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Abstract—Designing efficient mechanisms for Virtual Ma-
chine (VM) provisioning and allocation is a major challenging
problem that needs to be solved by cloud providers. We formu-
late the VM provisioning and allocation problem in clouds as
an integer program and design truthful greedy mechanisms
that solve it. We show that the proposed mechanisms are
truthful, that is, the users do not have incentives to lie about
their requested bundles of VM instances and their valuations.
We perform extensive experiments in order to investigate the
performance of the proposed mechanisms.
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I. I NTRODUCTION

The number of enterprises and individuals that are
outsourcing their workloads to cloud providers increased
rapidly. Cloud providers can offer Infrastructure as a Service
(IaaS) by providing CPUs, storage, networks and other low
level resources to their customers. These different types of
resources are offered in the form of Virtual Machine (VM)
instances. For example, Microsoft Azure [1] and Amazon
Elastic Compute Cloud (Amazon EC2) [2] offer four types
of VM instances: small (S), medium (M), large (L), and
extra large (XL).

Cloud providers employ fixed-price and auction-based
mechanisms in order to provision resources in the form of
VM instances and then allocate them to the customers. In
the auction-based mechanisms, each user bids for a subset of
available VM instances (bundle). Since several VM instances
of the same type are available to users, the problem can be
viewed as a multi-unit combinatorial auction. Each user has
a private value (privatetype) for her requested bundle. In
our model, the users are single minded, that means each
user is either assigned her entire requested bundle of VMs
and she pays for it, or she does not obtain any bundle and
pays nothing. The users are also selfish in a sense that they
want to maximize their own utility. It may be beneficial for
them to manipulate the system by declaring a false type
(i.e., different bundles or bids from their actual request). An
example of such auction-based mechanism is the spot market
introduced by Amazon [2]. Such mechanisms usually run in

short time-windows (e.g., every hour) to efficiently provision
the unutilized resources of the cloud provider.

One of the key properties of a provisioning and allocation
mechanism is to give incentives to users so that they reveal
their true valuations for the bundles. In general, greedy
algorithms do not necessarily satisfy the properties required
to achieve truthfulness. Our goal is to design truthful greedy
mechanisms that solve the VM provisioning and allocation
problem in the presence of multiple types of resources
(e.g., cores, memory, storage, etc.). The mechanisms allocate
resources to the users such that the social welfare (i.e., the
sum of users’ valuations for the requested bundles of VMs)
is maximized.

Our Contribution. We address the problem of VM provi-
sioning and allocation in clouds in the presence of multiple
types of resources. We design truthful greedy mechanisms
that give incentives to the users to reveal their true valuations
for their requested bundles of VM instances. We formulate
the problem as an integer program equivalent to the multidi-
mensional knapsack problem, which is strongly NP-hard [3].
In the absence of feasible optimal algorithms for solving
the problem, we design greedy mechanisms. In general,
greedy algorithms do not necessarily satisfy the properties
required to guarantee truthfulness. In this paper, we propose
truthful greedy mechanisms in order to solve the problem
of VM provisioning and allocation in clouds. We determine
the approximation ratio of the proposed mechanisms and
perform extensive simulation experiments. The results show
that the proposed mechanisms are able to find near optimal
allocations while satisfying the truthfulness property.

Related Work.Due to space limitations, we provide only a
very brief review of the closely related work. Lehmannet
al. [4] proposed a greedy truthful mechanism for single-unit
combinatorial auctions. However, our focus is on the design
of greedy truthful mechanisms in multi-unit settings. Several
studies focused on finding solutions for multi-unit combi-
natorial auctions without considering the truthfulness [5],
[6]. The reader is referred to [7] for a comprehensive
introduction to mechanism design. Greedy algorithms for



solving the multidimensional knapsack problem (MKP) have
been extensively studied [3]. However, none of these studies
considered the design of truthful mechanisms.

Wood et al. [8] proposed an approach for dynamic
provisioning of VMs by defining a unique metric based
on the consumption of the three resources: CPU, network
and memory. Their approach determines a new mapping
of resources to VMs. Gorlach and Leymann [9] proposed
a method for dynamic provisioning of services in clouds
in order to optimize the distribution of services within
a certain infrastructure. Xionget al. [10] considered an
economical provisioning where VMs are allocated to achieve
a balanced resource allocation and a better overall perfor-
mance. Sharmaet al. [11] proposed a system considering
the cost of VMs. They modeled this problem as an integer
program to minimize the cost by reducing the time to transit
to new configurations and optimizing the selection of a
virtual server configuration. All the above studies focusedon
addressing the VM provisioning problem in clouds, however,
none of them considered the design of truthful mechanisms
for VM provisioning.

