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Abstract—Service providers leverage discounted prices of re-
served instances offered by cloud providers to amortize their
operational costs. They reserve a certain number of instances
to cover a significant portion of their computing resource re-
quirements, and further employ on-demand instances to cover
remaining requirements not satisfied by the reserved instances.
Because of the higher price of on-demand instances, service
providers seek to lower their usage to minimize operational costs.
In this work, we propose ApproxDNN approach for Machine
Learning as a Service to reduce operational costs of service
providers by incentivizing approximate results, based on the
capabilities of cutting-edge GPUs and a discounted pricing model.
When the deadlines of jobs submitted by users are very tight,
a service provider might not be able to execute all of them on
reserved instances under the default precision. In such cases, Ap-
proxDNN leverages the reduced-precision instructions to reduce
the execution time of the jobs with slight reduction in their final
accuracy, and consequently, to minimize the employment of on-
demand instances. To incentivize users to accept the approximate
results of reduced-precision instructions, ApproxDNN offers them
a discounted price for the service based on a newly designed
pricing model. Our proposed pricing model of ApproxDNN
guarantees lower or equal cost for service providers compared to
the conventional method that solely depends on employment of
on-demand instances in case of the reserved instance shortage.
We employ real-world traces to conduct an extensive set of
experiments and evaluate the performance of our proposed
approach. The results show that ApproxDNN reduces the cost
of service providers by 18%, while never exceeding the cost
of the conventional method and slightly affecting the accuracy
by 0.14%.

Index Terms—cloud computing, approximate computing, deep
neural network, cost minimization

I. INTRODUCTION

Cloud Infrastructure-as-a-Service (IaaS) providers aim to
maximize the utilization of their resources, and consequently,
increase their profit. Therefore, they offer a wide variety
of instance types, in addition to conventional on-demand
instances. For example, the spot instances [1] are low cost,
relatively unreliable instances offered by cloud providers to
utilize their transient spare capacity. The Reserved Instances
(RIs) [2] are another type of discounted price instances offered
in long-term contracts to guarantee that IaaS resources are
rented for a long time, and hence, the IaaS provider does not
need to be concerned about them being idle as users pay for
the requested RIs regardless of actual use.

Service Providers (SPs) employ resources en mass from
IaaS providers and deploy their services on these resources to

serve final users. Since SPs aim to maximize their profit and/or
minimize their service cost, they tend to rent discounted price
instances such as RIs. Due to fluctuation in resource demand of
SPs [3], it is impossible to cover all requests with RIs without
over-provisioning, which leads to idle resources and increased
cost. Therefore, employing on-demand instances along with
RIs is inevitable. Currently, the common practice is to rent a
certain number of RIs to cover a large portion of requests
over the course of time, and employ on-demand instances
to compensate for the shortage of resources not covered by
RIs [4]–[7]. Because of the wide gap between prices of RIs and
on-demand instances (up to 75% [2]), SPs prefer to minimize
the usage of on-demand instances in order to reduce their cost.
A large body of research has focused on cost minimization
considering this price gap by proposing various resource
estimation, provisioning, and scheduling approaches [4], [6]–
[8]. However, to the best of our knowledge, none of them has
considered motivating approximation through pricing policy
to address this challenge.

With the proliferation of Machine Learning (ML) appli-
cations, SPs have started offering them (e.g., AWS Deep-
Racer [9] and AWS DeepLens [10]). A large category of ML
applications, including Deep Neural Networks (DNNs), can
benefit from hardware accelerators such as GPUs and FPGAs.
Hence, SPs tend to employ instances equipped by such acceler-
ators. For example, Accelerated Computing instance families
(P2, P3, G3, F1) offered by Amazon EC2 [11] have either
GPUs or FPGAs. Cutting-edge GPUs such as Tesla P40 and
Tesla V100 support reduced precision instructions, e.g., 32-bit
floating points and 8-bit integer, in addition to the conventional
64-bit floating point. These reduced-precision instructions can
accelerate the execution of ML applications such as DNN
inference, however, they might affect accuracy of the results.
Therefore, SPs can leverage this new capability of GPUs to
reduce the execution time of jobs, and consequently, minimize
their cost. However, they should consider their negative impact
on accuracy.

In this paper, we propose a new approach, ApproxDNN,
for Machine Learning-as-a-Service (MLaaS) providers. Ap-
proxDNN helps SPs lessen the employment of on-demand
instances, and consequently, reduce their operational costs. To
reach this goal, it targets cost-sensitive users who care about
the final cost of services they receive. ApproxDNN motivates
those users to accept a negligible amount of accuracy reduction



in exchange for a lower service price. ApproxDNN offers
the users a discounted price for the service, in return for
executing their requests by reduced-precision instructions, if
needed. A discounted price can encourage cost-sensitive users
to use the reduced-precision service. On the other hand,
reduced-precision instructions shorten the runtime of requests
and provide room on RIs to service more requests, and
consequently, decrease the need for on-demand instances. By
managing the discounts, ApproxDNN guarantees that SPs cost
will never exceed the conventional approach of renting on-
demand instances in case of resource shortage.

