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ABSTRACT
One of the major challenges faced by the cloud providers is
to allocate and provision the resources such that their profit
is maximized and the resources are utilized efficiently. We
address this challenge by designing an autonomic VM (Vir-
tual Machine) provisioning and allocation mechanism that
adapts to the changing user demands. We show that the
proposed mechanism is a PTAS (Polynomial-Time Approx-
imation Scheme) and that it is truthful, that is, the users
do not have incentives to lie about their requested bundles
of VM instances and their valuations. We perform exten-
sive experiments in order to investigate the properties of
the mechanism.

Categories and Subject Descriptors
K.6 [Management of Computing and Information Sys-

tems]: Installation Management—pricing and resource al-

location

General Terms
Cloud computing, Autonomic Computing

Keywords
cloud computing, autonomic resource allocation, PTAS, truth-
ful mechanism.

1. INTRODUCTION
The number of enterprises and individuals that are out-

sourcing their workloads to cloud providers has been increas-
ing rapidly. Clouds form a large pool of abstracted, virtual-
ized, and dynamically scalable resources allocated to users
based on a pay-as-you-go model. These resources are pro-
vided as three different types of services: Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), and Software
as a Service (SaaS). IaaS provides CPUs, storage, networks
and other low level resources, PaaS provides programming
interfaces, and SaaS provides already created applications.
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In this paper, we focus on IaaS where cloud providers offer
different types of resources in the form of VM instances. The
types of VM instances that a cloud provider offers are known
to the users. For instance, Microsoft Azure [3] and Amazon
Elastic Compute Cloud (Amazon EC2) [1] offer four types
of VM instances: small (S), medium (M), large (L), and ex-
tra large (XL). Cloud providers provision resources in the
form of VM instances and then allocate them to users. In
static provisioning the cloud provider pre-provisions a set of
VM instances without considering the actual demand from
the users, while in dynamic provisioning the cloud provider
provisions the resources taking into account the actual user
demand. Due to a variable load demand, dynamically provi-
sioning resources leads to a more efficient resource utilization
and ultimately to higher revenues for the cloud provider.

The ever-growing complexity in IaaS makes human ad-
ministration and management inefficient and, in most of the
cases, unfeasible. Therefore, avoiding direct management
actions in resource allocation, VM provisioning, and moni-
toring, requires self-management and self-optimizing mech-
anisms. The aim of this paper is to design such mech-
anisms that facilitate autonomic provisioning of cloud re-
sources based on the user demand and the availability of re-
sources. The proposed mechanisms can be incorporated in
system tools for self-managing the cloud infrastructure [14].

The current allocation mechanisms used by the cloud pro-
viders when offering IaaS are fixed-price or auction-based.
In the fixed-price form, the price of each type of resources are
fixed while in the auction-based users submit bids for their
requested resources. Recently, the focus of resource provi-
sioning and allocation in clouds is moving towards auction-
based market models. Users can obtain their requested re-
sources at lower prices than in the case of fixed-price, and
the cloud providers can increase their profit by allowing users
to bid on unutilized capacity. An instance of such a busi-
ness model is the spot market introduced by Amazon [1]. In
an auction-based resource allocation model there is a set of
users and a set of items where each user bids for a subset of
items (bundle). In this study, VMs are considered as items.
Since several VM instances of the same type are available to
users, the problem can be viewed as a multi-unit combina-
torial auction. Each user has a private value (private type)
for her requested bundle. In our model, the users are single

minded, that is, they are interested in a single bundle of VM
instances and bid only for that bundle. A single minded user
obtains the specified value if she is allocated the whole bun-
dle of VM instances (or any superset of it) and zero value, if
she is allocated any other bundle. The users are also selfish



in the sense that they want to maximize their own utility.
It may be beneficial for them to manipulate the system by
declaring a false type (i.e., different bundles or bids from
their actual request).

In this paper, we aim at designing a truthful polynomial
time approximation scheme (PTAS) mechanism that solves
the VM instance provisioning and allocation problem. The
goal is to find an allocation of resources to the users maxi-
mizing the social welfare, where the social welfare is the sum
of users valuations. Our proposed mechanism for VM provi-
sioning and allocation drives the system into an equilibrium
in which the users do not have incentives to manipulate the
system by untruthfully reporting their VM bundle requests
and valuations.

1.1 Our Contributions
We address the problem of VM provisioning and alloca-

tion in clouds in the presence of multiple types of resources.
To the best of our knowledge, this is the first study propos-
ing a truthful PTAS mechanism for solving the problem of
VM instance provisioning and allocation in clouds. First, we
design a truthful exact mechanism based on Vickrey-Clarke-
Groves (VCG) mechanism [13] that uses a dynamic program-
ming algorithm to optimally select the winning users. In
the absence of feasible optimal algorithms for solving this
problem, we then design an approximation algorithm. In
general, approximation algorithms do not necessarily sat-
isfy the properties required to achieve truthfulness. Our
proposed mechanism, called PTAS-VMPAC (PTAS Virtual
Machine Provisioning and Allocation in Clouds), is a truth-
ful PTAS mechanism that gives incentives to users to reveal
their true valuations for the requested bundle of VM in-
stances. We analyze the properties of the PTAS-VMPAC
mechanism and perform extensive simulation experiments.
The results show that PTAS-VMPAC determines near opti-
mal allocations while satisfying the truthfulness property.