The closest work to ours is by Zaman and Grosu [12],
[13] who proposed truthful approximation mechanisms for
combinatorial auction-based allocation of VM instances
in clouds in static and dynamic settings. However, these
mechanisms do not consider several types of resources.
Their proposed mechanisms only consider computational
resources (i.e., cores), which is only one of the dimensionsin
our proposed model. Lampeet al. [14] proposed a heuristic
approach considering several types of resources. However,
they did not propose a truthful mechanism.

Organization.The rest of the paper is organized as follows.
In Section II, we describe the VM provisioning and alloca-
tion problem in clouds. In Section III, we introduce the basic
concepts of mechanism design. In Section IV, we present
the proposed mechanisms and characterize their properties.
In Section V, we evaluate the mechanisms by extensive
simulation experiments. In Section VI, we summarize our
results and present possible directions for future research.

II. VM P ROVISIONING AND ALLOCATION PROBLEM

We consider a cloud provider offeringR types of re-
sources,R = {1, . . . , R}, to users in the form of VM
instances. These types of resources include cores, memory,
storage, etc. The cloud provider has restricted capacity,Cr,
on each resourcer ∈ R available for allocation. The cloud
provider offers these resources in the form ofM types
of VMs, VM = {1, . . . ,M}, where each VM of type
m ∈ VM provides a specific amount of each type of
resourcer ∈ R. The amount of resources of typer that
one VM instance of typem provides is denoted bywmr.
As an example, let’s consider that CPU represents the type 1
resource, memory the type 2 resource, and storage the type 3
resource. We can characterize a possible VM instance (of

Table I: Notation

U Set of users{1, . . . , N}
VM Set of VMs{1, . . . , M}
R Set of resources{1, . . . , R}
Si The requested bundle of useri ∈ U
vi(Si) Value of the requested bundleSi of useri ∈ U
kim The number of VMs of typem requested by useri ∈ U
bi The bid of useri ∈ U
wmr The amount of resource of typer ∈ R provided by

one VM instance of typem ∈ VM
Cr Capacity of resourcer ∈ R

type m = 1) by: w11 = 1 core, w12 = 1.6 GB, and
w13 = 150 GB.

We consider a setU of N users requesting a set of VM
instances. Useri, i = 1, . . . , N , requests a bundleSi =<

ki1, ki2, . . . , kiM > of M types of VM instances, wherekim

is the number of requested VM instances of typem ∈ VM.
In addition, she specifies a bidbi for her requested bundleSi.
Useri values her requested bundleSi atvi(Si), wherevi(Si)
is called thevaluationof useri for bundleSi. The valuation
represents the maximum price a user is willing to pay for
using the requested bundle for a unit of time. Each user can
submit her request as a vector specifying the number of VM
instances, and her bid. For example,(< 1, 3, 4, 2 >, $10)
represents a user requesting 1 small VM instance, 3 medium
VM instances, 4 large VM instances, and 2 extra large VM
instances, and her bid is $10. We denote byV the social
welfare, which is defined as the sum of users’ valuations:

V =
∑

i∈U

vi(Si) · xi (1)

wherexi, i = 1, . . . , N , are indicator variables defined as
follows: xi = 1 if bundle Si is allocated to useri, and
xi = 0, otherwise. Table I summarizes the notation used
throughout the paper.

The cloud provider’s goal is to allocate resources to users
in such a way that the allocation maximizes the revenue.
This would be the most reasonable objective, but since very
little is known about revenue maximization in the context of
mechanism design, we will consider the standard mechanism
design objective, that is, maximization ofV , the sum of the
users’ valuations [7]. Since the valuation of a user represents
her willingness to pay, we expect that maximizing the sum
of the valuations will have a positive effect on increasing
the revenue obtained by the cloud provider.

