 Medium
VM instances, 1 Large VM instance, and 2 Extra large
VM instances; the request arrives at time 2, needs 1 unit
of time to execute, expires at time 7, and her bid is $15.
We denote byσir =

∑
m∈VM kimwmr, the total amount of

each resource of typer that useri has requested.
We defineδi = di − li as the time by whichSi must

be allocated to useri in order for her job to complete its
execution. If the cloud provider allocates a requested bundle,
the request is never preempted. Useri values her requested
bundleSi at bi, which is the maximum price a user is willing
to pay for using the requested bundle if it is allocated within
time window [ai, δi]. The users are assumed to besingle-
minded. That means, useri desires onlySi and derives a
value of bi if she getsSi, or any superset of it, for the
specified time before its deadline, and zero value, otherwise.

To design incentive-compatible mechanisms, we consider
the standard mechanism design objective, that is, maximiz-
ing the social welfare [10]. Maximizing social welfare can
help a cloud provider increase its revenue by allocating the
VMs to the users who value them the most. We denote

by V the social welfare, which is defined as the sum of
users’ valuations,V =

∑
i∈U bi · xi, wherexi, i ∈ U , are

decision variables defined as follows:xi = 1, if bundleSi is
allocated to useri within time window [ai, δi]; andxi = 0,
otherwise. Our goal is to design online incentive-compatible
mechanisms maximizingV , that is, mechanisms that solve
OVMPAC.

We also define the offline version of OVMPAC, called
VMPAC, which considers that the information on all the
future requests is known a priori. In order to formulate
VMPAC as an integer program we define the decision
variables over timet ∈ T as follows: Xit = 1, if Si is
allocated toi at t; and Xit = 1, otherwise. In addition,
we define indicator parameters as follows:yit = 1, if
ai ≤ t ≤ δi; and yit = 1, otherwise. The feasibility of
the allocation to useri is indicated byyit. This indicator
parameter ensures that the allocation of the requested bundle
is within time window[ai, δi].

We formulate the problem of offline VM provisioning and
allocation in clouds (VMPAC) as an Integer Program (called
VMPAC-IP) as follows:

Maximize
∑

i∈U

∑

t∈T

bi · yit ·Xit (1)

Subject to:
∑

t∈T

Xit ≤ 1, ∀i ∈ U (2)

∑

i∈U

t∑

ω=t−li+1

∑

m∈VM

kimwmryiωXiω ≤ Cr,

∀r ∈ R, ∀t ∈ T (3)

Xit = {0, 1},∀i ∈ U , ∀t ∈ T (4)

yit = {0, 1},∀i ∈ U , ∀t ∈ T (5)

The objective function is to maximize social welfareV ,
wherexi =

∑
t∈T yit ·Xit. Constraints (2) ensure that the

request of each user is fulfilled at most once. Constraints (3)
guarantee that the allocation of each resource type does
not exceed the available capacity of that resource for any
given time. Constraints (4) and (5) represent the integrality
requirements for the decision variables and indicator param-
eters. These constraints force the cloud provider to provision
the whole bundle of VM instances and to allocate bundles
to the selected users. The VMPAC problem is strongly
NP-hard by a simple reduction from the multidimensional
knapsack problem [11]. Note that VMPAC-IP assumes that
the information about all users’ requests is available at
the time of solving it. As a result, if solved, VMPAC-
IP finds the optimal allocation of cloud resources in an
offline setting. However, in an online setting, we do not
have the information about future requests (such as arrivals),
and thus, we have to rely on online mechanisms that solve
the OVMPAC problem. Our goal is to design such online

incentive-compatible mechanisms that solve the OVMPAC
problem.

III. M ECHANISM DESIGN FRAMEWORK

In this section, we first present the basic concepts of
mechanism design and then propose an offline optimal
mechanism.

