
Strategy-proof Mechanisms for Resource Management in Clouds

Lena Mashayekhy

Dept. Computer Science

Wayne State University

Detroit, MI 48202, USA

Email: mlena@wayne.edu

Daniel Grosu

Dept. Computer Science

Wayne State University

Detroit, MI 48202, USA

Email: dgrosu@wayne.edu

Abstract—The ever-growing demand for cloud resources
places the resource management at the heart of the design and
decision-making processes in cloud computing environments.
Cloud providers offer heterogeneous resources such as CPUs,
memory, and storage in the form of Virtual Machine (VM)
instances. Recently, cloud providers have introduced auction-
based models to sell their unutilized resources in an auction
market which allow users to submit bids for their requested
VMs. In this PhD dissertation, we address the problem of au-
tonomic VM provisioning and allocation for the auction-based
model considering multiple types of resources by designing
exact and approximation mechanisms. The mechanisms also
determine the payment the users have to pay for using the
allocated resources. Furthermore, our proposed mechanisms
drive the system into an equilibrium in which the users do
not have incentives to manipulate the system by untruthfully
reporting their VM bundle requests and valuations.

Keywords-cloud computing; resource management; strategy-
proof mechanism; virtual machine;

I. INTRODUCTION

Cloud providers offer different types of services such as

Infrastructure as a Service (IaaS), Platform as a Service

(PaaS), and Software as a Service (SaaS) [1]. IaaS provides

CPUs, storage, networks and other low level resources,

PaaS provides programming interfaces, and SaaS provides

already created applications. In this paper, we focus on

IaaS where cloud providers offer heterogeneous resources

in the form of VM instances. The types of VM instances

that a cloud provider offers are known to the users. For

example, Microsoft Azure and Amazon Elastic Compute

Cloud (Amazon EC2) are currently offering four types of

VM instances: Small (S), Medium (M), Large (L), and Extra

large (XL).

There are two approaches for VM provisioning and al-

location that a cloud provider can employ: static provi-

sioning and dynamic provisioning. In static provisioning,

the cloud provider pre-provisions a set of VM instances

without considering the actual demand from the users, while

in dynamic provisioning the cloud provider provisions the

resources taking into account the actual user demand. Due to

a variable load demand, dynamically provisioning resources

leads to a more efficient resource utilization and ultimately

to higher revenues for the cloud provider. The aim of

this paper is to design mechanisms that facilitate dynamic

provisioning of cloud resources based on the user demand

and the availability of resources.

Cloud providers can employ fixed-price and auction-based

models to sell the VM instances to users. In the fixed-price

model, the price of each type of VM instance is fixed and

pre-determined by the cloud provider, while in the auction-

based model, each user bids for a subset of available VM

instances (bundle) and an auction mechanism decides the

price and the allocation. In the auction-based mechanisms,

users can obtain their requested VMs at lower prices than

in the case of the fixed-price mechanisms. Also, the cloud

providers can increase their profit by allowing users to bid

on unutilized capacity. An example of such auction-based

mechanism is the spot market introduced by Amazon.

In this paper, we focus on designing mechanisms for

auction-based settings. However, our setup and mechanisms

are different from the Amazon spot market, since Amazon

allows only requests for individual VM instances and not

for bundles of VM instances of different types. Therefore,

this type of auctions do not guarantee that a user receives

all requested VMs of different types together. In our setting,

however, we allow users to request bundles of VM instances.

In our auction-based settings, each user can request a

bundle of VM instances along with submitting a bid for it.

This problem can be viewed as a multi-unit combinatorial

auction. This is due to the fact that there are several VM

instances of the same type available for allocation. Each user

has a private value (private type) for her requested bundle.

In our model, the users are single minded, that means each

user is interested in a single bundle of VM instances, and

bids only for that bundle. A single minded user obtains the

specified value if she is allocated the whole bundle of VM

instances (or any superset of it) and zero value, if she is

allocated any other bundle. The users are also selfish in the

sense that they want to maximize their own utility. It may

be beneficial for them to manipulate the system by declaring

a false type (i.e., different bundles or bids from their actual

request).