We employ a state-of-the-art GPU accelerator to evaluate
the effect of reduced-precision arithmetic on performance of
DNNs inference for the image classification application. Based
on the obtained results from our prior experiments and real-
world traces from IaaS providers, we conduct extensive exper-
iments to study the effectiveness of ApproxDNN in minimizing
the SPs costs, while maintaining the SLA (service level agree-
ment) terms of each user. The benefits of our approach depend
on difference between RIs and on-demand instances prices,
as well as the willingness of users to accept approximate
results. Our analysis shows that while the cost of SPs under
our approach is significantly decreased compared with the
conventional approach (employing on-demand instances in the
presence of resource shortage), it has negligible impact on
the accuracy. ApproxDNN can reduce the cost by up to 18%,
while slightly reducing the accuracy by 0.14%. Our approach
supports promotion of DNN inference approximation in cloud
through the following contributions:

• We employ several image classification DNNs and con-
duct experiments on a cutting-edge GPU accelerator
to show how GPU architectures that support reduced-
precision instructions can help accelerating the DNN
inference applications. We also study their impact on the
accuracy.

• We present a discounting model for MLaaS in cloud to
incentivize DNN approximation such that users can pay
less in return for accepting a slight reduction in accuracy
of results, while SPs can gain more profit by reducing
the usage of on-demand instances. Through formulation,
we help SPs to offer the optimal discounts to the users
to motivate them to accept approximate results, while
minimizing their own costs.

• Using simulation based on real-world data and traces,
we evaluate the efficacy of our approach regarding an
attractive discounted price for users and reduced cost for
SPs.

The rest of the paper is organized as follows. In the next sec-
tion, we present the motivation and background of this work.
We then formulate our problem and describe our approach,
ApproxDNN, in Section III. In Section IV, we evaluate the
properties of our proposed approach by extensive experiments.
We provide an overview of existing work in this domain in
Section V. Finally, we summarize our results and conclude the
paper in Section VI.
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Fig. 1. Effects of reduced-precision on accuracy and runtime of DNN
inference

II. MOTIVATION AND BACKGROUND

A. DNN Inference Accuracy-Runtime Trade-off

We conduct a set of experiments to show the impact of
reduced-precision arithmetic on the accuracy and runtime of
DNN inference. We employ nine image classification DNNs
with diverse characteristics such as number of layers, type of
layers, and computational complexity. These DNNs belong to
MobileNet [12], Inception [13], and ResNet [14] families. For
each DNN, we have its frozen graph model that is trained using
conventional 64-bit floating point (FP64) precision. Using Ten-
sorRT [15], we generate their respective 8-bit Integer (INT8)
models that can be used for inference. We use 50,000 images
from ImageNet dataset [16] to evaluate the performance of
the networks under conventional and INT8 precision. The
inference time and accuracy of results for both precisions are
presented in Fig. 1. For calculating the accuracy, the labels
tagged to each image by the networks are compared against
the original labels provided by the dataset.

The results indicate that the effect of reduced precision on
performance varies from one network to another. INT8 can
reduce the runtime by up to 25% (Res 152) compared to
the conventional precision. However, it reduces the accuracy
by only around 0.6% for the same network. Considering
these results, one can leverage INT8 to meet the deadlines of
more jobs on RIs, and hence, decrease employing on-demand
instances. However, the possible accuracy reduction should be
considered and users should be incentivized to use it.

B. TensorRT

TensorRT is a tool designed to optimize DNN inference. It
optimizes DNN models trained in most frameworks such as
TensorFlow by calibrating the weights to lower precision with
a slight effect on accuracy. In our work, we use TensorRT to



quantize the weights from FP64 to INT8. It employs Symmet-
ric linear quantization to scale FP64 to INT8. TensorRT needs
a saturation threshold for calibrating the weights. Values above
(below) that threshold are mapped to +127 (-127) (max range
of INT8), and the rest of them are mapped to a value between
-127 and +127. TensorRT runs FP64 inference on a calibration
dataset (a few images) for several times to find the best
saturation threshold. In each iteration, a quantized distribution
based on a different saturation threshold is generated. The
saturation threshold that leads to least amount of information
loss is selected with the help of Kullback-Leibler divergence.
Next, FP64 weights are quantized to INT8 based on the best
obtained saturation threshold to generate the calibration table
and INT8 model of the DNN [17].

C. Reserved Instances

In addition to conventional on-demand instances, cloud
providers offer a miscellany of other instance types to satisfy
the various requirements of users, while increasing their own
profit. They provide their temporary idle resources in the
form of spot instances which are low cost, but with low
availability level [18]. To satisfy the needs of SPs and other
users who want to rent instances for a long period of time,
cloud providers offer RIs. These instances are offered in the
form of long-term contracts (1-year, 3-year) with significant
discounts (up to 75%) compared to on-demand instances. SPs
can employ RIs to cover a large portion of their computing
resource demand, and hence, minimize the use of on-demand
instances. Using data from Amazon EC2 [2], [19], we show
the difference between RI and on-demand prices of several
GPU-enabled instances in Fig. 2.