A. Preliminaries of Mechanism Design

In general, a deterministic mechanismM, is defined as
a tuple(A,P), whereA = (A1, . . . ,AN) is the allocation
function that determines which users receive their requested
bundles, andP = (P1, . . . ,PN) is the payment rule that
determines the amount that each user must pay for the
allocated bundles. In our model, each useri ∈ U is char-
acterized by her true type denoted byθi. Each user’s type
is private knowledge. The users may declare different types
from their true types. We denote bŷθi = (Ŝi, âi, l̂i, d̂i, b̂i)
user i’s declared type. Note thatθi = (Si, ai, li, di, bi) is
user i’s true type. The valuation functionvi(θ̂i) of user i

is defined as follows:vi(θ̂i) = bi, if Si is allocated byA
∧(Si ⊆ Ŝi)∧ (ti ≤ δi); andvi(θ̂i) = 0, otherwise, whereti
is the time at whichŜi has been allocated to useri. The goal
is to design incentive-compatible mechanisms that maximize
the social welfareV , whereV =

∑
i∈U vi(θ̂i) · xi.

The utility function of useri is quasi-linear, and thus,
it is defined as the difference between her valuation and
payment,ui(θ̂i) = vi(θ̂i) − Pi(θ̂i), where Pi(θ̂i) is the
payment for useri calculated by the mechanism using
the payment ruleP. The goal of a user is to maximize
her utility, and she may manipulate the mechanism by
lying about her true type to increase her utility. In our
case, the type of a user consists of a bundle, an arrival
time, an amount of time for which the requested bundle
must be allocated, a deadline, and a value. As a result,
a user can lie about any of these parameters in the hope
to increase her utility. These manipulations by the users
will lead to inefficient allocation of resources and ultimately
will reduce the revenue obtained by the cloud provider. We
want to prevent such manipulations by designing incentive-
compatible mechanisms for solving OVMPAC. We denote
by θ = (θ1, . . . , θN) the vector of types of all users. In
addition,θ−i is the vector of all types except useri’s type
(i.e., θ−i = (θ1, . . . , θi−1, θi+1, . . . , θN)). A mechanism is
incentive-compatibleif all users have incentives to reveal
their true types.

Definition 1 (Incentive compatibility):A mechanismM
is incentive-compatible(or truthful) if for every useri, for
every type declaration of the other usersθ̂−i, a true type
declarationθi and any other declaration̂θi of user i, we
have thatui(θi, θ̂−i) ≥ ui(θ̂i, θ̂−i).
In other words, a mechanism is incentive-compatible if
truthful reporting is a dominant strategy for the users, that
is, the users maximize their utilities by truthful reporting

independently of what the other users are reporting. To
obtain an incentive-compatible mechanism the allocation
function A must be monotone and the payment rule must
be based on the critical value.

For our model, we define monotonicity in terms of the
following preference relation� on the set of types:̂θ′i � θ̂i

if Ŝi � Ŝ′
i, â′

i ≤ âi, l̂′i ≤ l̂i, d̂′i ≥ d̂i, and b̂′i ≥ b̂i for user
i. Moreover,Ŝ′

i � Ŝi if σ′
ir ≤ σir, ∀r ∈ R. That means the

type θ̂′i is more preferred than̂θi if user i requests a smaller
bundle, submits an earlier request, the bundle for a shorter
time period, a later deadline, and submits a higher value.
In our setting, users cannot report an earlier arrival (i.e.,
âi ≤ ai), a shorter length (i.e.,̂li ≤ li), or a later deadline
(i.e., d̂i ≥ di) than their true arrival time, true length, and
true deadline. There is no reason for a user to submit her
request earlier than when her job is ready for execution.
Declaring a shorter length does not allow the completion of
the job. Reporting a later deadline may result in getting her
bundle too late to complete her job on time.

Definition 2 (Monotonicity):An allocation functionA is
monotoneif it allocates the resources to useri with θ̂i as her
declared type, then it also allocates the resources to useri

with θ̂′i, whereθ̂′i � θ̂i.
In other words,A is monotone if any winning user who
receives her requested bundle by declaring a typeθ̂i is still
wining if she requests a more preferred type. Any incentive-
compatible mechanismM has a payment ruleP such that
the payment of any useri, Pi, is independent of her request.