We formulate the problem of VM provisioning and allo-
cation in clouds (VMPAC) as an Integer Program as follows:

Maximize V (2)

Subject to:
∑

i∈U

∑

m∈VM

kimwmrxi ≤ Cr, ∀r ∈ R (3)

xi = {0, 1},∀i ∈ U (4)



The solution to this problem is a vectorx =
(x1, x2, . . . , xN ) maximizing the social welfare. Con-
straints (3) ensure that the allocation of each resource type
does not exceed the available capacity of that resource.
Constraints (4) represent the integrality requirements for the
decision variables. These constraints force the cloud provider
to provision the whole bundle of VM instances and to
allocate bundles to the selected users. The VMPAC problem
is equivalent to the multidimensional knapsack problem
(MKP), where the knapsack constraints are the resource
capacity constraints and the bundles are the items [3]. The
objective is to select a subset of items for the multidimen-
sional knapsack maximizing the total value.

III. M ECHANISM DESIGN FRAMEWORK

In this section, we present the basic concepts of mech-
anism design. A mechanismM = (A,P) consists of an
allocation functionA = (A1, . . . ,AN ) and a payment rule
P = (P1, . . . ,PN ). The allocation function determines
which users receive their requested bundles, and the payment
rule determines the amount that each user must pay.

In our model, there areN users, and the type of a useri

is denoted byθi = (Si, bi). The users are assumed to be
single-minded. That means, useri desires only the requested
bundle of VM instances,Si, and derives a value ofbi if she
gets the requested bundle or any superset of it,Ŝi, and zero
value, otherwise. Thus, the valuation function for useri is
as follows:

vi(Ŝi) =

{

bi if Si ⊆ Ŝi

0 otherwise
(5)

The goal is to design a truthful mechanism that maximizes
the social welfareV .

We denote byθ = (θ1, . . . , θN ) the vector of types of all
users.θ−i is the vector of all types except useri’s type (i.e.,
θ−i = (θ1, . . . , θi−1, θi+1, . . . , θN )). User i has a utility
function ui(θ) = vi(Ai(θ)) − Pi(θ), wherePi(θ) is the
payment for useri that the mechanism calculates based on
the payment ruleP. Each user’s type is private knowledge.
The users may declare different types from their true types.
We denote bŷθi = (Ŝi, b̂i) user’si declared type. Note that
θi = (Si, bi) is user’si true type. The goal of a user is to
maximize her utility, and she may manipulate the mechanism
by lying about her true type to increase her utility. In our
case, since the type of a user is a pair of bundle and
value, the user can lie about the value by reporting a higher
value in the hope to increase the likelihood of obtaining
her requested bundle. These manipulations by the users will
lead to inefficient allocation of resources and ultimately
will reduce the revenue obtained by the cloud provider. We
want to prevent such manipulations by designing truthful
mechanisms for solving VMPAC. A mechanism istruthful
if all users have incentives to reveal their true types.

Definition 1 (Truthfulness):A mechanismM is truthful
(or incentive compatible) if for every useri, for every type
declaration of the other userŝθ−i, a true type declara-
tion θi and any other declaration̂θi of useri, we have that
ui(θi, θ̂−i) ≥ ui(θ̂i, θ̂−i).

In other words, a mechanism is truthful if truthful report-
ing is a dominant strategy for the users, that is, the users
maximize their utilities by truthful reporting independently
of what the other users are reporting. To obtain a truthful
mechanism the allocation functionA must be monotone and
the payment rule must be based on the critical value [15].

To define monotonicity, we need to introduce a preference
relation� on the set of types as follows:̂θ′i � θ̂i if b̂′i ≥ b̂i

and Ŝi =< k̂i1, k̂i2, . . . , k̂iM >, Ŝ′
i =< k̂′

i1, k̂
′
i2, . . . , k̂

′
iM >

such that
∑

m∈VM
k̂′

imwmr ≤
∑

m∈VM
k̂imwmr,∀r ∈ R.

That means typêθ′i is more preferred than̂θi if user i

requests fewer resources of each type in her current bundle
and/or submits a higher bid.

Definition 2 (Monotonicity):An allocation functionA is
monotoneif it allocates the resources to useri with θ̂i as her
declared type, then it also allocates the resources to useri

with θ̂′i, whereθ̂′i � θ̂i.
Any winning user who receives her requested bundle by

declaring a typêθi is still wining if she requests a smaller
bundle and submits a higher bid.