1.2 Related Work
Developing efficient resource provisioning policies is a ma-

jor challenging problem in clouds. Wood et al. [15] pro-
posed an approach for dynamic provisioning of virtual ma-
chines by defining a unique metric based on the consumption
of the three resources: CPU, network and memory. Their
approach determines a new mapping of resources to VMs.
Gorlach and Leymann [8] proposed a method for dynamic
provisioning of services in clouds in order to optimize the dis-
tribution of services within a certain infrastructure. Ghodsi
et al. [7] studied fair allocation of multiple resource types
where users share resources. Their proposed approach is
strategy-proof which means a user cannot increase her allo-
cation by lying about her request. Ferrer et al. [6] proposed
a toolkit for the cloud service and infrastructure providers.
The toolkit aims to provide a foundation for a reliable cloud
computing industry, by addressing the whole service life cy-
cle. Incorporating business level objectives in resource man-
agement policies of clouds were studied in [4, 10, 11]. The
focus was on maximizing the profit or revenue without con-
sidering the users’ incentives for manipulating the allocation
mechanisms by untruthful reporting. However, our main fo-
cus is maximizing social welfare in dynamic resource pro-
visioning in order to achieve truthfulness and to lead the
system to an equilibrium. We also propose an approach for
price determination of the VMs.

Table 1: VM instance types offered by Amazon EC2.

Small Medium Large Extra Large
m = 1 m = 2 m = 3 m = 4

CPU 1 2 4 8
Memory (GB) 1.7 3.75 7.5 15
Storage (GB) 160 410 850 1690

The closest work to ours is by Zaman and Grosu [17,
16] who proposed truthful approximation mechanisms for
combinatorial auction-based allocation of VM instances in
clouds in static and dynamic settings. However, these mech-
anisms are simple approximation mechanisms and not PTAS
mechanisms. Briest et al. [5] proposed a truthful FPTAS
(1+ǫ)-approximation mechanism for the knapsack problem.
This mechanism is designed for single-minded multi-unit
auctions. They also proposed a PTAS mechanism for a spe-
cific class of Generalized Assignment Problem (GAP) where
all bins have the same capacity. We extend their technique
to design a PTAS mechanism for solving the problem of VM
instance provisioning and allocation in clouds. The reader
is referred to [13] for a comprehensive introduction to mech-
anism design.

1.3 Organization
The rest of the paper is organized as follows. In Sec-

tion 2, we describe the VM provision and allocation prob-
lem in clouds. In Section 3, we present the proposed mech-
anism and characterize its properties. In Section 4, we eval-
uate the mechanism by extensive simulation experiments.
In Section 5, we summarize our results and present possible
directions for future research.

2. VM PROVISIONING AND ALLOCATION
PROBLEM

We consider a cloud provider offering R types of resources,
R = {1, . . . , R}, to users in the form of VM instances. These
resources include cores, memory, storage, etc. The cloud
provider has restricted capacity, Cr, on each resource r ∈
R available for allocation. The cloud provider offers these
resources in the form of M types of VMs, VM = {1, . . . , M},
where each VM of type m ∈ VM provides a specific amount
of each type of resource r ∈ R. The amount of resources of
type r that one VM instance of type m provides is denoted
by wmr. As an example, in Table 1, we present the four
types of VM instances offered by Amazon EC2 at the time
of writing this paper. If we consider that CPU represents
the type 1 resource, memory the type 2 resource, and storage
the type 3 resource, we can characterize, for example, the
Small instance (m = 1) by: w11 = 1, w12 = 1.7 GB, and
w13 = 160 GB.

We consider a set of N users requesting a set of VMs.
User i, i = 1, . . . , N , requests a bundle Si =< ki1, ki2, . . . ,
kiM > of M types of VM instances, where kim is the number
of requested VM instances of type m ∈ VM. In addition,
she specifies a bid bi for her requested bundle Si. User i
values her requested bundle Si at vi(Si), where vi(Si) is
called the valuation of user i for bundle Si. The valuation
represents the maximum price a user is willing to pay for
using the requested bundle for a unit of time. Each user
can submit her request as a vector specifying the number of
VM instances, and her bid. For instance, (< 2, 1, 4, 3 >, $10)



represents a user requesting 2 small VM instances, 1 medium
VM instance, 4 large VM instances, and 3 extra large VM
instances, and her bid is $10. We denote by V the social

welfare, which is defined as the sum of users’ valuations,
i.e.,

V =
X

i∈U

vi(Si) · xi (1)

where xi, i = 1, . . . , N , are indicator variables defined as
follows:

xi =

(

1 if bundle Si is allocated to user i,

0 otherwise
(2)