Definition 3 (Critical value): Let A be a monotone allo-
cation function, then for everyθi, there exist a unique value
bc
i , called critical value, such that∀θ̂i � (Si, ai, li, di, b

c
i),

θ̂i is a winning declaration, and∀θ̂i ≺ (Si, ai, li, di, b
c
i), θ̂i

is a losing declaration.
The mechanismM works as follows. It first receives the
declared types from each participating user, and then, based
on the received types determines the allocation using the
allocation functionA and the payments using the payment
rule P. The payment ruleP is based on the critical value
and is defined as follows:Pi(θ̂) = bc

i , if user i is allocated;
and 0, otherwise. Here,bc

i is the critical value of useri.
In the next subsection, we incorporate our proposed

VMPAC-IP in the design of a VCG-based optimal mech-
anism which computes the allocation and payment offline.

B. Incentive-Compatible Offline Optimal Mechanism

We introduce a VCG-based incentive-compatible opti-
mal mechanism that solves VMPAC, the offline version
of OVMPAC problem. Since the setting is offline, the
VCG-based mechanism has all the information about the
users, and thus, it finds the optimal solution. A VCG-based
mechanism [10] requires an optimal allocation algorithm
implementing the allocation functionA and a payment rule
given by:Pi(θ̂i) =

∑
j∈A(θ̂−i)

vj(θ̂j)−
∑

j∈A(θ̂),j 6=i
vj(θ̂j),

where
∑

j∈A(θ̂−i)
vj(θ̂j) is the optimal social welfare that

Algorithm 1 VCG-VMPAC Mechanism (C)

1: {Collect user requests offline (types).}
2: for all i ∈ U do
3: Collect user typêθi = (Ŝi, âi, l̂i, d̂i, b̂i) from useri
4: {Allocation.}
5: (V ∗, x

∗) = Solve IP-VMPAC(̂θ,C)
6: Provisions and allocates VM instances according tox

∗.
7: {Payment.}
8: for all i ∈ U do
9: (V ′∗, x

′∗) = Solve IP-VMPAC(̂θ−i,C)
10: sum1 = sum2 = 0
11: for all j ∈ U , j 6= i do
12: sum1 = sum1 + b̂jx

′∗
j

13: sum2 = sum2 + b̂jx
∗
j

14: Pi = sum1 − sum2

15: Output: V ∗; x
∗; P = (P1,P2, . . . ,PN)

would have been obtained had useri not participated, and∑
j∈A(θ̂),j 6=i

vj(θ̂j) is the sum of all users valuations except
useri’s.

We define the VCG-based mechanism that solves the
VMPAC problem as follows:

Definition 4: The VCG-VMPAC mechanism consists of
the optimal allocation algorithm that solves IP-VMPAC and
the payment function defined by the VCG payment rule.

The VCG-VMPAC mechanism is given in Algorithm 1.
VCG-VMPAC has one input parameter, the vector of
resource capacitiesC = (C1, . . . , CR), and three out-
put parameters:V ∗, the optimal social welfare,x∗ =
(x∗

1, x
∗
2, . . . , x

∗
N), the optimal allocation of VM instances to

the users, andP the payments. The mechanism collects the
requests from the users, expressed as types (lines 1-3), and
determines the optimal allocation by solving the IP-VMPAC
given in Equations (1) to (5) (line 5). Once the optimal allo-
cation is determined the mechanism provisions the required
number and types of VM instances and determines the
payments. The users are then charged the amount determined
by the mechanism (lines 8-14). The VCG payment of a useri

is calculated by solving the IP-VMPAC to find the allocation
and welfare obtained without useri’s participation (line 9).
Based on the optimal allocation to the users with and without
useri’s participation, the mechanism finds the payment for
useri, wheresum1 is the sum of all values without useri’s
participation in the mechanism, andsum2 is the sum of all
except useri’s value in the optimal case (lines 10-14).

Being a VCG-based mechanism, VCG-VMPAC is
incentive-compatible [10], and it determines the optimal
allocation. However, the VMPAC is strongly NP-hard, and
thus, the execution time of VCG-VMPAC becomes pro-
hibitive for large instances of VMPAC. In addition, VCG-
VMPAC computes the allocation and payment offline since
it has all the information about future demands. However, in
a real settings this information is not available to the cloud
providers and requires designing online mechanisms.