Definition 3 (Critical value): Let A be a monotone al-
location function, then for everyθi, there exist a unique
value vc

i , calledcritical value, such that∀θ̂i � (Si, v
c
i ), θ̂i

is a winning declaration, and∀θ̂i ≺ (Si, v
c
i ), θ̂i is a losing

declaration.
The mechanismM works as follows. It first receives the

declared types (bundles and bids) from each participating
user and then based on the received types determines the
allocation using the allocation functionA and the payments
using the payment ruleP. The payment ruleP is based on
the critical value and is defined as follows:

Pi(θ̂) =

{

vc
i if i wins

0 otherwise
(6)

wherevc
i is the critical value of useri.

IV. T RUTHFUL GREEDY MECHANISMS

The VMPAC problem is strongly NP-hard and there is no
Fully Polynomial Time Approximation Scheme (FPTAS) for
solving it, unlessP = NP [3]. Thus, one solution to solve
VMPAC is to design heuristic approximation algorithms. In
general, approximation algorithms do not necessarily satisfy
the properties required to achieve truthfulness. Our goal is to
design truthful greedy approximation mechanisms that solve
the VMPAC problem.

We propose a family of truthful mechanisms, called G-
VMPAC-X. The general form of the allocation algorithm
of this family of mechanisms is given in Algorithm 1. G-
VMPAC-X has two input parameters: the vector of users



Algorithm 1 G-VMPAC-X Allocation algorithms for VMPAC

1: Input: θ̂ = (θ̂1, . . . , θ̂N ); vector of types (bundle, bid)
2: Input: C = (C1, . . . , CR); vector of resource capacities
3: V = 0
4: x← 0

5: Ĉ = C

6: for all r ∈ R do
7: fr ← 1, for G-VMPAC-I; or fr ←

1

Cr
for G-VMPAC-II

8: for all i ∈ U do
9: ei = vi

∑

R

r=1
frair

10: SortU in decreasing order ofei

11: for all i ∈ U do
12: flag ← TRUE
13: for all r ∈ R do
14: C̃r = Ĉr −

∑

m∈VM
kimwmr

15: if C̃r < 0 then
16: flag ← FALSE
17: break;
18: if flag then
19: V = V + vi

20: xi = 1
21: Ĉ = C̃

22: Output: V , x

declared typeŝθ, and the vector of resource capacitiesC =
(C1, . . . , CR); and two output parameters:V , the total social
welfare andx, the allocation of VM instances to the users.
The algorithm orders the users (lines 6-10) according to a
generalefficiencymetric defined as:

ei =
vi

∑R

r=1
frair

,∀i ∈ U (7)

where air =
∑

m∈VM
kimwmr is the amount of each

resource of typer requested by useri, andfr is therelevance
factor characterizing the scarcity of resources of typer. A
higherfr means a higher scarcity of resourcer, thus, a lower
efficiency. That means, a user that requests more resources
of a scarce type is less likely to receive her requested bundle.

The choice of relevance values,fr, defines the members
of the G-VMPAC-X family of allocation algorithms. We
consider two choices forfr and obtain two allocation
algorithms, G-VMPAC-I and G-VMPAC-II as follows:

1) G-VMPAC-I: obtained whenfr = 1, ∀r ∈ R. This is a
direct generalization of the one-dimensional case considered
by Lehmannet al. [4]. This generalization does not take
into account the scarcity of different resources and may not
work well in situations in which the VM instances are highly
heterogeneous in terms of the resources provided.

2) G-VMPAC-II: obtained whenfr = 1

Cr
, ∀r ∈ R. This

addresses the scarcity issues in G-VMPAC-I, by scaling the
values offr with the inverse of capacityCr.

Once the users are sorted according to their efficiency
values, the algorithms determine the allocationx (lines 11-
22). The time complexity of the algorithms isO(N(RM +
log N)).

Theorem 1:The algorithms in the G-VMPAC-X family
are monotone.