Table 2 summarizes the notation used throughout the paper.
The cloud provider’s goal is to allocate resources to users

in such a way that the allocation maximizes the revenue.
This would be the most reasonable objective, but since very
little is known about revenue maximization in the context
of mechanism design, we will consider the standard mecha-
nism design objective, that is, maximization of V , the sum
of the users’ valuations [13]. Since the valuation of a user
represents her willingness to pay, we expect that maximiz-
ing the sum of the valuations will have a positive effect on
increasing the revenue obtained by the cloud provider.

We formulate the problem of VM provisioning and alloca-
tion in clouds (VMPAC) as an Integer Program as follows:

Maximize V (3)

Subject to:
X

i∈U

X

m∈VM

kimwmrxi ≤ Cr, ∀r ∈ R (4)

xi = {0, 1}, ∀i ∈ U (5)

The solution to this problem is a vector x = (x1, x2, . . . , xn)
maximizing the social welfare. Constraints (4) ensure that
the allocation of each resource type does not exceed the
available capacity of that resource. Constraints (5) repre-
sent the integrality requirements for the decision variables.
These constraints force the cloud provider to provision the
whole bundle of VM instances and to allocate bundles to
the selected users. The VMPAC problem is equivalent to
the multidimensional knapsack problem (MKP), where the
knapsack constraints are the resource capacity constraints
and the bundles are the items [9]. The objective is to select
a subset of items for the multidimensional knapsack maxi-
mizing the total value.

3. TRUTHFUL MECHANISMS FOR VM
PROVISIONING AND ALLOCATION

In this section, we first present the basic concepts of mech-
anism design and propose a VCG-based exact mechanism
that solves VMPAC. We then propose a truthful PTAS mech-
anism, called PTAS-VMPAC, that solves the VMPAC prob-
lem.

3.1 Preliminaries
A mechanism M = (A,P) consists of an allocation func-

tion A = (A1, . . . ,AN ) and a payment rule P = (P1, . . . ,PN ).
The allocation function determines which users receive their
requested bundles, and the payment rule determines the
amount that each user must pay.

Table 2: Notation

U Set of users {1, . . . , N}
VM Set of VMs {1, . . . , M}
R Set of resources {1, . . . , R}
Si The requested bundle of user i ∈ U
vi(Si) Value of the requested bundle Si of user i ∈ U
kim The number of VMs of type m requested by user i ∈ U
bi The bid of user i ∈ U
wmr The amount of resource of type r ∈ R provided by

one VM instance of type m ∈ VM
Cr Capacity of resource r ∈ R

In our model, there are N users, and the type of a user i is
denoted by θi = (Si, bi). The users are assumed to be single-

minded. That means, a user i desires only the requested
bundle of VM instances, Si, and derives a value of bi if she
gets the requested bundle or any superset of it, and zero
value, otherwise. Thus, the valuation function for user i is
as follows:

vi(Ŝi) =

(

bi if Si ⊆ Ŝi

0 otherwise
(6)

The goal is to design a truthful mechanism that maximizes
the social welfare V =

P

i∈U vi(Ŝi), where Ŝi is the bundle
allocated to user i.

We denote by θ = (θ1, . . . , θN ) the vector of types of all
users. θ−i is the vector of all types except user i’s type
(i.e., θ−i = (θ1, . . . , θi−1, θi+1, . . . , θN )). User i has a util-
ity function ui(θ) = vi(Ai(θ)) − Pi(θ), where Pi(θ) is the
payment for user i that the mechanism calculates based on
the payment rule P. Each user’s type is private knowledge.
The users may declare different types from their true types.
We denote by θ̂i = (Ŝi, b̂i) user’s i declared type. Note that
θi = (Si, bi) is user’s i true type. The goal of a user is to
maximize her utility, and she may manipulate the mecha-
nism by lying about her true type to increase her utility. In
our case, since the type of a user is a pair of bundle and
value, the user can lie about the value by reporting a higher
value in the hope to increase the likelihood of obtaining her
requested bundle. These manipulations by the users will
lead to an inefficient allocation of resources and ultimately
will reduce the revenue obtained by the cloud provider. We
want to prevent such manipulations by designing a truthful
mechanism for solving VMPAC. A mechanism is truthful if
all users have incentives to reveal their true types.

Definition 1. A mechanism M is truthful (or incentive
compatible) if for every user i, for every type declaration

of the other users θ̂−i, a true type declaration θi and any
other declaration θ̂i of user i, we have that ui(θi, θ̂−i) ≥

ui(θ̂i, θ̂−i).

