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Abstract—Designing efficient mechanisms for Virtual Ma-
chine (VM) provisioning and allocation is a major challenging
problem that needs to be solved by cloud providers. We formu-
late the VM provisioning and allocation problem in clouds as
an integer program and design truthful greedy mechanisms
that solve it. We show that the proposed mechanisms are
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short time-windows (e.g., every hour) to efficiently proois
the unutilized resources of the cloud provider.

One of the key properties of a provisioning and allocation
mechanism is to give incentives to users so that they reveal
their true valuations for the bundles. In general, greedy

truthful, that is, the users do not have incentives to lie about
their requested bundles of VM instances and their valuations.
We perform extensive experiments in order to investigate the
performance of the proposed mechanisms.

algorithms do not necessarily satisfy the properties requi

to achieve truthfulness. Our goal is to design truthful dyee
mechanisms that solve the VM provisioning and allocation
problem in the presence of multiple types of resources
(e.g., cores, memory, storage, etc.). The mechanismsatdloc
resources to the users such that the social welfare (ie., th
sum of users’ valuations for the requested bundles of VMs)

is maximized.
The number of enterprises and individuals that are

outsourcing their workloads to cloud providers increaseoo_ur_Comribmon'We a_lddress the problem of VM prov_i-
rapidly. Cloud providers can offer Infrastructure as a ®ery  S'0NNY and allocation in clogds in the presence of multl_ple
(laaS) by providing CPUs, storage, networks and other lowypes of resources. We design truthful greedy mechanisms

level resources to their customers. These different tyfes c%hatﬁ“{e |ncent|ve§ tt? thdel userfs\;?\)/lr_eveal thewt\r/ve ;/sduatl
resources are offered in the form of Virtual Machine (vim) o" their requested bundles o Instances. We formulate

instances. For example, Microsoft Azure [1] and Amazonthe pr_oblem as an integer program equivalent to the multidi-
Elastic Compute Cloud (Amazon EC2) [2] offer four types mensional knapsack problem, which is strongly NP-hard [3].
of VM instances: small (S), medium (M), large (L), and In the absence of feasible optimal algorithms for solving
extra large (XL) ' ' ’ ' the problem, we design greedy mechanisms. In general,
Cloud providers employ fixed-price and auction-b::lseogreefjy algorithms do not necessarily s.atisfy the propertie
mechanisms in order to provision resources in the form o{equwed to guarantee truthfulness. In this paper, we [E@po

VM instances and then allocate them to the customers. IHUtthI gre_e(_jy mechanisms "? orgler to solve the prob_lem
the auction-based mechanisms, each user bids for a subset fVM provisioning and allocation in clouds. We determine

available VM instances (bundle). Since several VM instance € _approximation ratio qf the prqposed mechanisms and
of the same type are available to users, the problem can erform extensive simulation experiments. The resultsvsho

viewed as a multi-unit combinatorial auction. Each user haé at the proposed mechanisms are able to find near optimal

a private value (privateypd for her requested bundle. In allocations while satisfying the truthfulness property.

our model, the users are single minded, that means eadRelated WorkDue to space limitations, we provide only a
user is either assigned her entire requested bundle of VMgery brief review of the closely related work. Lehmaah
and she pays for it, or she does not obtain any bundle andl. [4] proposed a greedy truthful mechanism for single-unit
pays nothing. The users are also selfish in a sense that thepmbinatorial auctions. However, our focus is on the design
want to maximize their own utility. It may be beneficial for of greedy truthful mechanisms in multi-unit settings. Save
them to manipulate the system by declaring a false typestudies focused on finding solutions for multi-unit combi-
(i.e., different bundles or bids from their actual requeAt)  natorial auctions without considering the truthfulnes} [5
example of such auction-based mechanism is the spot markfd]. The reader is referred to [7] for a comprehensive
introduced by Amazon [2]. Such mechanisms usually run irintroduction to mechanism design. Greedy algorithms for