Algorithm 2 G-VMPAC-X Mechanism
1: {Collect user requests (types)}
2: for all i ∈ U do
3: Collect user typêθi = (Ŝi, b̂i) from useri
4: {Allocation}
5: (V ∗, x∗) = G-VMPAC-X(θ̂,C)
6: Provisions and allocates VM instances according tox∗.
7: {Payment}
8: P =PAY(θ̂,C,x)

Proof: We show that the algorithms that are part of G-
VMPAC-X family produce monotone allocations. In order
to show this, we assume that useri with declared typêθi

is allocated her requested bundle and show that she is still
allocated if she declares typêθ′i, whereθ̂′i � θ̂i. Here,θ̂′i �
θ̂i, means that useri may request a VM bundle with fewer
resources of each type or report a higher value. We separate
the proof into three cases as follows.

i) Useri declares a higher value, i.e.,v̂′
i > v̂i. This leads to

a higher efficiency,e′i > ei in all G-VMPAC-X algorithms.
This is due to the fact that the requested amount of each
resource is the same in both bundles corresponding toθ̂i

and θ̂′i. Thus, useri remains in the same or advances to a
higher position in the greedy order when declaringθ̂′i. As
a result, her allocation will not change when any of the
algorithms that are members of G-VMPAC-X is used.

ii) User i declares a bundlêS′
i =< k̂′

i1, k̂
′
i2, . . . , k̂

′
iM >

with fewer resources of each type than bundle
Ŝi =< k̂i1, k̂i2, . . . , k̂iM >, i.e.,

∑

m∈VM
k̂′

imwmr ≤
∑

m∈VM
k̂imwmr,∀r ∈ R. That means, useri requests

fewer resources and as a result,a′
ir < air,∀r ∈ R. In

G-VMPAC-I and G-VMPAC-II, this leads to a higher
efficiency for useri, that is,e′i > ei.

iii) User i declares a higher value,̂v′
i > v̂i, and a bundle

Ŝ′
i with fewer resources than̂Si. From the above two cases,

user i will still be allocated the bundle, thus remaining
among the winning users.

In all three cases, useri’s allocation will not change, and
she remains among the winning users. This implies that all
the algorithms in the G-VMPAC-X family are monotone.

The G-VMPAC-X family of truthful mechanisms is given
in Algorithm 2. A mechanism from this family is executed
periodically by the cloud provider. The mechanism collects
the requests from the user expressed as types (lines 1-3) and
determines the allocation by calling the allocation algorithm
(lines 4-5). The allocation algorithm can be any version
of the G-VMPAC-X. Once the allocation is determined the
mechanism provisions the required number and types of VM
instances (line 6) and determines the payments by calling
the PAY function (lines 7-8). The users are then charged the
amount determined by the mechanism. The PAY function
is given in Algorithm 3. The PAY function has three input
parameters, the vector of users declared types (θ̂), the vector
of resource capacitiesC, and the optimal allocation given



Algorithm 3 PAY: Payment Function

1: Input: θ̂ = (θ̂1, . . . , θ̂N ); vector of types (bundle, bid)
2: Input: C; vector of resource capacities
3: Input: x∗; winning users
4: for all i ∈ U , whereU is sorted in decreasing order ofei do
5: Pi = 0
6: if x∗

i
then

7: l = −1
8: (V ′∗, x′∗) = G-VMPAC-X (θ̂ \ θ̂i,C)
9: for all j ∈ U in decreasing order ofei do

10: if x∗
j

= 0 and x′∗
j

then
11: l = j
12: break;
13: if l then
14: Pi = el

∑R

r=1
frair

15: else
16: Pi = 0
17: Output: P = (P1,P2, . . . ,PN )

by x
∗. It has one output parameter:P, the payment vector

for the users. The payments are based on the critical values
of the winning users. The payment of winning useri is
calculated by multiplying

∑R

r=1
air with the highest bid

density among the loosing users who would win ifi would
not be a winner. That is, the winner pays the critical value.

We now show that the proposed mechanisms are truthful.
Theorem 2:The mechanisms in the G-VMPAC-X family

are truthful.
Proof: The allocation algorithms in the G-VMPAC-X

family are monotone (Theorem 1) and the payment is the
critical value payment (implemented by PAY), therefore,
according to [15], the mechanisms in the G-VMPAC-X
family are truthful.

We now determine the approximation ratio of the greedy
mechanisms in the G-VMPAC-X family.

Theorem 3:The approximation ratio of the mechanisms
in the G-VMPAC-X family is RCmax, where Cmax =
maxr∈R Cr.