III. DNN APPROXIMATION IN CLOUD

A. Problem Statement and Formulation

A SP aims to deploy a set of DNN jobs of users on its
computing resources. A certain number of RIs are rented, and
a scheduler is employed to schedule the jobs on these RIs.
For each job i, its estimated runtime for both conventional
(FP64) and INT8 precision, ERTi

FP64 and ERTi
INT8, and its

deadline Di are available. For DNN inference, estimating the
runtime can be obtained by sampling a few inference tasks
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instance types

TABLE I
NOTATIONS USED IN THE PAPER

Parameter Definition
Di Deadline of job i

STi Start time of the job (submit time + wait time in queue)
IP reserved Price of RI ($/hour)
IP on-demand Price of on-demand instance ($/hour)
ERTi

FP64 Estimated runtime of job i using FP64 precision
ERTi

INT8 Estimated runtime of job i using INT8 precision
Ci

reserved Monetary cost of deploying job i on RI
Ci

on-demand Monetary cost of deploying job i on on-demand instance
CSLAV Monetary cost of SLA violation
SLAP SLA violation penalty fee coefficient

(e.g., inferencing a few image in image classification DNNs).
Our experiments on a set of image classification DNNs show
that such an approach is valid and can yield fairly accurate
estimations. Generating INT8 version of the DNN models is
also very fast and imposes negligible overhead on the system.
After scheduling all the jobs on RIs, the scheduler might
decide to deploy some jobs on on-demand instances to satisfy
their deadlines.

When scheduling jobs on RIs, the scheduler first considers
the conventional precision and estimated runtime for each job.
The reason is to avoid a penalty fee associated with INT8
precision due to possible violation of accuracy mentioned
in SLA. Note that this is a common practice for SPs to
pay their users in the case of SLA violation. For example,
Amazon Compute pays its users back if the monthly uptime
percentage of the instances is less than a certain value [20].
The scheduler then considers INT8 precision to decrease the
number of employed on-demand instances, and consequently,
their monetary cost. However, it should consider the SLA
violation penalty fee. Before using INT8 for processing a job,
the SP should ask the owner of that job. If the user disagree,
the SP must execute the job with the conventional precision.

As can be seen in Fig. 1, the effect of INT8 precision on the
accuracy of DNNs is different. It renders the accuracy low in
some networks, while the other ones are not affected. Because
of this uncertainty regrading effects of INT8 on accuracy,
the SP is required to pay a penalty fee to users whose jobs
are executed with INT8 precision. To incentivize the users to
accept INT8 precision, the SP can maintain the amount of
SLA violation penalty fee. Finally, if a job is deployed on
on-demand instances, it will be executed by FP64 precision to
avoid an extra cost due to the SLA violation penalty fee.

In the following, we provide the optimization model for
solving the described problem. All the parameters used in the
optimization model are listed in Table I. The objective function
of the optimization model is to minimize the monetary cost
of an individual job (job i) by either deploying that job on
reserved or on-demand instances. We define the following de-
cision variables. The decision variable xi shows the precision



selected for the job:

xi =

{
1, conventional precision is selected for job i

0, INT8 precision is selected for job i
(1)

We use another decision variable, yi, to show either job i
is deployed on reserved or on-demand instances.

yi =

{
1, job i is scheduled on RI
0, job i is scheduled on on-demand instance

(2)

If the job is scheduled on an on-demand instance (yi = 0),
then it would be definitely executed by conventional precision
according to the problem statement (i.e., xi = 1). Hence, the
cost of deploying the job on on-demand instances, Ci

on-demand,
can be calculated having the estimated runtime of FP64
(ERTi

FP64) and the price of on-demand instance per hour
(IP on-demand) as follows:

Ci
on-demand = (1− yi)× xi × ERTi

FP64 × IP on-demand (3)

However, if the job is executed on a RI (yi = 1), it is
either executed by FP64 or INT8 precision. If it is executed
by INT8 (xi = 0), the SP should pay the SLA violation penalty
fee, in addition to the RI cost. Otherwise (xi = 1), only the
monetary cost of RI should be considered. Therefore, the cost
of deploying the job on RI, Ci

reserved, is calculated using the
following equation:

Ci
reserved = yi × (xi × ERTi

FP64 × IP reserved) +

yi × (1− xi)× (ERTi
INT8 × IP reserved + CSLAV),

(4)

where IP reserved is the price of RI per hour, and CSLAV is the
monetary cost of SLA violation.

Note that one of Ci
reserved or Ci

on-demand would be zero, and
the other one determines the total cost.

We now formulate optimization model as follows:

Minimize Ci
reserved + Ci

on-demand (5)

Subject to:

STi + xi × ERTi
FP64 + (1− xi)× ERTi

INT8 ≤ Di (6)

The objective function is to minimize the monetary cost of
job i and it is constrained by the job’s deadline, where STi is
the start time of the job (submit time + wait time in queue).