Keywords-cloud computing; truthful mechanism; resource
allocation; greedy heuristic.
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solving the multidimensional knapsack problem (MKP) have Table I: Notation

been extensively studied [3]. However, none of these ssudie

considered the design of truthful mechanisms. gM ggi 8; {J/SN‘E%’]\]\?}
Wood et al. [8] proposed an approach for dynamic 5 Set of resources1. ..., R}

provisioning of VMs by defining a unique metric based g, The requested bundle of usee U
on the consumption of the three resources: CPU, networkvi(S:) | Value of the requested bundke of useri et/
and memory. Their approach determines a new mapping¥im The number of VMs of typen requested by usere U

b The bid of user € U
of resources to VMs. Gorlach and Leymann [9] proposed | The amount of resource of typec R provided by

a method for dynamic provisioning of services in clouds ™ | gne VM instance of typen € VM

in order to optimize the distribution of services within ¢, Capacity of resource € R

a certain infrastructure. Xiongt al. [10] considered an

economical provisioning where VMs are allocated to achievaype m, = 1) by: wy;; = 1 core, w1, = 1.6 GB, and

a balanced resource allocation and a better overall perfory,, = 150 GB.

mance. Sharmat al. [11] proposed a system considering  We consider a s of N users requesting a set of VM

the cost of VMs. They modeled this problem as an integefnstances. Usef, i = 1,..., N, requests a bundl§; =<

program to minimize the cost by reducing the time to transiti,, k., ... k;»; > of M types of VM instances, where,,,

to new configurations and optimizing the selection of ajs the number of requested VM instances of types VM.

virtual server configuration. All the above studies focused  |n addition, she specifies a biifor her requested bundig.

addressing the VM provisioning problem in clouds, however,yser; values her requested bundigat v;(S;), whereu;(S;)

none of them considered the design of truthful mechanismgs called thevaluationof user: for bundleS;. The valuation

for VM provisioning. represents the maximum price a user is willing to pay for
The closest work to ours is by Zaman and Grosu [12],ysing the requested bundle for a unit of time. Each user can

[13] who proposed truthful approximation mechanisms forsybmit her request as a vector specifying the number of VM

combinatorial auction-based allocation of VM instancesinstances, and her bid. For example; 1,3,4,2 >, $10)

in clouds in static and dynamic settings. However, thesgepresents a user requesting 1 small VM instance, 3 medium

mechanisms do not consider several types of resourcegi instances, 4 large VM instances, and 2 extra large VM

Their proposed mechanisms only consider computationghstances, and her bid isi& We denote byl the social

resources (i.e., cores), which is only one of the dimensions \velfare which is defined as the sum of users’ valuations:
our proposed model. Lampet al. [14] proposed a heuristic

approach considering several types of resources. However, V= Zvi(Si) T 1)
they did not propose a truthful mechanism. i€U
Organization.The rest of the paper is organized as follows.wherez;, i« = 1,..., N, are indicator variables defined as

In Section Il, we describe the VM provisioning and alloca- follows: z; = 1 if bundle S; is allocated to usei, and
tion problem in clouds. In Section lll, we introduce the leasi xz; = 0, otherwise. Table | summarizes the notation used
concepts of mechanism design. In Section 1V, we presenthroughout the paper.
the proposed mechanisms and characterize their properties The cloud provider's goal is to allocate resources to users
In Section V, we evaluate the mechanisms by extensivén such a way that the allocation maximizes the revenue.
simulation experiments. In Section VI, we summarize ourThis would be the most reasonable objective, but since very
results and present possible directions for future rebearc little is known about revenue maximization in the context of
mechanism design, we will consider the standard mechanism
design objective, that is, maximization bf, the sum of the
We consider a cloud provider offering types of re-  sers’ vajuations [7]. Since the valuation of a user reprisse
sources,R = {1,..., R}, to users in the form of VM  per willingness to pay, we expect that maximizing the sum
instances. These types of resources include cores, memogy the valuations will have a positive effect on increasing
storage, etc. The cloud provider has restricted capaCity, the revenue obtained by the cloud provider.
on each resource € R available for allocation. The cloud  \\e formulate the problem of VM provisioning and allo-

provider offers these resources in the form f types  cation in clouds (VMPAC) as an Integer Program as follows:
of VMs, VM = {1,...,M}, where each VM of type

II. VM PROVISIONING AND ALLOCATION PROBLEM

m € VM provides a specific amount of each type of Maximize V (2)
resourcer € R. The amount of resources of typethat Subject to:

one VM instance of typen provides is denoted bw,,,.