Proof: We consider the general form of efficiencyei =
vi

∑

R

r=1
frair

. Let X∗ be set of users in the optimal solution,

and V ∗ be the optimal value. LetX and V be the set of
users and the value in the obtained solution by G-VMPAC-
X, respectively. We need to prove thatV ∗ ≤ V α, whereα

is the approximation ratio.
We defineX̂ = X \ (X ∩X∗) andX̂∗ = X∗ \ (X ∩X∗).

Therefore, we haveX̂ ∩ X̂∗ = ∅. Based on the new
setsX̂ and X̂∗, the corresponding values arêV and V̂ ∗,
respectively. Now, instead of provingV ∗ ≤ αV , it is
sufficient to prove that̂V ∗ ≤ αV̂ . This is due to the fact
that we can subtract the values of the users in(X ∩ X∗)
from bothV andV ∗.

V̂ ∗ =
∑

i∈X̂∗

vi ≤ α
∑

i∈X̂

vi = αV̂ (8)

We define a set of usersDi for user i,∀i ∈ U including
useri such that ifj ∈ Di then j ≥ i (based on the order)

and j ∈ X∗ but j 6∈ X because of useri. Meaning that,
useri blocks each user inDi from enteringX. It is obvious
that X∗ ⊆

⋃

i∈XDi. Then,
∑

i∈X̂∗ vi ≤
∑

i∈
⋃

j∈X̂
Dj

vi ≤

α
∑

i∈X̂
vi Therefore, it is sufficient to show for everyi ∈ X̂

that:
∑

j∈Di
vj ≤ αvi. Note that everyj ∈ Di appeared

after i in the greedy order and thusej ≤ ei then

vj ≤
vi

∑R

r=1
frajr

∑R

r=1
frair

(9)

Summing over allj ∈ Di, we have:

∑

j∈Di

vj ≤
∑

j∈Di

vi

∑R

r=1
frajr

∑R

r=1
frair

≤
vi

∑R

r=1
frair

∑

j∈Di

R
∑

r=1

frajr

(10)

Due to space limitation and the fact that the proof for G-
VMPAC-I is similar to that for G-VMPAC-II, we show the
proof only for G-VMPAC-II.

SinceX∗ is an allocation andfr = 1

Cr
for G-VMPAC-II

we have
∑

j∈Di

∑R

r=1

ajr

Cr
≤ R. Replacing this in equation

(10) we obtain
∑

j∈Di

vj ≤
Rvi

∑R

r=1

air

Cr

(11)

The worst case is when
∑R

r=1

air

Cr
has the minimum value

which is 1

Cmax
, where Cmax = maxr∈R Cr. Therefore

∑

j∈Di
vj ≤ RCmaxvi. As a result, the approximation ratio

is α = RCmax.
In the next section we evaluate the performance of the

proposed mechanisms by performing extensive simulation
experiments.

V. EXPERIMENTAL RESULTS

We perform extensive simulation experiments in order
to investigate the properties of the mechanisms in the G-
VMPAC-X family. The G-VMPAC-X mechanisms are im-
plemented in C++ and the experiments are conducted on an
Intel 2.53GHz with 3GB RAM with Linux as the operating
system.

A. Experimental Setup

We generate VM instance requests corresponding to sys-
tems with 16 to 1024 users. The number of VM instances
and resource types offered by the cloud provider are the
same in all the experiments. The generated requests are
based on realistic data combining publicly available infor-
mation provided by Amazon EC2 and Microsoft Azure as
follows. We consider two setting depending on the types of
VM instances available to users: homogeneous and heteroge-
neous VM types. Each of these VM instances has specific
resource demands with respect to three available resource
types: cores, memory and storage.



Table II: Homogeneous VM instance types.

Small Medium Large Extralarge
m = 1 m = 2 m = 3 m = 4

CPU 1 2 4 8
Memory (GB) 1.7 3.75 7.5 15
Storage (GB) 160 410 850 1690

Table III: Heterogeneous VM instance types.

Data Processing Heavy Computation
High-Storage High-Storage High-CPU High-Memory

m = 1 m = 2 m = 3 m = 4

CPU 1 2 5 6
Memory (GB) 1.7 1.7 3.4 17.1
Storage (GB) 1500 4000 20 10

In the homogeneous setting, the amount of resources in
VM types are proportional, and we use the same VM types
as those offered by Amazon EC2. We also set the amount of
each resource type provided by a VM instance to be the same
as in the specifications provided by Amazon Web Services
for its Spot Instances and Elastic Computing Cloud (EC2)
(see Table II).