The objective of this Ph.D. dissertation is to design, study

and implement strategy-proof mechanisms for resource man-

agement in clouds in the presence of multiple types of

heterogeneous resources. Our goal is to design mechanisms

that are efficient and lead to revenue maximization for the

cloud providers. In addition, for users, a truthful mechanism

eliminates the expensive overhead of strategizing about other

bidders and prevents market manipulation. The rationale for

our research is that, once efficient resource management

mechanisms that consider the incentives of the users and

cloud providers are developed and implemented, it will

benefit both cloud providers and users.

II. SIGNIFICANCE OF OUR RESEARCH

The ever-growing demand for resources from businesses

and individuals places the resource management at the

heart of the design and decision-making processes in cloud

environments. One of the major challenges faced by the

cloud providers is to allocate and provision the resources

such that their profit is maximized and the resources are

utilized efficiently. The objective of this Ph.D. dissertation

is to design, develop, and analyze mechanisms for resource

management in cloud computing systems. The goal is to

allocate resources efficiently while maximizing a global

performance objective of the system (e.g., revenue, social

welfare, or energy saving). We improve the state-of-the-art in

both methodologies and applications. As for methodologies,

we introduce novel resource management mechanisms based

on mechanism design [2] and approximation algorithms.

These mechanisms can be employed to provision and al-

locate VM instances in current and future cloud computing

systems.

III. RESEARCH ACCOMPLISHMENTS

In this section, we present our research accomplishments.

We investigated the problem of federating resources in grids

by employing coalitional game theory and designed grid

federation formation mechanisms [3], [4], [5]. We also stud-

ied the problem of federating resources in grids considering

the trust relationship among grid service providers [6]. We

addressed the problem of federation formation in clouds and

designed a coalitional game-based mechanism that enables

the cloud providers to dynamically form a cloud federation

maximizing their profit [7].

In this paper we focus only on two of our recent studies.

In our paper presented at IEEE CLOUD 2013 [8], we

formulated the problem of VM provisioning and allocation

in clouds (VMPAC) and designed a family of strategy-proof

greedy mechanisms, called GVMPAC-X to solve it. We

proved that the approximation ratio of the mechanisms in

the G-VMPAC-X family is RCmax, where R is the number

of types of resources, and Cmax = maxr∈R Cr, where Cr is

the restricted capacity on each resource r = 1, . . . , R. Since

the achieved approximation ratio of the greedy mechanisms

is not tight enough, we resort to approximation mechanisms

that can guarantee better bounds for their obtained solutions.

In a paper presented at ACM CAC 2013 [9], we designed

an optimal strategy-proof mechanism, called VCG-VMPAC.

In addition, we designed a PTAS (Polynomial-Time Approx-

imation Scheme) strategy-proof mechanism, called PTAS-

VMPAC, that guarantees near optimal solutions. We proved

that the solution determined by PTAS-VMPAC is in a (1−ǫ)
neighborhood of the optimal, and that the time complexity

of the algorithm is polynomial in the number of requests, N .

Our proposed mechanisms consist of an allocation algo-

rithm that selects the users, and a payment function that

determines the amount that each selected user needs to pay

to the cloud provider.

Strategy-proof mechanisms drive the system into an equi-

librium [2]. We proved that our proposed mechanisms in

the G-VMPAC-X family, VCG-VMPAC, and PTAS-VMPAC

are strategy-proof mechanisms, that is, the users do not

have incentives to lie about their requested bundles of VM

instances and their valuations.

The proposed mechanisms allow dynamic provisioning of

VMs, and do not require pre-provisioning the VMs. As a

result, cloud providers can fulfill dynamic market demands

efficiently. A key property of our proposed mechanisms

is the consideration of multiple types of heterogeneous

resources for VMs, which is the case in real cloud settings.