As an example, let’'s consider that CPU represents the type 1 Z Z KimWmy @i < Cr, V1 € R ©)

resource, memory the type 2 resource, and storage the type 3 ieUmeyM

resource. We can characterize a possible VM instance (of zi ={0,1}, Vi el (4)



The solution to this problem is a vectoxk = Definition 1 (Truthfulness)A mechanismM is truthful
(z1,22,...,2x5) mMaximizing the social welfare. Con- (or incentive compatible) if for every useéy for every type
straints (3) ensure that the allocation of each resource typdeclaration of the other use®_;, a true type declara-
does not exceed the available capacity of that resourceion ¢; and any other declaratiofy of useri, we have that
Constraints (4) represent the integrality requirementstfe  w;(6;,0_;) > u;(0;,0_;).

decision variables. These constraints force the cloudigeov In other words, a mechanism is truthful if truthful report-
to provision the whole bundle of VM instances and toing is a dominant strategy for the users, that is, the users
allocate bundles to the selected users. The VMPAC problermaximize their utilities by truthful reporting independisn

is equivalent to the multidimensional knapsack problemof what the other users are reporting. To obtain a truthful
(MKP), where the knapsack constraints are the resourceechanism the allocation functios must be monotone and
capacity constraints and the bundles are the items [3]. Ththe payment rule must be based on the critical value [15].
objective is to select a subset of items for the multidimen- To define monotonicity, we need to introduce a preference

sional knapsack maximizing the total value. relation = on the set of types as follows; > 0; if b, > b,
andS; =< ki1, k’ig,;. ki >, S; =< kzﬂl? k;% RN k;M >
Ill. M ECHANISM DESIGN FRAMEWORK such thaty™,, v Kl Wir < 3 cva kimwrpr,Vr cR.

In this section, we present the basic concepts of mechIhat means typef; is more preferred tham; if user i
anism design. A mechanisst\{ = (A, P) consists of an requests fewer resources of each type in her current bundle
allocation functiond = (A, ..., Ay) and a payment rule and/or submits a higher bid. _ _ _

P = (Pyi,...,Pn). The allocation function determines Definition 2 (Monotonicity):An allocation functionA is
which users receive their requested bundles, and the paymefonotonef it allocates the resources to usewith ¢; as her
rule determines the amount that each user must pay. declared type, then it also allocates the resources toiuser

In our model, there aréV users, and the type of a user With ¢;, whereg; = 6;. _
is denoted byy; = (S;,b;). The users are assumed to be Any winning user who receives her requested bundle by
single-mindedThat means, userdesires only the requested declaring a type; is still wining if she requests a smaller
bundle of VM instancesS;, and derives a value @ if she  Pundle and submits a higher bid.

gets the requested bundle or any superset of;jtand zero Definition 3 (Critical value): Let A be a monotone al-
value, otherwise. Thus, the valuation function for ugés  location function, then for every;, there exist a unique
as follows: value vf, calledcritical value such thatvd; = (S;,v5), 6;
A is a winning declaration, andd; < (.S;,v5), 0; is a losing
vi(Si) = {bi it S; CS; 5) declaration.
E 0 otherwise The mechanisnoV works as follows. It first receives the

_ _ _ ~ declared types (bundles and bids) from each participating
The goal is to design a truthful mechanism that maximizesiser and then based on the received types determines the

the social welfard/. allocation using the allocation functiod and the payments
We denote by = (61,...,0x) the vector of types of all  using the payment rul®. The payment rulé® is based on

usersf_; is the vector of all types except usés type (i.e., the critical value and is defined as follows:

0_, = (01,...,0;_1,0;41,...,0n)). Useri has a utility . it i wins

function u;(0) = v;(A;(0)) — P;(0), whereP;(0) is the Pi(0) = {U" e ) (6)

payment for uset that the mechanism calculates based on 0 otherwise

the payment ruleP. Each user’s type is private knowledge. ywherew¢ is the critical value of usei.