In the heterogeneous setting, the amount of resources
provided by different types of VM instances are not related.
In Table III, we present the four heterogeneous types of VM
instances that we use for our experiments. These types of
VMs can be used for large data processing (High-Storage)
or heavy computations (High-Memory and High-CPU).

Users can request between 1 and 20 VM instances of
each type. We generate bids based on Amazon Spot market
report on users bidding strategies [2]. Amazon regularly
updates its spot price history based on the past 90 days
of activity. Amazon reported that most users bid between
the price of reserved instances and on-demand prices. By
doing so, these users saved between 50% to 66% compared
to the on demand prices. The lowest price of the reserved
instances is for theHeavy Utilization Reserved Instances
which is $0.013 per hour for a small VM instance. However,
the trade off is that the user’s requested bundles can be
reclaimed by a cloud provider if the spot price exceeds their
submitted bid prices. Thus, some users bid above on-demand
prices and up to twice the on-demand prices in some cases.
To generate bids for users requesting homogeneous VMs,
we generate a random number,b0

i , for each useri from
the range[0.013, 0.24] for a small VM instance. Then, we
multiply the random number by the total weights of VMs
in the user’s requested bundle. The total weight of a VM
instance for useri is

∑M

m=1
2m−1kim. To generate bids for

users requesting heterogeneous VMs, we generate a random
number,b0

im, for each useri from the above-mentioned range
for each VM instancem ∈ VM. Then, we multiply the
random number by the number of VMs of typem in the
user’s requested bundle, i.e.,kim. The parameters and their
generated values for the experiments are listed in Table IV.
We use the CPLEX branch-and-bound solver provided by
IBM ILOG CPLEX Optimization Studio for Academics

Table IV: Simulation Parameters
Param. Description Value(s)

Homogeneous Heterogeneous
N Number of users [16-1024] [16-1024]
M Number of VM instances 4 4
R Number of resource types 3 3
C1 Core capacity 500 500
C2 Memory capacity 1000 GB 1000 GB
C3 Storage capacity 500,000 GB 500,000 GB
wmr Amount of resourcer provided

by a VM instancem
as in
Table II

as in
Table III

kim Number of requested VMm by
useri

[0, 20] [0, 20]

Initiative [16] for solving the VMPAC problem. We compare
the results obtained by the CPLEX solver (denoted by OPT)
with those obtained by the proposed mechanisms.

B. Analysis of Results

We investigate the truthfulness of our proposed G-
VMPAC-X mechanisms by analyzing the effects of untruth-
ful declarations by a user. To show that our proposed mecha-
nisms are robust against manipulation by a user, we consider
three users requesting homogeneous VMs where their true
types are(< 5, 0, 0, 0 >, $10), (< 0, 4, 0, 0 >, $24), and
(< 2, 0, 0, 2 >, $20), respectively. The capacity of the three
resources are as follows: 30 cores, 80 GB of memory, and
6000 GB of storage. The G-VMPAC-II calculates the effi-
ciency of the users as 24.61, 32.98, and 11.59, respectively,
then allocates resources to user1 and2 in the case that all
users declare their true types. The payments of the winning
users based on PAY are $4.71 and $8.43, respectively.

We assume that user2 lies about her typeθ̂2. The
consequence of such a declaration depends on her reported
valuev2 and the bundleS2. We consider different scenarios
as shown in Table V, where user2 does not reveal her true
type. Case I is when the user declares her true type. In
case II, when user2 reports a value greater than her true
type, she will still win and the mechanism determines the
same payment for her as in case I. In case III, user2 reports
a value less than her true type, but not less than the price
determined by our mechanism. In this case, the user is still
winning, and pays the same amount as in case I. In case IV,
user2 reports a value below her determined payment. In this
case, she will not get her requested bundle, and her utility
is zero. In case V, she declares a larger bundle and still
obtains the bundle due to available capacities. However, she
pays more and her utility decreases. In case VI, she declares
a larger bundle but becomes a loser since the cloud provider
does not have enough resources to fulfill her requested
bundle. As a result, her utility is zero. In all cases, the user
can not increase her utility by declaring a type other than
her true type.