IV. ONLINE MECHANISMS FORVM PROVISIONING AND

ALLOCATION

Our goal is to design incentive-compatible greedy mech-
anisms that solve the OVMPAC problem in online settings.
The VM instances haveR dimensions, where theR dimen-
sions correspond to theR types of resources. Since the cloud
provider provisions resources in the form of VM instances,
any bundle of VMs can be seen as oneR-dimensional item.
Without loss of generality, we consider that the smallest
item in theR-dimensional space contains one unit of each
resources. This assumption does not restrict our proposed
model since the resource capacities can be normalized to
their units. As a result, the total volume of available itemsto
allocate to the users is

∏
r∈R Cr. In this section, we present

a family of incentive-compatible online mechanisms for the
OVMPAC problem, called OVMPAC-X.

A. OVMPAC-X Mechanisms

The OVMPAC-X family is given in Algorithm 2. The
OVMPAC-X is an event handler, that is, it is invoked when
a new user request arrives or some allocated VM instances
become available. OVMPAC-X takes as input an Event, the
current allocation setA, and the payment setP. An Event is
either a release of resources or an arrival of a user request.
In lines 1 to 8, OVMPAC-X sets the current time tot and
initializes four variables as follows:

Qt: the set of types of the users that have not been
allocated. Formally,
Qt ← {θ̂i|i ∈ U , t ≤ δ̂i ∧ ∄ti < t : (θ̂i, ti) ∈ A};
Q̃t: the set of types of the users that have been allocated
and their jobs have not finished yet. Formally,
Q̃t ← {θ̂i|i ∈ U ∧ ∃ti < t : (θ̂i, ti) ∈ A ∧ ti + l̂i > t};
σir: the amount of each resource of typer requested
by useri; and,
Ct

r: the available capacity of the resourcer at time t.
The mechanism stores the resource capacities at timet as a
vectorCt (line 9). Then, it proceeds only if resources and re-
quests are available. OVMPAC-X determines the allocation
by calling OVMPAC-X-ALLOC. The allocation function
OVMPAC-X-ALLOC returns At, the set of users who
would receive their requested bundles at timet (line 12).
The mechanism then updates the overall allocation setA
using the newly determined setAt. Then, the mechanism
determines the payment of users inAt by calling OVMPAC-
X-PAY. The payment function OVMPAC-X-PAY returns set
Pt containing the payment of users at timet (line 14). The
mechanism updates the overall payment setP using the
newly determined setPt (line 15).

B. Allocation algorithms of OVMPAC-X

The allocation algorithm OVMPAC-X-ALLOC is given
in Algorithm 3. We consider two allocation algorithms,
OVMPAC-I-ALLOC, and OVMPAC-II-ALLOC, where the
settings of the two algorithms differ from each other based

Algorithm 2 OVMPAC-X Mechanisms (Event,A,P)

1: t← Current time
2: Qt ← {θ̂i|i ∈ U , i has not been allocated}
3: Q̃t ← {θ̂i|i ∈ U , (i has been allocated)∧

(its job has not finished yet)}
4: for all i ∈ U do
5: for all r ∈ R do
6: σir =

∑
m∈VM

kimwmr

7: for all r ∈ R do
8: Ct

r ← Cr −
∑

i|θ̂i∈Q̃t σir

9: Ct ← (Ct
1, . . . , C

t
R); vector of resource capacities at timet

10: if Qt = ∅ or Ct = 0 then
11: return
12: At ← OVMPAC-X-ALLOC(t,Qt, Ct)
13: A ← A∪At

14: Pt ← OVMPAC-X-PAY(t,Qt,At, Ct)
15: P ← P ∪ Pt

16: return A,P

on the length of jobs, and the type of time (discrete or
continuous). Based on the settings of the two allocation algo-
rithms, we define a metric called thebid density. OVMPAC-
X-ALLOC algorithm allocates the VM instances to users in
decreasing order of their bid densities. We define OVMPAC-
I-ALLOC, and OVMPAC-II-ALLOC, as follows:

1) OVMPAC-I-ALLOC: This algorithm considers the
setting in which a setU of N users are requesting a
heterogeneous set of VM instances forone unitof time in
order to execute their applications/jobs on the cloud. It also
considers a discrete-time model such thatt ∈ {0, 1, · · · , T}.
In this caseli = 1, and the bid density is:

fi =
b̂i∏

r∈R σir

(6)