The users may declare different types from their true types. ’

We denote by, = (S;, b;) user'si declared type. Note that IV. TRUTHFUL GREEDY MECHANISMS

0; = (S;,b;) is user's: true type. The goal of a user isto  The VMPAC problem is strongly NP-hard and there is no
maximize her utility, and she may manipulate the mechanisniully Polynomial Time Approximation Scheme (FPTAS) for
by lying about her true type to increase her utility. In our solving it, unlessP = NP [3]. Thus, one solution to solve
case, since the type of a user is a pair of bundle an&/MPAC is to design heuristic approximation algorithms. In
value, the user can lie about the value by reporting a highegeneral, approximation algorithms do not necessarilsBati
value in the hope to increase the likelihood of obtainingthe properties required to achieve truthfulness. Our got i
her requested bundle. These manipulations by the users willesign truthful greedy approximation mechanisms thatesolv
lead to inefficient allocation of resources and ultimatelythe VMPAC problem.

will reduce the revenue obtained by the cloud provider. We We propose a family of truthful mechanisms, called G-
want to prevent such manipulations by designing truthfulVMPAC-X. The general form of the allocation algorithm
mechanisms for solving VMPAC. A mechanismtisithful ~ of this family of mechanisms is given in Algorithm 1. G-
if all users have incentives to reveal their true types. VMPAC-X has two input parameters: the vector of users



Algorithm 1 G-VMPAC-X Allocation algorithms for VMPAC Algorithm 2 G-VMPAC-X Mechanism

1: Input: 6 = (64, ...,Hx); vector of types (bundle, bid) 1: {Collect user requests (typgs)
2: Input: C = (Cy,...,CR); vector of resource capacities 2:forall ictddo o
3 V=0 3: Collect user typd); = (S;, b;) from user:
4:x 0 4: {Allocation} A
5 C=C 5. (V*, x*) = G-VMPAC-X(6, C)
6: for all » € R do 6: Provisions and allocates VM instances accordingto
7. fr 1, for G-VMPAC-I; or f, < 4 for G-VMPAC-II 7: {Paymen}
8: for all : € U/ do 8: P =PAY(0, C, x)
9: e; = 3 Y4
f?"atr

10: Sort!d in decreasmg order of;
11: for all ¢ € U do

12 flag — TRUE Proof: We show that the algorithms that are part of G-
13: forall r € R do VMPAC-X family produce monotone allocations. In order
14: Cr=Cr - > meva Kimwme to show this, we assume that usewith declared type);

= if Cj}l; QIFL?LSE is allocated her requested bundle and show that she is still
17 bregk; allocated if she declares typé, whered, > 0;. Here, >

18: if flag then 6;, means that usermay request a VM bundle with fewer

;gf J‘ji‘{* Vi resources of each type or report a higher value. We separate
21 c—¢& the proof into three cases as follows.

22: Output: V, x i) Useri declares a higher value, i.¢{, > ©;. This leads to

a higher efficiencyg; > e; in all G-VMPAC-X algorithms.

. This is due to the fact that the requested amount of each
declared type#®, and the vector of resource capacitfds= resource is the same in both bundles corresponding; to
(C1,...,CRr); and two output parameter¥:, the total social and é;. Thus, user remains in the same or advances to a
welfare andx, the allocation of VM instances to the users. higher position in the greedy order when declaritjg As
The algorithm orders the users (lines 6-10) according to @& result, her allocation will not change when any of the

generalefficiencymetric defined as: algorithms that are members of G-VMPAC-X is used.
Vi , ii) User i declares a bundlé! =< k], kly, ...,k >
€ = ﬁvvz eu (7) with fewer resources of each type than bundle
r=Larr Si =< ki, kig, ... ki >, e, Zmev/\/t o Wmr <
where a;, = > v kimWm, iS the amount of each ZmEVM kimwm:, Vr € R. That means, usef requests

resource of type requested by usérandf, is therelevance fewer resources and as a resulf, < a;-,Vr € R. In

factor characterizing the scarcity of resources of typeA  G-VMPAC-I and G-VMPAC-II, this leads to a higher

higher f,. means a higher scarcity of resourcehus, a lower  efficiency for user, that is,e} > e;.