In other words, a mechanism is truthful if truthful report-
ing is a dominant strategy for the users, that is, the users
maximize their utilities by truthful reporting independently
of what the other users are reporting. To obtain a truthful
mechanism the allocation function A must be monotone and
the payment rule must be based on the critical value [12].
To define monotonicity, we need to introduce a preference
relation � on the set of types as follows: θ̂′

i � θ̂i if Ŝ′
i ⊆ Ŝi

and b̂′i ≥ b̂i for user i. That means the type θ̂′
i is more

preferred than θ̂i if user i requests a subset of her current
bundle and/or submits a higher bid.



Definition 2. An allocation function A is monotone if it
allocates the resources to user i with θ̂i as her declared type,
then it also allocates the resources to user i with θ̂′

i, where
θ̂′

i � θ̂i.

Any winning user who receives her requested bundle by
declaring a type θ̂i will still be a winner if she requests a
smaller bundle and submits a higher bid.

Definition 3. Let A be a monotone allocation function,
then for every θi, there exist a unique value vc

i , called critical

value, such that ∀θ̂i ≥ (Si, v
c
i ), θ̂i is a winning declaration,

and ∀θ̂i < (Si, v
c
i ) is a losing declaration.

The mechanism M works as follows. It first receives the
declared types (bundles and bids) from each participating
user and then based on the received types determines the
allocation using the allocation function A and the payments
using the payment rule P. The payment rule P is based on
the critical value and is defined as follows:

Pi(θ̂) =

(

vc
i if i wins

0 otherwise
(7)

where vc
i is the critical value of user i.

Definition 4. A monotone allocation function A is bitonic

if for any user i:

• if A allocates the resources to the user i with θ̂i as her
declared type, then vi(A(θ̂′

i, θ̂−i)) ≥ vi(A(θ̂i, θ̂−i)),

where θ̂′
i � θ̂i.

• if A does not allocate the resources to the user i with θ̂i

as her declared type, then vi(A(θ̂′
i, θ̂−i)) ≥ vi(A(θ̂i, θ̂−i)),

where θ̂i � θ̂′
i.

A is bitonic with respect to vi. This requires that the
welfare does not increase with vi when user i loses (vi < vc

i ),
and it does increase with vi when user i wins (vi > vc

i ).

3.2 Truthful Exact Mechanism
We introduce a VCG-based truthful exact mechanism.

VCG requires an optimal allocation algorithm implement-
ing the allocation function A [13]. A VCG mechanism is
defined as follows:

Definition 5. A mechanism M = (A,P) is a Vickrey-
Clarke-Groves (VCG) mechanism if A maximizes the social
welfare, and

Pi(θ̂) =
X

j∈A(θ̂
−i),j 6=i

v̂j −
X

j∈A(θ̂),j 6=i

v̂j , (8)

where
P

j∈A(θ̂
−i)

v̂j is the optimal social welfare that would

have been obtained had user i not participated, and
P

j∈A(θ̂),j 6=i
v̂j is the sum of all users valuations except user i’s.

In order to design a VCG-based mechanism for VMPAC
we need to design an algorithm that provides the optimal
solution to VMPAC. The algorithm, called DP-VMPAC, is
based on a dynamic programming approach, and it is given
in Algorithm 1. The DP-VMPAC algorithm has two input
parameters, the vector of users declared types (θ̂) and the
vector of resource capacities C = (C1, . . . , CR). The algo-
rithm has two output parameters: V ∗, the optimal social

Algorithm 1 DP-VMPAC: Exact Allocation Algorithm

1: Input: θ̂ = (θ̂1, . . . , θ̂N ); vector of types (bundle, bid)
2: Input: C = (C1, . . . , CR); vector of resource capacities
3: for all i ∈ U do
4: for all r ∈ R do
5: air =

P

m∈VM kimwmr

6: Ai = (ai1, . . . , aiR)

7: Ĉ = C
8: if a1r ≤ Cr, ∀r ∈ R then
9: V (1,C) = v1

10: Ĉ = C − A1

11: else
12: V (1,C) = 0
13: for all j = 2, . . . , N do

14: V (j, Ĉ) = max{V (j − 1, Ĉ), V (j − 1, Ĉ − Aj) + vj}
15: V ∗ = V (N,C)

16: Find x∗ by looking backward at V (j, Ĉ)
17: Output: V ∗,x∗

welfare and x∗, the optimal allocation of VM instances to
the users.