2) OVMPAC-II-ALLOC: This algorithm considers the
setting in which a setU of N users are requesting a
heterogeneous set of VM instances forany lengthof time
in order to execute their applications/jobs on the cloud. It
also considers a continuous-time model such thatt ∈ [0, T].
Note that the request time length for any useri is l̂i ≥ 1.
The bid density is defined as follows:

fi =
b̂i

l̂i ·
∏

r∈R σir

(7)

The bid of useri for a bundle of VM instances for timêli
can be interpreted as requesting a hyper-rectangle with
volume l̂i ·

∏
r∈R σir in the (R + 1)-dimensional space

defined by theR resource types and the time. Useri values
this volume atb̂i, if allocated. Hence,fi represents how
much useri values one unit of volume from the (R + 1)-
dimensional space. In this setting, we consider that the bids
are chosen from an interval[b, b] without assuming any
distribution, whereb andb are the minimum and maximum
bids, respectively.

OVMPAC-X-ALLOC sorts all types in non-increasing
order of bid densities,fi (line 4). Then the algorithm

Algorithm 3 OVMPAC-X-ALLOC(t,Qt, Ct)

1: At ← ∅
2: for all i|θ̂i ∈ Q

t do
3: fi = b̂i∏

r∈R
σir

, for OVMPAC-I-ALLOC; or

fi = b̂i

l̂i·
∏

r∈R
σir

, for OVMPAC-II-ALLOC

4: Sort all θ̂i ∈ Q
t in non-increasing order offi

5: for all θ̂i ∈ Q
t in non-increasing order offi do

6: Ĉ = Ct

7: flag ← TRUE
8: for all r ∈ R do
9: Ĉr = Ĉr − σir

10: if Ĉr < 0 then
11: flag ← FALSE
12: break;
13: if flag then
14: Ct = Ĉ
15: At ← At ∪ (θ̂i, t)
16: Output: At

allocates bundles requested by the sorted users inQt while
resources last (lines 5-15). The mechanism uses this ordering
for allocation since the cloud provider is interested in users
who want to pay more per unit of their resources per unit
of time. OVMPAC-X-ALLOC tries to maximize the sum
of the reported values of the users who get their requested
bundles. Finally, OVMPAC-X-ALLOC returns the setAt

of users who are selected for allocation at timet. The time
complexity of OVMPAC-X-ALLOC isO(N(log N+MR)).
This is because sorting the types requiresO(N log N),
while checking the feasibility of the allocation for each user
requiresO(NMR).

C. Payment functions of OVMPAC-X

The payment function OVMPAC-X-PAY is given in Al-
gorithm 4. This function calculates thecritical paymentof
each useri if her requested bundle is allocated att. The
critical payment of useri is the minimum value that she must
report to get her requested bundle at timet. OVMPAC-X-
PAY determines the set̂Q of types of users who are allocated
or not allocated att (line 1). This set does not include types
of users who are allocated beforet, and have not finished
their jobs (i.e., their deadlines are not passed yet). OVMPAC-
X-PAY calculatesfi for all users inQ̂ (lines 2-3). Then,
OVMPAC-X-PAY determines the payment for all users that
have been allocated at timet. In doing so, it updates the
vector of capacities of resourceŝC to the capacities before
allocating to useri (lines 5-7). Then, it calls the allocation
algorithm, OVMPAC-X-ALLOC, without considering the
participation of useri (line 9). Then, OVMPAC-X-PAY tries
to find a userj who had not been allocated att when
user i participated, and would have been allocated att if
useri did not participate (lines 10-16). If OVMPAC-X-PAY
finds such a user, it stores her indexq (line 11), and it
determines the payment of useri based on the density of
userq (line 14); otherwise useri pays0 (line 16). In other

Algorithm 4 OVMPAC-X-PAY(t,Qt,At, Ct)

1: Q̂ = Qt ∪ {θ̂i|(θ̂i, t) ∈ A
t}

2: for all i|θ̂i ∈ Q̂ do
3: fi = b̂i∏

r∈R
σir

, for OVMPAC-I-ALLOC; or

fi = b̂i

l̂i·
∏

r∈R
σir

, for OVMPAC-II-ALLOC

4: for all (θ̂i, t) ∈ A
t in non-increasing order offi do

5: Ĉ ← Ct

6: for all r ∈ R do
7: Ĉr = Ĉr + σir

8: q = −1;
9: Ā ← OVMPAC-X-ALLOC(t, Q̂ \ θ̂i, Ĉ)