efficiency. That means, a user that requests more resourcesiii) User i declares a higher valu¢] > ©;, and a bundle

of a scarce type is less likely to receive her requested lkundl §§ with fewer resources thafi;. From the above two cases,
The choice of relevance valueg,, defines the members user i will still be allocated the bundle, thus remaining

of the G-VMPAC-X family of allocation algorithms. We among the winning users.

consider two choices forf, and obtain two allocation In all three cases, usés allocation will not change, and

algorithms, G-VMPAC-I and G-VMPAC-II as follows: she remains among the winning users. This implies that all
1) G-VMPAC-I: obtained wherf, = 1, Vr € R. Thisisa the algorithms in the G-VMPAC-X family are monotonm

direct generalization of the one-dimensional case comsttle  The G-VMPAC-X family of truthful mechanisms is given

by Lehmannet al. [4]. This generalization does not take in Algorithm 2. A mechanism from this family is executed

into account the scarcity of different resources and may noperiodically by the cloud provider. The mechanism collects

work well in situations in which the VM instances are highly the requests from the user expressed as types (lines 1-3) and

heterogeneous in terms of the resources provided. determines the allocation by calling the allocation altyoni

2) G-VMPAC-II: obtained whenf, = &, Vr € R. This  (lines 4-5). The allocation algorithm can be any version
addresses the scarcity issues in G- VMPAC I, by scaling thef the G-VMPAC-X. Once the allocation is determined the
values of f,. with the inverse of capacity',. mechanism provisions the required number and types of VM

Once the users are sorted according to their efficiencynstances (line 6) and determines the payments by calling
values, the algorithms determine the allocatioflines 11-  the PAY function (lines 7-8). The users are then charged the
22). The time complexity of the algorithms (N (RM +  amount determined by the mechanism. The PAY function
log N)). is given in Algorithm 3. The PAY function has three input

Theorem 1:The algorithms in the G-VMPAC-X family parameters, the vector of users declared tyfgstife vector
are monotone. of resource capacitie€, and the optimal allocation given



Algorithm 3 PAY: Payment Function

1: Input: 6 = (64, ...,Hx); vector of types (bundle, bid)

2: Input: C; vector of resource capacities

3: Input: x*; winning users

4: for all ¢+ € U, wherel{ is sorted in decreasing order ef do

5: 'PI =0

6: if ¥ then

7. l=-1 o

8: (V'*, x'*) = G-VMPAC-X (8 \ 6;,C)
9: for all j € U in decreasing order of; do
10: if :cj =0and x;* then

11: =y

12: break;

13: if 1 then

14: Pi=ery, | frair

15: else

16: 777, =0

17: Output: P = (P1,P2,...,PN)

by x*. It has one output parameteP, the payment vector
for the users. The payments are based on the critical valu
of the winning users. The payment of winning useis
calculated by muItipIyinng:1 a;- With the highest bid
density among the loosing users who would win ifrould

andj € X* but j ¢ X because of usei. Meaning that,
users: blocks each user i; from enteringX. It is obvious

that X* C UiGXDi' Then,ZieX* v; < ZlEU D, v; <
jeEX

« Zief( v; Therefore, it is sufficient to show for everye X
that: ZjeDi v; < aw;. Note that everyj € D; appeared
afteri in the greedy order and thug < e; then

R
'Uizrzl fraj'r‘
’Uj S —R .
Zr:l frair
Summing over allj € D;, we have:

S ey WSt

R R
JjED; jED; 27-:1 frai Z,.:l fragr

9)

R
Z Z frajr

jeD; r=1

(10)

Due to space limitation and the fact that the proof for G-
VMPAC-I is similar to that for G-VMPAC-II, we show the

es

proof only for G-VMPAC-II.
Since X* is an allocation and’.