B. ApproxDNN

In this section, we present our proposed approach, Ap-
proxDNN, to reduce the monetary cost that SPs should pay
for cloud resources they use, and consequently, increase their
profit. ApproxDNN leverages the capability of GPUs that sup-
port reduced-precision instructions to accelerate the execution
of DNN jobs, and hence, reduce the cost of SPs. With the
help of an illustrative example shown in Fig. 3, we describe
how ApproxDNN works and discuss its properties compared
to conventional methods. As can be seen, we have three DNN
inference jobs that we want to (preferably) schedule on a
RI. Scheduling all of them with FP64 precision on the RI

Job 1
FP64 Precision

Job 2
FP64 Precision

Job 3
FP64 Precision

Deadline Job 1 Deadline Job 2 Deadline Job 3

Job 1
FP64 Precision

Job 2
FP64 Precision

Job 1
FP64 Precision

Job 2
FP64 Precision

Job 3
INT8 Precision

Job 3
FP64 Precision

Reserved Instance On-Demand Instance

(a)
Job 3 Cannot Meet its 
Deadline on Reserved 

Instance

(b)
Conventional Solution: 
Deploy Job 3 on a More 
Expensive On-Demand 

Instance

(c)
ApproxDNN:
Leveraging 

Reduced Precision by 
Motivating 

Self-Approximation

Fig. 3. Illustrative example that shows difference between ApproxDNN and
conventional approaches.

leads to job 3 missing its deadline (Fig. 3.a). In this case, the
conventional methods that do not leverage reduced-precision
instructions of GPUs, would schedule job 3 on an on-demand
instance (as shown in Fig. 3.b), which means higher cost due to
price differences between an on-demand and reserved instance
(see Fig. 2). Unlike conventional methods, ApproxDNN takes
advantage of INT8 precision provided by GPU to accelerate
the execution of job 3. Hence, it can successfully deploy all
three jobs on the RI and avoid extra cost of renting an on-
demand instance (Fig. 3.c). Note that ApproxDNN leverages
INT8 provided that the two following conditions hold true:
1) the INT8 would be able to sufficiently reduce the execution
time of the job, such that it can meet its deadline on a RI; and
2) the user that has submitted the job would agree with a
possible accuracy reduction of the job due to employment of
INT8-precision instructions by the SP. In the following, we
describe the overall flow of ApproxDNN.

ApproxDNN offers the SLA violation penalty fee to users
as a multiple of cost of running the job on a RI using INT8,
by employing SLAP coefficient. Hence, the monetary cost of
SLA violation for job i is calculated as follows:

CSLAV = SLAP × ERTi
INT8 × IP reserved (7)

Therefore, the total cost of running job i on a RI using INT8
precision is the sum of the cost of deploying the job on a RI
and the cost of SLA violation:

(ERTi
INT8×IP reserved)+(SLAP×ERTi

INT8×IP reserved) (8)

ApproxDNN aims to guarantee that the cost of using the
reduced precision for the SP will never exceed the cost of
the conventional approach (i.e., employing on-demand in-
stance). Hence, it finds the maximum value of SLAP (called
SLAP-Max) such that the cost of deploying the job on a RI
using INT8 would be less than or equal to the cost of deploying
the job with the conventional precision on an on-demand
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Fig. 4. The overall flow of ApproxDNN. The colored parts are the contributions of ApproxDNN.

instance:

(ERTi
INT8 × IP reserved) + (SLAP × ERTi

INT8 × IP reserved)

≤ ERTi
FP64 × IP on-demand

(9)
To calculate SLAP-Max, ApproxDNN solves the first deriva-

tive of Eq. (9) for SLAP. After obtaining SLAP-Max, Ap-
proxDNN formulates the expected cost of deploying the job
on a reserved or on-demand instance. We assume that the
probability of acceptance of reduced-precision results by the
user is a function of SLAP as follows:

P acceptance =
SLAP

SLAP-Max
(10)

Therefore, the expected cost is formulated as:

P acceptance × (1 + SLAP)× (ERTi
INT8 × IP reserved)

+ (1− P acceptance)× ERTi
FP64 × IP on-demand

(11)

If the user accepts the offer of executing his/her job with
INT8 precision (with probability P acceptance), the cost will
be the first term of Eq. (11). Otherwise, if the user does
not accept the offer (with probability 1 − P acceptance), then
the job should be executed by the conventional precision
on an on-demand insance, and the cost is the second term
of Eq. (11). The only variable in Eq. (11) is SLAP, and
hence, ApproxDNN solves the first derivative of Eq. (11) to
find it. The result is the optimal value of SLAP, which we
call SLAP-Optimal, that minimizes the monetary cost that the
SP should pay for serving the job. ApproxDNN makes sure
that SLAP-Optimal is not greater than SLAP-Max. Otherwise,
it replaces SLAP-Optimal with SLAP-Max. Having SLAP-Optimal,
ApproxDNN offers SLAP-Optimal × ERTi

INT8 × IP reserved to
the user as the SLA violation penalty cost. The overall flow of
ApproxDNN is shown in Fig. 4. The colored parts are the con-
tributions of ApproxDNN to the conventional approach. The
pseudo-code of ApproxDNN is also presented in Algorithm 1.