We consider a cloud provider offering R types of re-

sources, R = {1, . . . , R}, to users in the form of VM

instances. These types of resources include cores, memory,

storage, etc. The cloud provider has restricted capacity, Cr,

on each resource r ∈ R available for allocation. The cloud

provider offers these resources in the form of M types

of VMs, VM = {1, . . . , M}, where each VM of type

m ∈ VM provides a specific amount of each type of

resource r ∈ R. The amount of resources of type r that

one VM instance of type m provides is denoted by wmr.

As an example, we consider that CPU represents the type 1

resource, memory the type 2 resource, and storage the type 3

resource. We can characterize a possible VM instance (of

type m = 1) by: w11 = 1 core, w12 = 1.6 GB, and

w13 = 150 GB.

We consider a set U of N users requesting a set of VM

instances. User i, i = 1, . . . , N , requests a bundle Si =<

ki1, ki2, . . . , kiM > of M types of VM instances, where kim

is the number of requested VM instances of type m ∈ VM.

In addition, she specifies a bid bi for her requested bundle Si.

User i values her requested bundle Si at vi(Si), where vi(Si)
is called the valuation of user i for bundle Si. The valuation

represents the maximum price a user is willing to pay for

using the requested bundle for a unit of time. Each user can

submit her request as a vector specifying the number of VM

instances, and her bid. For example, (< 1, 3, 4, 2 >, $10)
represents a user requesting 1 small VM instance, 3 medium

VM instances, 4 large VM instances, and 2 extra large VM

instances, and her bid is $10. We denote by V the social

welfare, which is defined as the sum of users’ valuations:

V =
∑

i∈U

vi(Si) · xi (1)

where xi, i = 1, . . . , N , are indicator variables defined as

follows: xi = 1 if bundle Si is allocated to user i, and

xi = 0, otherwise. To design strategy-proof mechanisms,

we consider the standard mechanism design objective, that

is, maximizing the social welfare. Maximizing social welfare

can help a cloud provider increase its revenue by allocating

the VMs to the users who value them the most.
We formulate the problem of VM provisioning and al-

location in clouds (VMPAC) as an Integer Program (called

VMPAC-IP) as follows:

Maximize V (2)

Subject to:
∑

i∈U

∑

m∈VM

kimwmrxi ≤ Cr, ∀r ∈ R (3)

xi = {0, 1}, ∀i ∈ U (4)

The solution to this problem is a vector x =
(x1, x2, . . . , xN) maximizing the social welfare. Con-

straints (3) ensure that the allocation of each resource type

does not exceed the available capacity of that resource.

Constraints (4) represent the integrality requirements for

the decision variables. These constraints force the cloud

provider to provision the whole bundle of VM instances

and to allocate bundles to the selected users. The VMPAC

problem is equivalent to the multidimensional knapsack

problem (MKP) [10], where the knapsack constraints are

the resource capacity constraints and the bundles are the

items. The objective is to select a subset of items for the

multidimensional knapsack maximizing the total value. As

a result, the VMPAC problem is strongly NP-hard.
Each user i has a quasi-linear utility function defined as

the difference between her valuation and payment, ui =
vi(Si) − Pi, where Si is the allocated bundle to user i

based on the allocation algorithm, and Pi is the payment for

user i that the mechanism calculates based on the payment

function.
The allocation algorithms of our proposed G-VMPAC-X

mechanisms order the users according to a general efficiency

metric defined as:

ei =
vi∑R

r=1
frair

, ∀i ∈ U (5)

where air =
∑

m∈VM
kimwmr is the amount of each

resource of type r requested by user i, and fr is the relevance

factor characterizing the scarcity of resources of type r. A

higher fr means a higher scarcity of resource r, thus, a lower

efficiency. That means, a user that requests more resources

of a scarce type is less likely to receive her requested bundle.
The choice of relevance values, fr, defines the members