DP-VMPAC starts by determining air, the amount of each
resource of type r requested by user i (lines 3-6). We de-
note by Ai the vector specifying the amount of all resource
types requested by user i. We also denote by V (j, Ĉ) the
optimal welfare for the subproblem that considers the first j
users and the available capacity Ĉ. The algorithm calcu-
lates V (1,C) (lines 8-12). Based on these values, it calcu-

lates V (j, Ĉ), where j = 2, . . . , N (lines 13-14) according to
the following dynamic programming recurrence:

V (j, Ĉ) = max{V (j − 1, Ĉ), V (j − 1, Ĉ − Aj) + vj} (9)

The recurrence considers two cases, not allocating the bun-
dle to j and allocating it to j. If allocating the requested
bundle of the jth user increases the value V (j − 1, Ĉ), the
algorithm allocates the bundle to the jth user. The maxi-
mum between V (j − 1, Ĉ) and V (j − 1, Ĉ − Aj) + vj gives

the optimal value of V (j, Ĉ). Once the final value V (N,C)
is determined, the algorithm finds x∗, the optimal allocation
of VM instances, by looking backward at V (j, Ĉ).

The DP-VMPAC algorithm finds the optimal solution to
the VMPAC problem. Showing that the dynamic program-
ming approach in this case provides an optimal solution is
trivial and we will not provide a proof for it here. VM-
PAC is equivalent to the multidimensional knapsack prob-
lem (MKP) which is strongly NP-hard [9]. Thus, the VM-
PAC is also strongly NP-hard. DP-VMPAC solves VMPAC
optimally in time O(N(Cmax)R), where Cmax = maxr∈R{Cr}.
This is due to the fact that the dynamic programming builds
a (R + 1)-dimensional table, where the first dimension cor-
responds to the number of users and the other R dimensions
correspond to the R types of resources.

We define the VCG-based mechanism that solves the VM-
PAC problem as follows:

Definition 6. The VCG-VMPAC mechanism consists of
the allocation algorithm DP-VMPAC and the payment func-
tion VCG-PAY defined by the VCG payment rule given in
equation (8).

The VCG-VMPAC mechanism is given in Algorithm 2.
The mechanism is run periodically by the cloud provider.
It collects the requests from the users, expressed as types,



Algorithm 2 VCG-VMPAC Mechanism

1: {Collect user requests (types).}
2: for all i ∈ U do
3: Collect user type θ̂i = (Ŝi, b̂i) from user i
4: {Allocation.}

5: (V ∗, x∗) = DP-VMPAC(θ̂,C)
6: Provisions and allocates VM instances according to x∗.
7: {Payment.}

8: P =VCG-PAY(θ̂,C, V ∗,x∗)

Algorithm 3 VCG-PAY: Payment Function

1: Input: θ̂ = (θ̂1, . . . , θ̂N ); vector of types (bundle, bid)
2: Input: C; vector of resource capacities
3: Input: V ∗; optimal welfare
4: Input: x∗; optimal allocation
5: for all i ∈ U do
6: (V ′∗, x′∗) = DP-VMPAC(θ̂−i,C)
7: sum1 = 0
8: sum2 = 0
9: for all j ∈ U , j 6= i do
10: sum1 = sum1 + v̂jx′∗

j

11: sum2 = sum2 + v̂jx∗
j

12: Pi = sum1 − sum2

13: Output: P = (P1,P2, . . . ,PN )

and determines the allocation by calling the DP-VMPAC
allocation algorithm. Once the allocation is determined the
mechanism provisions the required number and types of VM
instances and determines the payments by calling the VCG-
PAY function. The users are then charged the amount de-
termined by the mechanism.

The VCG-PAY function is given in Algorithm 3. VCG-
PAY has four input parameters, the vector of users declared
types (θ̂), the vector of resource capacities C, the optimal
welfare V ∗, and the optimal allocation given by x∗. It has
one output parameter: P, the payment vector for the users.
VCG-PAY calls DP-VMPAC to find the allocation and wel-
fare obtained without user i’s participation (line 6). Based
on the optimal allocation to the users with and without user
i’s participation, VCG-PAY finds the payment for user i,
where sum1 is the sum of all values without user i’s partici-
pation in the mechanism, and sum2 is the sum of all except
user i’s value in the optimal case (lines 7-12).

The VCG-VMPAC mechanism is truthful and determines
the optimal allocation, but its execution time becomes pro-
hibitive for large instances of VMPAC. More than this, the
problem is strongly NP-hard and there is no Fully Polyno-
mial Time Approximation Scheme (FPTAS) for solving it,
unless P = NP [9]. Thus, the best we can do is to design a
PTAS mechanism for solving it. In the next section, we will
design such a PTAS mechanism for VMPAC.