IV. EVALUATION

We conduct an extensive set of experiments using real-world
workload to evaluate the efficacy of ApproxDNN and compare
its performance against other approaches.

Algorithm 1 ApproxDNN
Input: IP reserved, IP on-demand, ERTi

FP64, ERTi
INT8

Output: Assignment of job i to reserved or on-demand instance
plus its precision (FP64 or INT8)
//We assume that it is not possible to schedule the job with
conventional precision on RI such that it can meet its deadline

1: SLAP-Max ← Solve first derivative of Eq. (9) for SLAP

2: P acceptance = SLAP
SLAP-Max

3: SLAP-Optimal ← Solve first derivative of Eq. (11) for SLAP

4: Compare SLAP-Optimal with SLAP-Max

5: Offer SLAP-Optimal × ERTi
INT8 × IP reserved penalty fee to user

6: if User accepts the offer then
7: Deploy job i with INT8 precision on RI
8: SP cost = (1 + SLAP-Optimal)× ERTi

INT8 × IP reserved

9: else // User does not accept the offer
10: Deploy job i with FP64 precision on on-demand instance
11: SP cost = ERTi

FP64 × IP on-demand

A. Experimental Setup

Workload. We employ traces provided by Microsoft
Azure [21] to create our workload. Each trace includes spec-
ification of VMs launched in one of Azure’s datacenters. We
consider each VM as a job in our experiments. For each VM,
we extract its deployment time and finish time from the trace
and calculate its runtime accordingly. We have considered
the runtime of the VMs as the FP64 execution time, and
then generated INT8 execution as a coefficient of the FP64
execution (between 0.75 to 1 of the FP64 execution time,
according to ratios we have from image classification DNNs
for conventional and INT8 precision). There is no information
for deadline of the jobs, so we consider it from 1.5 to 3 times
of the FP64 execution time. That means, from the start time
of the job, it has that much time (deadline) to complete. It
is a common practice to consider the deadline of jobs as a
coefficient of their runtime [22], [23].

At the first step, we use a simple scheduler which represents
the common schedulers that schedule jobs in a round-robin
fashion on RIs, considering their FP64 execution time. When
scheduling jobs on RIs, if a job cannot meet its deadline, it
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is scheduled on on-demand ones. The only extra step is that
this scheduler checks to see if any job that will be scheduled
on on-demand instances is able to be scheduled on RIs and
meet its deadline if INT8 is employed. If so, it saves the
information of that job as a candidate job for approximation.
In our experiments, we use the list of the saved jobs as the
input to evaluate ApproxDNN and other approaches. Please
note that any other scheduler can be used instead of the simple
scheduler we have used. The total number of the saved jobs
in the workload is 18,187.
Approaches. To evaluate the efficacy of ApproxDNN, we
compare it against the following approaches:

• On-Demand: This approach does not consider approxi-
mation and solely schedules the jobs that cannot meet
their deadline using RIs, on on-demand instances. This
approach is similar to previous works [4], [5] that sched-
ule jobs on a mixture of RIs and on-demand instances.
It is also a baseline approach to show the advantage of
using approximate computing.

• Acceptance-Centric: This approach aims to increase the
acceptance rate of approximation offered to users, and
consequently, reduce the number of on-demand instances
rented for the jobs that cannot meet their deadlines.

Therefore, it offers high SLA violation penalty fees (high
value of SLAP). In the experiments, we set the SLAP
of this approach to 0.9 of the maximum SLAP (i.e.,
SLAP = 0.9 × SLAP−Max). Similar to ApproxDNN,
this approach leverages INT8 precision to reduce the
execution time of the jobs.

• Penalty-Centric: Unlike the previous approach, this one
aims to minimize the cost imposed by the SLA viola-
tion penalty fee. Hence, it offers a low SLA violation
penalty fee coefficient to users. In the experiments, we
have SLAP = 0.1 × SLAP−Max for this approach.
This approach also employs reduced-precision instruc-
tions similar to ApproxDNN.

VM Instance. We use the specifications of Amazon EC2
p3.2xlarge instance [24] in the experiments. This instance
is equipped with a Tesla V100 GPU that supports reduced-
precision instructions. The on-demand price of this instance
is $3.06 per hour and for its reserved price, we have used
standard 3-year term contract (all upfront) which is $0.985
per hour. All the prices are for US East (Ohio) region and the
Linux operating system.