of the G-VMPAC-X family of allocation algorithms. We

Table I: Different scenarios for user 2’s type declaration

Case S2 v2 Scenario Stat. Pay. Utility

I < 0, 4, 0, 0 > $24 v̂2 = v2 , Ŝ2 = S2 W 8.43 15.57

II < 0, 4, 0, 0 > $30 v̂2 > v2 , Ŝ2 = S2 W 8.43 15.57

III < 0, 4, 0, 0 > $20 v̂2 < v2 , Ŝ2 = S2 W 8.43 15.57

IV < 0, 4, 0, 0 > $8 v̂2 < v2 , Ŝ2 = S2 L 0 0

V < 1, 4, 0, 0 > $24 v̂2 = v2 , Ŝ2 > S2 W 9.38 14.61

VI < 0, 4, 0, 2 > $24 v̂2 = v2 , Ŝ2 > S2 L 0 0

consider two choices for fr and obtain two allocation

algorithms, G-VMPAC-I and G-VMPAC-II as follows:

1) G-VMPAC-I: obtained when fr = 1, ∀r ∈ R. This

is a direct generalization of the one-dimensional case. This

generalization does not take into account the scarcity of

different resources and may not work well in situations in

which the VM instances are highly heterogeneous in terms

of the resources provided.

2) G-VMPAC-II: obtained when fr = 1

Cr

, ∀r ∈ R. This

addresses the scarcity issues in G-VMPAC-I, by scaling the

values of fr with the inverse of capacity Cr.

The allocation algorithms of the VCG-VMPAC and the

PTAS-VMPAC mechanisms are based on dynamic program-

ming. The allocation algorithm of the proposed PTAS-

VMPAC mechanism iterates over all subsets users with at

most q users. For each such subset the algorithm finds a

feasible partial allocation, determines the amount of partially

allocated resources for each of the r types of resources and

rounds the amount of requested resources by the unallocated

users for each of the r resources. Then, it uses a dynamic

programming approach to find an allocation of bundles based

on the rounded requests, and the remaining unallocated

capacities. The algorithm determines the maximum welfare

and the corresponding VM instance allocation obtained over

all iterations.

The payment functions are designed to find the critical

payment [2] for each user, that is, the minimum value that

if she reports, she can receive her requested bundle of VMs.

We investigate the strategy-proofness of our proposed

mechanisms by analyzing the effects of untruthful decla-

rations by a user. To show that our proposed mechanisms

are robust against manipulation by a user, we consider

three users requesting homogeneous VMs where their true

types are (< 5, 0, 0, 0 >, $10), (< 0, 4, 0, 0 >, $24), and
(< 2, 0, 0, 2 >, $20), respectively. The capacity of the three

resources are as follows: 30 cores, 80 GB of memory, and

6000 GB of storage. The G-VMPAC-II calculates the effi-

ciency of the users as 24.61, 32.98, and 11.59, respectively,

then allocates resources to user 1 and 2 in the case that all

users declare their true types. The payments of the winning

users based on their critical payments are $4.71 and $8.43,
respectively.

We assume that user 2 lies about her type. The conse-

quence of such a declaration depends on her reported value

v2 and the bundle S2. We consider different scenarios as

shown in Table I, where user 2 does not reveal her true

 0

 500

 1000

 1500

 2000

16 32 64 128 256 512 1024

S
o

c
ia

l
w

e
lf
a

re

Number of users

G-VMPAC-I
G-VMPAC-II

VCG-VMPAC

(a)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

16 32 64 128 256 512 1024

E
x
e

c
u

ti
o

n
 t

im
e

 (
S

e
c
o

n
d

s
)

Number of users

G-VMPAC-I
G-VMPAC-II

VCG-VMPAC

(b)

Figure 1: G-VMPAC-X performance: (a) Social welfare; (b) Execution time.

type. We present two of there scenarios here, and the reader

is referred to [8] for a full discussion. Case I is when the

user declares her true type. In case II, when user 2 reports

a value greater than her true type, she will still win and

the mechanism determines the same payment for her as in

case I. In all cases, the user can not increase her utility by

declaring a type other than her true type.