& for G-VMPAC-I|
we have} ., SE &= < R. Replacing this in equation

not be a winner. That is, the winner pays the critical value (10) we obtain

We now show that the proposed mechanisms are truthful.

Theorem 2:The mechanisms in the G-VMPAC-X family
are truthful.
Proof. The allocation algorithms in the G-VMPAC-X

family are monotone (Theorem 1) and the payment is the hich is
critical value payment (implemented by PAY), therefore,

according to [15], the mechanisms in the G-VMPAC-X
family are truthful.

RUZ‘
Yo = (11)
jGDi Z’r‘:l Cr
The worst case is wheﬁjfi=1 &= has the minimum value

&, where Cy,qp = max,cr C,. Therefore

Y e, V) <"RC,nazv;. As a result, the approximation ratio
is @ = RCyaz. |
In the next section we evaluate the performance of the

We now determine the approximation ratio of the greedyyqnosed mechanisms by performing extensive simulation

mechanisms in the G-VMPAC-X family.

Theorem 3:The approximation ratio of the mechanisms
in the G-VMPAC-X family is RC,,q., Where Cpor =
max,cr C.

Proof: We consider the general form of efficieney=

—=r2——. Let X* be set of users in the optimal solution,
r Qg

and V* be the optimal value. LeX and V' be the set of

experiments.

V. EXPERIMENTAL RESULTS

We perform extensive simulation experiments in order
to investigate the properties of the mechanisms in the G-
VMPAC-X family. The G-VMPAC-X mechanisms are im-
plemented in C++ and the experiments are conducted on an

users and the value in the obtained solution by G-VMPAC-ntel 2.53GHz with 3GB RAM with Linux as the operating

X, respectively. We need to prove thet < Va, wherea
is the approximation ratio.

We defineX = X\ (X NX*) andX* = X*\ (X N X*).
Therefore, we haveX N X* = (). Based on the new
sets X and X*, the corresponding values afé and V*,
respectively. Now, instead of proviny* < oV, it is
sufficient to prove that/* < V. This is due to the fact
that we can subtract the values of the usergihn X*)
from bothV and V*.

VE= ZvigaZvi:aV

ieX* ieX

(8)

We define a set of userB; for useri,Vi € U including
useri such that ifj; € D; thenj > i (based on the order)

system.

A. Experimental Setup

We generate VM instance requests corresponding to sys-
tems with 16 to 1024 users. The number of VM instances
and resource types offered by the cloud provider are the
same in all the experiments. The generated requests are
based on realistic data combining publicly available infor
mation provided by Amazon EC2 and Microsoft Azure as
follows. We consider two setting depending on the types of
VM instances available to users: homogeneous and heteroge-
neous VM types. Each of these VM instances has specific
resource demands with respect to three available resource
types: cores, memory and storage.



Table II: Homogeneous VM instance types. Table IV: Simulation Parameters

. Param. | Description Value(s)
Small ‘ Medium ‘ Large ‘ Extralarge Homogeneols Heterogeneous
m=1|m=2 | m=3 | m=4 N Number of users [16-1024] [16-1024]
CPU 1 2 4 8 M Number of VM instances 4 4
Memory (GB) 17 3.75 7.5 15 R Number of resource types 3 3
Storage (GB) 160 410 850 1690 4 Core capacity 500 500
) Cy Memory capacity 1000 GB 1000 GB
Table 1ll: Heterogeneous VM instance types. Cs Storage capacity 500,000 GB | 500,000 GB
Wynr Amount of resource provided | as in| as in
. ) by a VM instancem Table Il Table 1l
_Data Processing _ Heavy Computation Eim Number of requested VMn by | [0, 20] [0, 20]
High-Storage | High-Storage | High-CPU ‘ High-Memory useri
m=1 m =2 m =3 m =4
CPU 1 2 5 6 o ]
Memory (GB) 17 17 3.4 17.1 Initiative [16] for solving the VMPAC problem. We compare
Storage (GB) 1500 4000 20 10

the results obtained by the CPLEX solver (denoted by OPT)