3.3 Truthful PTAS Mechanism
We now introduce our proposed truthful PTAS mecha-

nism, PTAS-VMPAC. The design of the PTAS-VMPAC al-
location algorithm is based on an idea proposed by Briest et

al. [5] for the design of a monotone allocation algorithm
for the Generalized Assignment Problem (GAP). They de-
signed a monotone allocation algorithm for GAP where all
bins have the same capacity. The idea is to determine partial
assignments of k items to bins, then round the sizes of the
unallocated items and use an optimal allocation algorithm

Algorithm 4 PTAS allocation algorithm for VMPAC (PTAS-

VMPAC)

1: Input: θ̂ = (θ̂1, . . . , θ̂N ); vector of types (bundle, bid)
2: Input: C = (C1, . . . , CR); vector of resource capacities
3: Input: q;
4: V ∗ = −∞
5: for all Û ⊆ U : |Û | ≤ q do
6: x̂ = 0
7: V̂ = 0
8: sumr = 0, ∀r ∈ R

9: for all i ∈ Û do
10: x̂i = 1
11: V̂ = V̂ + v̂i

12: for all r ∈ R do
13: sumr = sumr +

P

m∈VM kimwmrx̂i

14: if Cr ≥ sumr, ∀r ∈ R then

15: Ũ = U \ Û

16: q̂ = |Û |
17: for all r ∈ R do
18: dr = Cr −

P

i∈U

P

m∈VM kimwmrx̂i

19: d = (d1, . . . , dR)

20: for all i ∈ Ũ do
21: for all r ∈ R do
22: air =

P

m∈VM kimwmr

23: âir = ⌈airN2/dr⌉dr/N2

24: Âi = (âi1, . . . , âiR)

25: {DP to find (Ṽ , x̃) for (Ũ ,d):}

26: d̂ = d
27: if dr ≥ â1r, ∀r ∈ R then
28: V (1,d) = v1

29: d̂ = d − Â1

30: else
31: V (1,d) = 0
32: for all j = 2, . . . , N − q̂ do

33: V (j, d̂) = max{V (j − 1, d̂), V (j − 1, d̂ − Âj) + vj}

34: Ṽ = V (N − q̂,d)
35: Find x̃ by looking backward at V (j,d)

36: if V ∗ < (V̂ + Ṽ ) then

37: V ∗ = V̂ + Ṽ
38: x∗ = x̂ + x̃
39: Output: V ∗, x∗

to allocate those items to the remaining capacity (i.e., the
capacity left after partial assignments).

We define the PTAS-VMPAC mechanism that solves the
VMPAC problem as follows:

Definition 7. The PTAS-VMPAC mechanism consists of
the allocation algorithm PTAS-VMPAC and the payment
function C-PAY.

Our monotone PTAS allocation algorithm, called PTAS-
VMPAC, is given in Algorithm 4. PTAS-VMPAC has three
input parameters: the vector of users declared types θ̂, the
vector of resource capacities C = (C1, . . . , CR), and an in-
teger q, where q ≤ N . The parameter q controls how close
the solution determined by PTAS-VMPAC is to the optimal
solution. The PTAS-VMPAC algorithm has two output pa-
rameters: V ∗, the total social welfare and x∗, the allocation
of VM instances to the users.

The PTAS-VMPAC algorithm iterates over all subsets Û
of at most q users (lines 5-38). For each such subset the algo-
rithm finds a feasible partial allocation x̂ of at most q users
(lines 5-14), determines the amount of partially allocated
resources for each of the r types of resources (lines 17-19)
and rounds the amount of requested resources by the unallo-



cated users (set Ũ) for each of the r resources (lines 20-24).
Then, it uses a dynamic programming approach to find an
allocation of bundles based on the rounded requests air, and
the remaining unallocated capacities, dr (lines 25-33). The
algorithm determines the maximum welfare and the corre-
sponding VM instance allocation x obtained over all itera-
tions (lines 34-38).

We now describe the dynamic programming approach that
finds the optimal allocation for the remaining users of the re-
maining capacities using the users rounded requests (lines 25-
33). In order to formulate the problem as a dynamic pro-

gram, we consider the subproblem V (j, d̂) which includes

the first j remaining users with the available capacity d̂ such
that V (j, d̂) is the optimal value of the subproblem. The al-
gorithm first calculates V (1,d) (lines 26-31). Based on these

values, it calculates V (j, d̂), where j = 2, . . . , N−q̂ (lines 32-
33). The algorithm compares two cases, not allocating the
bundle to j and allocating it to j. If allocating the requested
bundle of the jth user increases the value V (j−1, d̂), the al-
gorithm allocates the bundle to the jth user. The maximum
between V (j−1, d̂) and V (j−1, d̂−Âj)+vj gives the opti-

mal value of V (j, d̂), where Âj is the vector of the rounded
sizes of requested resources by user j. We can formulate the
dynamic programming recursion as follows:

V (j, d̂) = max{V (j − 1, d̂), V (j − 1, d̂ − Âj) + vj} (10)

The dynamic programming builds a table of size (N − q̂)
rows and N2 columns, where (N − q̂) is the number of users
and N2 is the number of possible different sizes for the re-
source capacities due to rounding of the sizes. As a re-
sult, the time complexity of the dynamic programming is
O(N(N2)R), where R is the number of resource types. The

algorithm stores V (N − q̂,d) to Ṽ as the optimal welfare ob-

tained by the dynamic programming for the selected Ũ , and
the corresponding allocation to x̃. Then, PTAS-VMPAC
finds the maximum total social welfare, V ∗ across all iter-
ations on the subsets of at most q users. It also finds the
allocation x∗ by x̂ + x̃ (lines 35-38).