We performed extensive experiments in order to investi-

gate the properties of the mechanisms in the G-VMPAC-

X family, VCG-VMPAC and PTAS-VMPAC mechanisms.

Due to space limitations, we will not present all the results

here. The reader is referred to our papers [8], [9] for a

full description of the experiments and results. We generate

VM instance requests corresponding to systems with 16

to 1024 users. The number of VM instances and resource

types offered by the cloud provider are the same in all the

experiments. The generated requests are based on realistic

data combining publicly available information provided by

Amazon EC2 and Microsoft Azure.

Fig. 1a shows the social welfare for different number

of users. The results show that different versions of G-

VMPAC-X can obtain almost the same social welfare as the

optimal social welfare (obtained by VCG-VMPAC). Fig. 1b

shows the execution time for cases with different number of

users on a logarithmic scale. From all the above results, we

conclude that G-VMPAC-II finds near-optimal solutions to

the VMPAC problem and requires small execution times.

IV. FUTURE WORK

In our previous studies, we proposed strategy-proof mech-

anisms for resource management in clouds in periodic-time

settings. In order to complete the dissertation, we will final-

ize our on going research on designing online mechanisms.

The online mechanisms make no assumptions about future

demand and supply of VMs, which is the case in real

cloud settings. They calculate the allocation and payment

as users arrive at the system and place requests. Therefore,

the cloud provider provisions and allocates VM instances as

the resources become available. Another direction of our

on going research is focused on designing energy-aware

mechanisms for clouds. Such mechanisms decide how to

provision VMs in as few physical machines as possible in

order to save energy by powering them on or off.

There are several challenges that we need to address in

order to complete the above mentioned research. First, in

the above-mentioned settings, the problem becomes more

challenging from the computational hardness standpoint,

thus we will resort to approximate and heuristic approaches

for determining the provisioning and allocation. Second, we

must guarantee the strategy-proofness of the mechanisms,

which is difficult to achieve when designing approximation

algorithms.

Acknowledgment. This research was supported, in part, by

NSF grants DGE-0654014 and CNS-1116787.

REFERENCES

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging it platforms: Vision, hype,
and reality for delivering computing as the 5th utility,” Future
Generation Comp. Sys., vol. 25, no. 6, pp. 599–616, 2009.

[2] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani,
Algorithmic game theory. Cambridge University Press, 2007.

[3] L. Mashayekhy and D. Grosu, “A merge-and-split mechanism
for dynamic virtual organization formation in grids,” in Proc.
30th IEEE Intl. Conf. on Performance Computing and Com-
munications Conference, 2011, pp. 1–8.

[4] ——, “A merge-and-split mechanism for dynamic virtual or-
ganization formation in grids,” IEEE Transactions on Parallel
and Distributed Systems, vol. 25, no. 3, pp. 540–549, 2014.

[5] ——, “A distributed merge-and-split mechanism for dynamic
virtual organization formation in grids,” in Proc. 11th IEEE
Intl. Conf. on Network Computing and Applications, 2012,
pp. 36–43.

[6] ——, “A reputation-based mechanism for dynamic virtual
organization formation in grids,” in Proc. 41st IEEE Intl.
Conf. on Parallel Processing, 2012, pp. 108–117.

[7] ——, “A coalitional game-based mechanism for forming
cloud federations,” in Proc. of the 5th IEEE Intl. Conf. on
Utility and Cloud Computing, 2012, pp. 223–227.

[8] M. M. Nejad, L. Mashayekhy, and D. Grosu, “A family
of truthful greedy mechanisms for dynamic virtual machine
provisioning and allocation in clouds,” in Proc. of the 6th
IEEE Intl. Conf. on Cloud Computing, 2013, pp. 188–195.

[9] L. Mashayekhy, M. M. Nejad, and D. Grosu, “A truthful
approximation mechanism for autonomic virtual machine
provisioning and allocation in clouds,” in Proc. of the ACM
Cloud and Autonomic Computing Conf., 2013, pp. 1–10.

[10] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems.
Springer, 2004.