) with those obtained by the proposed mechanisms.
In the homogeneous setting, the amount of resources in

VM types are proportional, and we use the same VM type$. Analysis of Results
as those offered by Amazon EC2. We also set the amount of We investigate the truthfulness of our proposed G-
each resource type provided by a VM instance to be the samgVIPAC-X mechanisms by analyzing the effects of untruth-
as in the specifications provided by Amazon Web Servicesul declarations by a user. To show that our proposed mecha-
for its Spot Instances and Elastic Computing Cloud (EC2nisms are robust against manipulation by a user, we consider
(see Table I1). three users requesting homogeneous VMs where their true
In the heterogeneous setting, the amount of resourcegpes are(< 5,0,0,0 >, $10), (< 0,4,0,0 >, $24), and
provided by different types of VM instances are not related.(< 2,0,0, 2 >, $20), respectively. The capacity of the three
In Table Ill, we present the four heterogeneous types of VMresources are as follows: 30 cores, 80 GB of memory, and
instances that we use for our experiments. These types @000 GB of storage. The G-VMPAC-II calculates the effi-
VMs can be used for large data processing (High-Storagegiency of the users as 24.61, 32.98, and 11.59, respectively
or heavy computations (High-Memory and High-CPU). then allocates resources to udeand? in the case that all
Users can request between 1 and 20 VM instances afsers declare their true types. The payments of the winning
each type. We generate bids based on Amazon Spot markesers based on PAY arel.$1 and $.43, respectively.
report on users bidding strategies [2]. Amazon regularly We assume that uset lies about her typeég. The
updates its spot price history based on the past 90 daysnsequence of such a declaration depends on her reported
of activity. Amazon reported that most users bid betweernvaluev,; and the bundleS;. We consider different scenarios
the price of reserved instances and on-demand prices. Bgs shown in Table V, where us2rdoes not reveal her true
doing so, these users saved between 50% to 66% compargge. Case | is when the user declares her true type. In
to the on demand prices. The lowest price of the reservedase I, when use® reports a value greater than her true
instances is for théHeavy Utilization Reserved Instances type, she will still win and the mechanism determines the
which is $.013 per hour for a small VM instance. However, same payment for her as in case I. In case lll, @s@ports
the trade off is that the user's requested bundles can ba value less than her true type, but not less than the price
reclaimed by a cloud provider if the spot price exceeds theidetermined by our mechanism. In this case, the user is still
submitted bid prices. Thus, some users bid above on-demandnning, and pays the same amount as in case I. In case IV,
prices and up to twice the on-demand prices in some casegser2 reports a value below her determined payment. In this
To generate bids for users requesting homogeneous VMsase, she will not get her requested bundle, and her utility
we generate a random numbéf, for each useri from s zero. In case V, she declares a larger bundle and still
the range[0.013,0.24] for a small VM instance. Then, we obtains the bundle due to available capacities. However, sh
multiply the random number by the total weights of VMs pays more and her utility decreases. In case VI, she declares
in the user’s requested bundle. The total weight of a VMa larger bundle but becomes a loser since the cloud provider
instance for usert is Zf‘f:l 2m—1E, .. To generate bids for does not have enough resources to fulfill her requested
users requesting heterogeneous VMs, we generate a randdsandle. As a result, her utility is zero. In all cases, theruse
numberp? , for each usei from the above-mentioned range can not increase her utility by declaring a type other than
for each VM instancen € VM. Then, we multiply the her true type.
random number by the number of VMs of type in the We now compare the performance of G-VMPAC-X for
user’s requested bundle, i.&,,,. The parameters and their different number of users. First, we analyze the perforraanc
generated values for the experiments are listed in Table IVof G-VMPAC-X in a homogeneous setting. Fig. 1a shows
We use the CPLEX branch-and-bound solver provided bythe social welfare for different number of users. The rasult
IBM ILOG CPLEX Optimization Studio for Academics show that different versions of G-VMPAC-X can obtain
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Figure 1: G-VMPAC-X performance (homogeneous VM instanca&se): (a) Social welfare; (b) Execution time.
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Figure 2: G-VMPAC-X resource utilization (homogeneous ViMtances case): (a) Cores; (b) Memory; (c) Storage.
Table V: Different scenarios for uset’s type declaration Fig. 1b and Fig. 3b we observe that in the heterogeneous