B. Experimental Results

Conducting the experiments, we gather various results re-
garding monetary cost of the different approaches. The total
monetary cost of each approach for all the jobs, as well as
the monetary cost spent for RIs, on-demand instances, and
penalty cost are shown in Fig. 5. In addition, the cumulative
distribution of the results per job is illustrated in Fig. 6. The
results show that ApproxDNN can improve the total monetary
cost of all jobs by around 18.3%, 12.5%, and 12.2% compared
with On-Demand, Acceptance-Centric, and Penalty-Centric
approaches, respectively. Since Acceptance-Centric offers high
SLAP, which leads to high approximation acceptance rate,
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Fig. 7. Distribution of SLAP offered for each job under different approaches.

its RI cost is high and on-demand cost is low. However,
its high SLAP causes highest penalty cost. On the other
hand, Penalty-Centric has low RI and penalty cost since it
does not offer enough SLAP to incentivize users to accept
approximation on RIs. However, it deploys a large portion
of jobs on on-demand instances that impose significant cost.
Since ApproxDNN aims to find a balance between acceptance
rate of approximation by users and penalty cost, its results
stand between Penalty-Centric and Acceptance-Centric for RI,
on-demand, and penalty cost in Fig. 5 and Fig. 6. Note that
since On-Demand approach neither employs RIs nor offers
penalty, there is no bar for it in RI Cost and Penalty Cost in
Fig 5.

We then study the value of SLAP offered to each user
by different approaches. The continuous histogram of SLAP
offered by each approach is shown in Fig. 7. The horizontal
axis shows the value of SLAP, and the vertical axis indicates
the percentage of the jobs with a certain value of SLAP.
As expected, Penalty-Centric has the lowest SLAP at 0.285
on average, and Acceptance-Centric has the highest at 2.33.
Again, ApproxDNN stands between them at 1.294.

In the following, we shed light on the impact of using
reduced-precision instructions on the accuracy of the work-
load. First, in Fig. 8 we show the number of each DNN
type in the workload and number of each DNN that has
been executed using reduced-precision instructions under each
approach. For example, 1513 out of 18,187 jobs are using
Inception-V1 (INC V1) image classification DNN. Approx-
DNN, Acceptance-Centric, and Penalty-Centric have executed

TABLE II
ACCURACY OF DNN MODELS UNDER DIFFERENT PRECISION

DNN Model Original Accuracy INT8 Accuracy
Inception-V1 (INC V1) 88.49 88.24
Inception-V2 (INC V2) 90.95 90.79
Inception-V3 (INC V3) 93.43 93.53
MobileNet-V1-1 (Mob 1) 88.91 88.93
MobileNet-V1-05 (Mob 05) 79.62 79.62
MobileNet-V1-025 (Mob 025) 63.14 63.14
ResNet-V2-50 (Res 50) 87.99 87.40
ResNet-V2-101 (Res 101) 89.30 89.05
ResNet-V2-152 (Res 152) 89.89 89.40
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Fig. 8. Frequency of each DNN type in the workload, and the number of
DNNs from each DNN type that has been executed with reduced-precision
models by different approaches.

758, 1371, and 140 of these 1513 jobs with the reduced-
precision model of the DNN, respectively. Conducting ex-
periments on a Tesla P40 GPU, that supports INT8-precision
instructions, by the setup introduced in Section II, we have
the Top-5 label accuracy of image classification application for
each DNN under each precision (FP64 and INT8) as presented
in Table II. As can be seen, the INT8 accuracy is higher than
the original accuracy in some DNN models. This is due to the
limited size of the available dataset, which is 50,000 images.
We expect the original accuracy to be higher than INT8 for
larger datasets.

Considering the results shown in Fig. 8 and Table II, we
have the following values for the overall accuracy of the
workload under different approaches (note that since On-
Demand does not employ reduced-precision instructions, its
accuracy is the highest possible accuracy): 90.12% for On-
Demand, 89.99% for ApproxDNN, 89.88% for Acceptance-
Centric, and 90.10% for Penalty-Centric. While ApproxDNN
significantly reduces the total cost of the workload compared
with On-Demand, it has negligible effect on the accuracy
and slightly decrease it by around 0.14%. ApproxDNN even
achieves higher accuracy compared with Acceptance-Centric,
which has higher monetary cost than ApproxDNN. Penalty-
Centric yields higher accuracy than ApproxDNN since it rarely
uses reduced-precision mode of DNNs. Note that this reduced
accuracy of ApproxDNN is acceptable by the users since it is
compensated by the SLA violation penalty fee.

Finally, in Fig. 9, we show the dynamic behavior of Ap-
proxDNN by presenting its results for the first 20 jobs (due
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Fig. 10. The impact of price gap between RIs and on-demand instances on the resource usage and penalty cost of each approach.
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Fig. 11. Impact of price gap on the average SLAP under different approaches.

to the space limit, we only depict 20 jobs). This figure shows
the value of SLAP offered to each job and the precision that
the DNN is executed with (the background color). The results
show that SLAP offered to each job has a direct relationship
with the runtime difference of FP64 and INT8 versions of
its DNN. For example, the runtime of ResNet networks can
be significantly reduced with INT8 precision (see Fig. 1).
Therefore, ApproxDNN offers a high value of SLAP to them.
On the other hand, the Mobile networks such as Mob V1 1
are offered a lower SLAP since the runtime difference between
their FP64 and INT8 models is not as much as ResNet.