10: for all θ̂j ∈ Q
t ∩ {θ̂j |(θ̂j , t) ∈ Ā} in non-increasing

order offj , wherefj < fi do
11: q = j;
12: break;
13: if q then
14: Pt

i ← fq · l̂i ·
∏

r∈R
σir

15: else
16: Pt

i ← 0
17: Output: Pt = (P1,P2, . . . ,PN)

words, the payment of useri is calculated by multiplying
l̂i ·

∏
r∈R σir with the highest density among losing users,

(i.e., that of userq), who would win if useri would not
participate. This is the minimum value to be reported by
useri such that she gets her requested bundle. Finally, the
setPt is returned to the mechanism.

D. Incentive-compatibility of OVMPAC-X

In order to prove that the mechanisms are incentive-
compatible, we need to show that the allocation algorithms
are monotone, and the payment functions are based on the
critical value.

Theorem 1:OVMPAC-X mechanisms are incentive-
compatible.

Proof: (Sketch) We first show that the allocation algo-
rithm OVMPAC-X-ALLOC is monotone. If useri wins by
reporting θ̂i, then she will also win if she reports a more
preferred typêθ′i ≥ θ̂i. Clearly, if useri reportsb̂′i ≥ b̂i, her
bid θ̂′i will be allocated ifθ̂i is also allocated. Similarly, if a
user gets the allocation by reportinĝdi, she will also get it
by reportingd̂′i ≥ d̂i. Similar reasoning applies for the other
parameters in the type of the user.

We now show that the payment function implemented
by OVMPAC-X-PAY is based on the critical value. The
payment function computes the minimum value that the
users must report to get the allocation. As a result, if useri

reports a bid below the minimum value, she loses; otherwise
she wins. This unique value is the critical value for useri.

Since the payment is the critical value payment and the
allocation function is monotone, it follows from Parkes [1]
that OVMPAC-X are incentive-compatible.

V. EXPERIMENTAL RESULTS

We perform extensive experiments with real workload
data in order to investigate the properties of our proposed

Table II: Statistics of workload logs.

Logfile Avg
jobs/
hour

Range of
CPU

Range of
memory
(MB)

Range of Stor-
age (MB)

Available
CPUs

Memory
Capacity
(MB)

Storage
Capacity
(MB)

GWA-T-1 DAS-2 81 [1-128] [1-4,295] [10-51,070] 50 100 100
GWA-T-3 NorduGrid 34 1 [1-2,147] [10-1,053,072] 24 1,400 50,000
GWA-T-4 AuverGrid 33 1 [1.7-3,668] [10-259,316] 7 8,800 640,000
GWA-T-10 SHARCNET 147 [1-3000] [1-32,021] [10-2,087,029] 85 2,000 1,000
METACENTRUM-2009-2 42 [1-60] [1-61,538] [10-2,592,130] 44 100 20,000
PIK-IPLEX-2009-1 36 [1-2560] [1-29,360] [10-4,815,007] 88 89,000 4,700

online mechanisms, OVMPAC-X, and offline optimal mech-
anism, VCG-VMPAC. For the VCG-VMPAC mechanism,
we use the CPLEX 12 solver provided by IBM to solve
the VMPAC problem optimally. The mechanisms are im-
plemented in C++ and the experiments are conducted on
AMD 2.4GHz Dual Proc Dual Core nodes with 16GB
RAM which are part of the WSU Grid System. In this
section, we describe the experimental setup and analyze the
experimental results.

A. Experimental Setup

Since real users request data have not been publicly
released by cloud providers yet, we rely on well studied
and standardized workloads from both, the Grid Workloads
Archive [12], and the Parallel Workloads Archive [13]. The
logs are selected based on the availability of recorded CPU
and memory requests/usage. In our experiments, each job in
a log represents a user request. We present statistics of the
logs in Table II.