. . setting the optimal algorithm needs much more time to
Case | So vy | Scenario Stat.| Pay. Utility X
0 204005 524 | ta—uv2. 5 =5 W 843 1557 execute than G-VMPAC-X does. For instance, on average for

I <0,4,0,0> $30 | 92 >, S =5 W | 843 1557 1024 users, the optimal algorithm is 198.07 times slower in a
" < 000 Z 1280 Zz S gz = gz Y| 84 1557 heterogeneous setting than in a homogeneous setting, while
v <1.4.00> $24 | o—vs. 8 >5 W | 938 1461 for G-VMPAC-I and G-VMPAC-II this ratio is 2.17 and

i <0,4,0,2>  $24 | by =w3, 5 >S5, L 0 0 3.22, respectively. Since the amounts of resources of each

type in all four VM types shown in Table Il are unrelated,

the optimal algorithm needs more time to find the solution.

almost the same social welfare as the optimal social Welfarq\I :
. . . . . ote that the VMPAC problem is strongly NP-hard.
Fig. 1b shows the execution time for cases with different Fig. 4a, Fig. 4b, and Fig. 4c show the utilization of

number of users in a logarithmic scale. Fig. 2a, Fig. 2b, an%ores memorv and storage. respectively. Usina scaling in
Fig. 2c show the utilization of cores, memory and storage ' y g€, P Y- 9 9

. X . 2" G-VMPAC-II keeps the utilization of resources closer to the
respectively. In a homogeneous setting, different VEESION y e obtained in the optimal case. The storage utilization fo
of G-VMPAC-X have similar social welfare and utilization. P ! 9

This is due to the fact that in all four VM types shown in &Y MPAC-Lis very low (close to zero and not visible on

. . the figure). The reason for that is that users that request
Table Il resource types increase proportionally. As a tesul storage have a very low efficiency since VMPAC-I does not
using scaling in different versions of G-VMPAC-X does not 9 y Y

have a significant impact on the performance of G-VMPAC-°¢ th_e scaling. AS. a result, the users rgquestmg H!gh-CI?U
X and High-Memory instances are more likely to obtain their

, requested resources making it hard for the ones that request
Now, we analyze the performance of G-VMPAC-X in a storage to obtain their requested VMs.
heterogeneous setting. Fig. 3a shows the social welfare for g0 41l the above results, we conclude that G-VMPAC-
different number of users. The results show that G-VMPAC~, finqs near-optimal solutions to the VMPAC problem and
Il that uses scaling achieve a social welfare that is mucnequires small execution times.
close to the optimal, than G-VMPAC-I does. Since in this
setting VM types are not related, using scaling in the greedy VI. CONCLUSION
allocation algorithm is more beneficial. Fig. 3b shows the We designed a family of truthful greedy mechanisms for
execution time for different number of users. G-VMPAC- solving the VMPAC problem in the presence of resources
X obtained the allocations much faster than the optimabf multiple types. We determined the approximation ratio of
algorithm. Comparing the execution time of algorithms inthe proposed mechanisms and investigated their properties
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Figure 3: G-VMPAC-X performance (heterogeneous VM instancase): (a) Social welfare; (b) Execution time.
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Figure 4: G-VMPAC-X resource utilization (heterogeneoud Yhstances case: (a) Cores; (b) Memory; (c) Storage.

[7]

showed that the proposed mechanisms determine near opti-
mal allocations while giving the users incentives to report [8] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif,

their true valuations for the bundles of VM instances. In

addition, the execution time of the proposed mechanisms
is very small. We plan to perform more experiments and 9
implement a prototype allocation system in an experimental
cloud computing system.
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