C. Sensitivity Analysis

1) Price Difference Between RI and On-Demand Instances:
In this section, we study the impact of price difference
between RI and on-demand instances on the performance of
ApproxDNN and other approaches. To analyze how the price
gap of RIs and on-demand instances affects each approach,
we keep the RI price intact and change the price of on-
demand instance from 1.06 $/h to 5.06 $/h with an increment
of one. The results in Fig. 10 shows how each approach reacts
to the price gap variation. In this figure, the resource usage
cost shows the sum of the cost of RIs and on-demands used
by each approach, and the penalty cost shows the amount
of SLA violation penalty fee paid to users. As expected, a
higher on-demand instance price increases the total cost of all
the approaches. However, the portion of resource usage and
penalty cost is differently affected depending on the approach.
In ApproxDNN, the portion of these two costs remains almost
the same regardless of the price of the on-demand instance.
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Fig. 12. Impact of price gap on the accuracy of the workload for all the
approaches.

However, the amount of resource usage cost increases slower
than the penalty cost in Acceptance-Centric as it tends to
reduce the resource usage cost by offering high penalty fees.
On the contrary, the resource usage cost dominates the penalty
cost in the Penalty-Centric as the price gap increases. This
is expected since Penalty-Centric tries to avoid paying the
penalty fee, and thus, it has to spend more on on-demand
instances. As On-Demand does not offer any penalty fee, all
of its cost belongs to the resource usage, regardless of the
price gap.

The average value of SLAP offered to users by each
approach for various on-demand instance prices (depicted
in Fig. 11) justifies the cost-related results we discussed.
All the approaches offer higher SLAP as the price gap
increases. However, the values offered by Acceptance-Centric
are always much higher than Penalty-Centric. ApproxDNN,
as always, stands between Acceptance-Centric and Penalty-
Centric. While the price gap variation significantly affects
the total cost and SLAP of the approaches, their accuracies
experience slight fluctuation. Fig. 12 shows the amount of
accuracy reduction of each approach compared with On-
Demand (that does not employ approximation) when changing
the on-demand instance price. As can be seen, the amount of
variation in all the approaches is negligible.

2) Runtime Difference Between FP64 and INT8: Runtime
difference between FP64 and INT8 versions of the DNNs is
the other parameter we study in our experiments. We decrease
INT8 runtimes of the DNNs, while keeping their FP64 run-
times constant. The INT8 runtime is decreased by 10%, 20%,



TABLE III
IMPACT OF INT8 RUNTIME REDUCTION ON THE PERFORMANCE OF THE APPROACHES.

ADNN: APPROXDNN, AC: ACCEPTANCE-CENTRIC, PC: PENALTY-CENTRIC

INT8 Runtime
Reduction

SLAP RI Cost
On-Demand

Instance Cost
Usage Cost Penalty Cost Total Cost Accuracy

ADNN AC PC ADNN AC PC ADNN AC PC ADNN AC PC ADNN AC PC ADNN AC PC ADNN AC PC
Original 1.434 2.581 0.287 25134 45381 5282 97699 20101 173888 122833 65482 179170 35648 115783 1496 158481 181265 180666 0.149 0.266 0.028
10% 1.649 2.968 0.330 22620 41005 4339 97699 19577 175641 120319 60582 179980 36905 120193 1415 157224 180775 181395 0.149 0.266 0.028
20% 1.918 3.452 0.384 20223 36544 4198 97281 19104 173957 117503 55648 178155 38313 124633 1597 155816 180281 179752 0.150 0.268 0.031
30% 2.263 4.074 0.453 17551 31886 3697 97953 19454 173888 115504 51339 177585 39313 128511 1654 154817 179850 179240 0.149 0.267 0.031
40% 2.724 4.902 0.545 15080 27448 2899 97699 18760 175527 112779 46208 178426 40675 133129 1570 153454 179337 179997 0.149 0.268 0.030

30%, and 40% compared with the initial experiments. We
present the results in Table III. While all the approaches can
leverage the decreasing runtime of INT8 to improve the total
cost, the rate of cost reduction varies from one approach to
another. ApproxDNN has the highest cost reduction, Penalty-
Centric has the least reduction, and Acceptance-Centric stands
between them. All the three approaches offer higher SLAP
as the runtime gap increases. However, the offered SLAP by
Penalty-Centric are still very low, and hence, it cannot leverage
the gap significantly. Therefore, while its RI cost is slightly
reduced, its on-demand cost and penalty cost, which are
increasing, neutralize the RI cost reduction. For Acceptance-
Centric, both RI and on-demand cost are decreasing, but the
penalty cost is increasing. Finally, the decreasing RI cost in
ApproxDNN dominates the increasing penalty cost. Since the
on-demand cost is almost constant and RI cost surpasses the
penalty cost, the total cost of ApproxDNN is decreasing.