Theorem 1. PTAS-VMPAC is monotone.

Proof. To prove that the PTAS-VMPAC is monotone
we need to show that each iteration of the the main for loop
provides a monotone and bitonic allocation. This is based
on a result by Mu’alem and Nisan [12] that states that if
an algorithm A consists of applying the maximum operator
among a set of allocation algorithms that are monotone and
bitonic then algorithm A is monotone. In our case the al-
location algorithms are basically the iterations of the main
for-loop in PTAS-VMPAC.

We show first that one iteration is producing a monotone
allocation. First, we consider a user i with declared type
θ̂i is allocated her requested bundle, and she is in the first
q users selected by the algorithm. If user i declares a type
θ̂′

i � θ̂i (a smaller bundle or higher bid), the allocation will
not change. This satisfies the definition of the monotonicity
property, where the winning user is among the first q users.
Second, we consider that a user i with declared type θ̂i is
allocated her requested bundle, and she is not in the first
q users. In this case, if user i declares a type θ̂′

i � θ̂i, her
allocation by dynamic programming will not change. This
is due to the fact that she declares a more profitable type.

As a result, user i remains among winning users which sat-
isfies the monotonicity property, where the winning user is
not among the first q users. This proves the monotonicity
of each iteration. To prove that PTAS-VMPAC is bitonic,
we consider two cases. First, user i is not among the first q
users. If user i is a winning user, then by declaring a bet-
ter type (a smaller bundle or higher bid), the social welfare
can only be increased. If user i is not a winning user, then
by declaring a larger bundle or less bid, the social welfare
can not be increased. Second, user i is among the first q
users. Thus, she is a winning user. If she declares a higher
bid, the social welfare will increase. If she declares a smaller
bundle, then the remaining capacities of each resource will
increase. As a result, the social welfare can only increase.
Thus, each iteration is bitonic. This combined with the fact
that the PTAS-VMPAC keeps the allocation that gives the
maximum welfare among these iterations proves monotonic-
ity of PTAS-VMPAC.

We now show that our proposed allocation algorithm is a
PTAS, that is, for every fixed ǫ, its running time is polyno-
mial in the size of the input.

Theorem 2. The PTAS-VMPAC algorithm is a PTAS.

Proof. To prove that the algorithm is PTAS, we need
to show that the solution determined by the algorithm is in
a (1 − ǫ) neighborhood of the optimal, and that the time
complexity of the algorithm is polynomial in N .

First, we show that the solution is within (1 − ǫ) of the
optimal solution. Let x∗ be the optimal allocation of the
requested bundles, and V ∗ be the corresponding optimal
value. Assume that PTAS-VMPAC determines an allocation
x and a value V . Let x̂ be the optimal allocation when we
consider only q users with the highest declared values in the
first step. The second step of allocation is allocating the
remaining resources given by d to the users who were not
selected in the first step. The rounding procedure for the
remaining users, in the second step, increases the size of the
requested bundles of those users for each resource type. This
may lead to an infeasible allocation of the bundles based on
the new rounded sizes. Based on the rounding, the total
increase in the size of the requested bundles for each resource
is less than dr/N . In order to make the allocation feasible,
we can remove a requested bundle such that it satisfies the
capacity constraints for each resource type while decreasing
the least amount of value from the objective function. We
find those allocated bundles in the second step where for all
resource types their size is larger than dr/N . Among those,
we choose the bundle Sî with the smallest size. Since in the
first step, we chose the q bundles with the highest values, the
bundle Sî can be the q +1 most valuable bundle. Therefore,
user i valuation for this bundle is vi(Sî) ≤ 1/(q + 1)V ∗.
Removing bundle Sî makes the obtained objective function
between (1 − 1/(q + 1))V ∗ and V ∗. Therefore, we have
(1 − ǫ)V ∗ ≤ V ≤ V ∗, where ǫ = 1/(q + 1).

We now show that the time complexity of PTAS-VMPAC
is polynomial on N . The running time depends on the par-
tial allocation of q users and the dynamic programming. The
time complexity of the dynamic programming is O(N(N2)R),
where N is the number of users and N2 is the size of each
resource based on the rounding. The exhaustive search to
find a partial allocation is based on the total number of allo-
cations of q users which is

Pq

i=1 R
`

N
i

´

≤ qRNq. Thus, the



Algorithm 5 PTAS-VMPAC Mechanism

1: {Collect user requests (types).}
2: for all i ∈ U do
3: Collect user type θ̂i = (Ŝi, b̂i) from user i
4: {Allocation .}

5: (V ∗, x∗) = PTAS-VMPAC(θ̂,C, q)
6: Provisions and allocates VM instances according to x∗.
7: {Payment.}

8: P =C-PAY(θ̂,C, q)