We consider each log as a series of requests, where
the users can submit their requests over time to a cloud
provider. We select 100 hours of the logs containing 706,
842, 1523, 1865, 677, and 416 requests for the selected
logs, respectively. For each job in a log, we generate a user
request. Since the logs provide data on resource usage, we
consider these as values for the requestedσir, the amount
of each resource of typer requested by useri, wherei is
a job in a log andr is a resource type. As a result, a user
request contains the requested number of CPUs, the amount
of memory and the amount of storage. To generate bids
for users, we generate a random numberbi for each useri
between 1 and 10. For OVMPAC-II, we use the job’s runtime
as the requested length of the job, while for OVMPAC-I,
we set the requested length to one. As a result, the optimal
offline results are different in each settings. We also generate
a deadline for each job request which is between 3 to 6 times
the job’s runtime.

B. Analysis of Results

We compare the performance of OVMPAC-X and VCG-
VMPAC for different workloads. For each workload, we
record the execution time and the social welfare for
each mechanism. We now present the results obtained by
OVMPAC-I and OVMPAC-II for the selected logs.

1) OVMPAC-I: We analyze the performance of
OVMPAC-I and VCG-VMPAC in terms of social welfare
and execution time. Fig. 1a shows the social welfare for
the selected logs. The results show that OVMPAC-I obtains
a social welfare very close to that obtained by the optimal
VCG-VMPAC mechanism. Fig. 1b shows the execution
times of the mechanisms on a logarithmic scale. As we
expected from the time complexity of the mechanism, the
execution time of OVMPAC-I is very small. However,
the execution time of the optimal offline mechanism,
VCG-VMPAC, is more than six order of magnitudes greater
than that of OVMPAC-I for each of the logs.

2) OVMPAC-II: We analyze the performance of
OVMPAC-II and VCG-VMPAC in terms of social welfare
and execution time. The optimal mechanism, VCG-VMPAC,
could not find the solutions even after 72 hours for three
out of the six logs. This is due to the fact that the problem
becomes more complex for different job lengths, higher
number of requests, and greater available capacity. Fig. 2a
shows the social welfare achieved by the mechanisms. The
results show that OVMPAC-II obtains a social welfare
very close to that obtained by the optimal VCG-VMPAC
mechanism. Fig. 2b shows the execution times of the
mechanisms on a logarithmic scale. As we expected from
the time complexity of the mechanisms, the execution
time of OVMPAC-II is very small. However, the execution
time of the optimal offline mechanism, VCG-VMPAC, is
more than six order of magnitudes greater than that of
OVMPAC-II for each of the logs.

In addition, the execution time of VCG-VMPAC for
METACENTRUM-2009-2 in this setting (li ≥ 1, ∀i ∈ U)
compared to that of the setting withli = 1 presented in
Fig. 1b is one order of magnitude greater. This due to the
characteristics of the requests of this log which makes the
problem more complex forli ≥ 1.

From the results of these experiments we can conclude
that OVMPAC-X achieves a social welfare closer to the
optimal (obtained by VCG-VMPAC). In addition to this
OVMPAC-X decides the allocation much faster than VCG-
VMPAC, thus making it very suitable for making allocation
decisions in real-time.

VI. CONCLUSION

We proposed online incentive-compatible mechanisms for
VM provisioning and allocation in clouds that provide

 0

 2000

 4000

 6000

 8000

 10000

GW
A-T-1 DAS-2

GW
A-T-3 NorduGrid

GW
A-T-4 AuverGrid

GW
A-T-10 SHARCNET

M
ETACENTRUM

-2009-2

PIK-IPLEX-2009-1

S
oc

ia
l w

el
fa

re

Workload file

VCG-VMPAC
OVMPAC-I

(a)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

GW
A-T-1 DAS-2

GW
A-T-3 NorduGrid

GW
A-T-4 AuverGrid

GW
A-T-10 SHARCNET

M
ETACENTRUM

-2009-2

PIK-IPLEX-2009-1

E
xe

cu
tio

n
tim

e
(S

ec
on

ds
)

Workload file

VCG-VMPAC
OVMPAC-I

(b)

Figure 1: OVMPAC-I vs. VCG-VMPAC performance (li = 1): (a) Social welfare; (b) Execution time.