We now compare the performance of G-VMPAC-X for
different number of users. First, we analyze the performance
of G-VMPAC-X in a homogeneous setting. Fig. 1a shows
the social welfare for different number of users. The results
show that different versions of G-VMPAC-X can obtain
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Figure 1: G-VMPAC-X performance (homogeneous VM instancescase): (a) Social welfare; (b) Execution time.
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Figure 2: G-VMPAC-X resource utilization (homogeneous VM instances case): (a) Cores; (b) Memory; (c) Storage.

Table V: Different scenarios for user2’s type declaration

Case S2 v2 Scenario Stat. Pay. Utility
I < 0, 4, 0, 0 > $24 v̂2 = v2, Ŝ2 = S2 W 8.43 15.57
II < 0, 4, 0, 0 > $30 v̂2 > v2, Ŝ2 = S2 W 8.43 15.57
III < 0, 4, 0, 0 > $20 v̂2 < v2, Ŝ2 = S2 W 8.43 15.57
IV < 0, 4, 0, 0 > $8 v̂2 < v2, Ŝ2 = S2 L 0 0
V < 1, 4, 0, 0 > $24 v̂2 = v2, Ŝ2 > S2 W 9.38 14.61
VI < 0, 4, 0, 2 > $24 v̂2 = v2, Ŝ2 > S2 L 0 0

almost the same social welfare as the optimal social welfare.
Fig. 1b shows the execution time for cases with different
number of users in a logarithmic scale. Fig. 2a, Fig. 2b, and
Fig. 2c show the utilization of cores, memory and storage,
respectively. In a homogeneous setting, different versions
of G-VMPAC-X have similar social welfare and utilization.
This is due to the fact that in all four VM types shown in
Table II resource types increase proportionally. As a result,
using scaling in different versions of G-VMPAC-X does not
have a significant impact on the performance of G-VMPAC-
X.

Now, we analyze the performance of G-VMPAC-X in a
heterogeneous setting. Fig. 3a shows the social welfare for
different number of users. The results show that G-VMPAC-
II that uses scaling achieve a social welfare that is much
close to the optimal, than G-VMPAC-I does. Since in this
setting VM types are not related, using scaling in the greedy
allocation algorithm is more beneficial. Fig. 3b shows the
execution time for different number of users. G-VMPAC-
X obtained the allocations much faster than the optimal
algorithm. Comparing the execution time of algorithms in

Fig. 1b and Fig. 3b we observe that in the heterogeneous
setting the optimal algorithm needs much more time to
execute than G-VMPAC-X does. For instance, on average for
1024 users, the optimal algorithm is 198.07 times slower in a
heterogeneous setting than in a homogeneous setting, while
for G-VMPAC-I and G-VMPAC-II this ratio is 2.17 and
3.22, respectively. Since the amounts of resources of each
type in all four VM types shown in Table III are unrelated,
the optimal algorithm needs more time to find the solution.
Note that the VMPAC problem is strongly NP-hard.

Fig. 4a, Fig. 4b, and Fig. 4c show the utilization of
cores, memory and storage, respectively. Using scaling in
G-VMPAC-II keeps the utilization of resources closer to the
one obtained in the optimal case. The storage utilization for
G-VMPAC-I is very low (close to zero and not visible on
the figure). The reason for that is that users that request
storage have a very low efficiency since VMPAC-I does not
use the scaling. As a result, the users requesting High-CPU
and High-Memory instances are more likely to obtain their
requested resources making it hard for the ones that request
storage to obtain their requested VMs.

From all the above results, we conclude that G-VMPAC-
II finds near-optimal solutions to the VMPAC problem and
requires small execution times.

VI. CONCLUSION

We designed a family of truthful greedy mechanisms for
solving the VMPAC problem in the presence of resources
of multiple types. We determined the approximation ratio of
the proposed mechanisms and investigated their properties
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Figure 3: G-VMPAC-X performance (heterogeneous VM instances case): (a) Social welfare; (b) Execution time.
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Figure 4: G-VMPAC-X resource utilization (heterogeneous VM instances case: (a) Cores; (b) Memory; (c) Storage.

by performing extensive simulation experiments. The results
showed that the proposed mechanisms determine near opti-
mal allocations while giving the users incentives to report
their true valuations for the bundles of VM instances. In
addition, the execution time of the proposed mechanisms
is very small. We plan to perform more experiments and
implement a prototype allocation system in an experimental
cloud computing system.
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