The bottom line is that when the INT8 runtime reduces,
ApproxDNN and Acceptance-Centric pay less for the reduced-
precision DNNs that are deployed on the RIs. On the other
hand, the higher SLAP offered by them causes more penalty
cost (INT8 runtime and SLAP both affect penalty cost accord-
ing to Eq. (11). Since SLAP increase is more significant than
INT8 runtime reduction, the overall penalty cost increases).
The reduction of RI cost is higher than the penalty cost
increase, and hence, the total cost is decreasing. The jobs
deployed on an on-demand instance are executed by the con-
ventional accuracy, and hence, the reduction in INT8 runtime
does not affect their monetary cost. Since Penalty-Centric
tends to deploy most of the jobs on an on-demand instance,
it cannot leverage much from the reduced INT8 runtime.
Therefore, its total cost reduction is negligible compared with
ApproxDNN and Acceptance-Centric.

V. RELATED WORK

Combining RIs and on-demand instances to reduce the mon-
etary cost has been studied in a large body of research [4]–[7],
[25]. RISA [4] employs stochastic optimization to find the best
number of RIs that increases the total monetary cost. RISA
considers the fluctuation in resource demand of big data jobs
and deploys the jobs that are not covered by RIs on on-demand
instances. It models the problem as a variant of News Vendor
Problem, a well-know problem among stochastic problems.

CoH-R [7] considers the resource demands of jobs in an
hourly granularity to model the cost of RIs and on-demand
instances. Having these models, it deploys the jobs on different
instances. Reserved Instance Provisioning strategy based on
Autoregressive Model (RIPAM) [5] also considers the cost
difference of RIs and on-demand instances when scheduling
the jobs. These studies have focused on the resource allocation
and scheduling techniques to reduce the monetary cost by
combining RIs and on-demand instances. However, none of
them leverages approximation techniques. ApproxDNN can be
used as complementary to these approaches.

Using approximate techniques to improve the performance
of DNNs has been on the increase. CANNA [26] is interested
in both training and inference phases of neural networks
(NN). To accelerate the training phase, CANNA proposes
Gradual Training Approximation (GTA). GTA starts from deep
approximation to achieve as much acceleration as possible.
However, it gradually reduces the approximation level to
achieve a sufficient amount of accuracy based on internal error
of NN. In inference phase, CANNA relaxes the computation
in each layer of NN to gain speed up, while maintaining
the accuracy. CANNA employs a floating point unit (FPU),
which is a hardware configurable unit, to control the level of
approximation in each layer at runtime. Similar to CANNA,
Koteshwara et al. [27] proposed an incremental precision
based approach for reducing the energy consumption of clas-
sification applications. The first component of the proposed
approach is a threshold calculation unit which decides on
the level of approximation needed to classify the samples
properly. The second component, incremental-precision fast
Fourier transform, controls the level of approximation for
feature computation. ApproxANN [28] leverages an error-
tolerant feature of neural networks to apply approximation on
both memory access and computation. ApproxANN identifies
the less critical neurons that have slight effect on accuracy of
the network. Then, it applies approximation on their memory
access and computation to improve energy efficiency while
considering accuracy requirements. Power-Inference accuracy
Trading (PIT) is another approach that leverages reduced-
precision instructions to improve response time and energy
consumption of DNN jobs submitted to a queue. It dynami-
cally changes DVFS of GPU and precision of DNNs by taking
into account runtime and slack time of jobs waiting in the



queue. The main concern of the aforementioned approaches is
response time, power, or energy, and none of them considers
the monetary cost of the resources.

Proteus [29] aims to improve cost and execution time of
ML training by leveraging spot instances. TensorFlow and
similar frameworks use a parameter server architecture in
which parallel workers work independently from each other
and communicate through a key-value store. It employs a
combination of on-demand and spot instances to reduce the
cost of training while improving the execution time. It has two
modules: 1) AgileML parameter server that combines several
reliability tiers and deploys essential functions on reliable on-
demand instances and less critical ones on spot instances.
2) BidBrain which is responsible for resource allocation. It
acquires the resources from market by monitoring the prices
and bidding on new instances when they would improve work
per dollar of the system. Proteus focuses on training phase and
does not leverages approximation. However, ApproxDNN is
mainly concerned about inference phase and aims to improve
the monetary cost by employing approximation.

VI. CONCLUSION

In this paper, we introduced ApproxDNN approach that
leverages the reduced-precision instructions of the cutting-
edge GPUs to improve the monetary cost of service providers
(SPs). ApproxDNN encourages cost-sensitive users to use a
reduced-precision model of DNNs, which results in negligible
accuracy reduction, in exchange for a discounted service price.
Employing reduced-precision models, which leads to reduced
execution time, enables the SPs to lessen their on-demand
instance usage, and hence, pay less for such resources. Instead,
they can deploy more requests on less expensive RIs. The
experiments using real-world traces emphasize the efficacy of
our proposed approach in reducing monetary cost compared
to three rival approaches. The results show that ApproxDNN
can successfully reduce monetary cost, and it has negligible
effect on the accuracy of the requests.
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