 0

 2000

 4000

 6000

 8000

 10000

GW
A-T-1 DAS-2

GW
A-T-3 NorduGrid

GW
A-T-4 AuverGrid

GW
A-T-10 SHARCNET

M
ETACENTRUM

-2009-2

PIK-IPLEX-2009-1

S
oc

ia
l w

el
fa

re

Workload file

VCG-VMPAC*
OVMPAC-II

(a)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

GW
A-T-1 DAS-2

GW
A-T-3 NorduGrid

GW
A-T-4 AuverGrid

GW
A-T-10 SHARCNET

M
ETACENTRUM

-2009-2

PIK-IPLEX-2009-1

E
xe

cu
tio

n
tim

e
(S

ec
on

ds
)

Workload file

VCG-VMPAC*
OVMPAC-II

(b)

Figure 2: OVMPAC-II vs. VCG-VMPAC Performance (li ≥ 1): (a) Social welfare; (b) Execution time.
(*VCG-VMPAC was not able to determine the allocation for GWA-T-3 NorduGrid, GWA-T-4 AuverGrid, and GWA-T-10 SHARCNET infeasible time,
and thus, there are no bars in the plots for those cases)

incentives to the users to reveal their true valuations for
the requested bundles of VM instances. We investigated the
properties of our proposed mechanisms. The experimental
results showed that the proposed online mechanisms obtain
close to optimal social welfare and decide the allocation
much faster than the offline optimal mechanism VCG-
VMPAC, thus making them very suitable for deployment
by cloud providers. For future work, we plan to design and
investigate new monotone allocation functions that may lead
to better performance for the online mechanisms.
Acknowledgment.This research was supported in part by
NSF grants DGE-0654014 and CNS-1116787.

REFERENCES

[1] D. C. Parkes, “Online mechanisms,” inAlgorithmic Game
Theory, N. Nisan, T. Roughgarden,́Eva Tardos, and V. V.
Vazirani, Eds. Cambridge University Press, 2007.

[2] A. Gershkov and B. Moldovanu, “Efficient sequential assign-
ment with incomplete information,”Games and Economic
Behavior, vol. 68, no. 1, pp. 144–154, 2010.

[3] D. C. Parkes and S. Singh, “An MDP-based approach to
online mechanism design,” inProc. 17th Annual Conf. on
Neural Information Processing Systems, 2003.

[4] J.-J. Kuo, H.-H. Yang, and M.-J. Tsai, “Optimal approxima-
tion algorithm of virtual machine placement for data latency
minimization in cloud systems,” inProc. of IEEE INFOCOM,
2014.

[5] L. M. Leslie, Y. C. Lee, P. Lu, and A. Y. Zomaya, “Exploiting
performance and cost diversity in the cloud,” inProc. of the
6th IEEE Intl. Conf. on Cloud Computing, 2013, pp. 107–114.

[6] L. Mashayekhy, M. M. Nejad, and D. Grosu, “A truthful
approximation mechanism for autonomic virtual machine
provisioning and allocation in clouds,” inProc. of the ACM
Cloud and Autonomic Computing Conf., 2013, pp. 1–10.

[7] M. M. Nejad, L. Mashayekhy, and D. Grosu, “A family
of truthful greedy mechanisms for dynamic virtual machine
provisioning and allocation in clouds,” inProc. of the 6th
IEEE Intl. Conf. on Cloud Computing, 2013, pp. 188–195.

[8] H. Zhang, B. Li, H. Jiang, F. Liu, A. V. Vasilakos, and
J. Liu, “A framework for truthful online auctions in cloud
computing with heterogeneous user demands,” inProc. of
IEEE INFOCOM, 2013.

[9] S. Zaman and D. Grosu, “An online mechanism for dynamic
vm provisioning and allocation in clouds,” inProc. of the 5th
IEEE Intl. Conf. on Cloud Computing, 2012, pp. 253–260.

[10] N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani,Algo-
rithmic game theory. Cambridge University Press, 2007.

[11] H. Kellerer, U. Pferschy, and D. Pisinger,Knapsack Problems.
Springer, 2004.

[12] Grid workloads archive. [Online]. Available:
http://gwa.ewi.tudelft.nl

[13] Parallel workloads archive. [Online]. Available:
http://www.cs.h-uji.ac.il/labs/parallel/workload/