Algorithm 6 C-PAY: Critical Payment Function

1: Input: θ̂ = (θ̂1, . . . , θ̂N ); vector of types (bundle, bid)
2: Input: C; vector of resource capacities
3: Input: q;
4: Input: x∗; winning users
5: for all i ∈ U do
6: Pi = 0
7: if x∗

i then
8: l = 0
9: h = b̂i

10: while (h − l) ≥ 1 do
11: vc

i = (h + l)/2

12: θ̂c
i = (Ŝi, v

c
i )

13: (V ′∗, x′∗) =

PTAS-VMPAC ((θ̂1, . . . , θ̂
c
i , . . . , θ̂N ),C, q)

14: if x′∗
i then

15: {user i is winning by declaring vc
i }

16: h = vc
i

17: else
18: l = vc

i
19: Pi = h
20: Output: P = (P1,P2, . . . ,PN )

time complexity of the algorithm is O(qRN2R+q+1). This
concludes that the algorithm is PTAS.

The PTAS-VMPAC mechanism is given in Algorithm 5.
The mechanism is run periodically by the cloud provider. It
collects the requests from the user expressed as types and
determines the allocation by calling the PTAS-VMPAC al-
location algorithm. Once the allocation is determined the
mechanism provisions the required number and types of VM
instances and determines the payments by calling the C-PAY
function. The users are then charged the amount determined
by the mechanism. The C-PAY function is given in Algo-
rithm 6. The C-PAY function has four input parameters,
the vector of users declared types (θ̂), the vector of resource
capacities C, the optimal allocation given by x∗, and the
integer q. It has one output parameter: P, the payment
vector for the users. The payments are based on the critical
types of the winning users. The payment of winning user i
is vc

i , where vc
i is the critical value of user i, if i wins and

zero if i loses. Finding the critical value is done by a binary
search over values less than the declared value.

We now show that the proposed mechanism is truthful.

Theorem 3. The PTAS-VMPAC mechanism is truthful.

Proof. The allocation algorithm PTAS-VMPAC is mono-
tone (Theorem 1) and the payment is the critical value
payment (implemented by C-PAY), therefore the PTAS-
VMPAC mechanism is truthful.

In the next section we evaluate the proposed mechanism by
simulation experiments.

Table 3: Simulation Parameters

Param. Description Value(s)
N Number of users [8-64]
M Number of VM instances 4 (S,M,L,XL)
R Number of resource types 2 (Core, Storage)
C1 Core capacity 2000
C2 Storage capacity 60,000 GB
wmr Amount of resource r provided by

a VM instance m

as in Table 1

kim Number of requested VM m by
user i

[0, 20]

b0
i

bid of user i for a small VM [0.013, 0.24]

vi value of user i b0
i
.

P

M

m=1
2m−1kim

4. EXPERIMENTAL RESULTS
We perform two sets of simulation experiments which al-

lows us to investigate the properties of PTAS-VMPAC. In
the first set of experiments, we compare the performance of
PTAS-VMPAC with that of VCG-VMPAC for a case with
eight users. We also investigate the effects of untruthful dec-
laration of types by a user. Since VMPAC is strongly NP-
hard, obtaining optimal solutions is feasible only for small
size instances of VMPAC. In the second set of experiments,
we investigate the performance of PTAS-VMPAC for larger
VMPAC problems. We also conduct a sensitivity analysis
study on several parameters such as number of users and ǫ,
where ǫ = 1

q+1
. VCG-VMPAC and PTAS-VMPAC mech-

anisms are implemented in C++ and the experiments are
conducted on Intel 2.93GHz Quad Proc Hexa Core nodes
with 90GB RAM which are part of the Wayne State Grid
System.

4.1 Experimental Setup
The number of VM instances and resource types offered

by the cloud provider are the same in all the experiments.
The generated requests are based on realistic data combin-
ing publicly available information provided by Amazon EC2
and Microsoft Azure as follows. We consider the same types
of VM instances available to users as those offered by Ama-
zon EC2. Each of these VM instances has specific resource
demands with respect to two available resource types: cores
and storage. We also set the amount of each resource type
provided by a VM instance to be the same as in the spec-
ifications provided by Amazon Web Services for its Spot
Instances and Elastic Compute Cloud (EC2) (See Table 1).
Users can request between 1 and 20 VM instances of each
type. We generate bids based on Amazon Spot market re-
port on users bidding strategies [2]. Amazon regularly up-
dates its spot price history based on the past 90 days of
activity. Amazon reported that most users bid between the
price of reserved instances and on-demand prices. By do-
ing so, these users saved between 50% to 66% compared
to the on demand prices. The lowest price of the reserved
instances is for the Heavy Utilization Reserved Instances

which is $0.013 per hour for a small VM instance. How-
ever, the trade off is that the user’s requested bundles can
be reclaimed by a cloud provider if the spot price exceeds
their submitted bid prices. Thus, some users bid above on-
demand prices and up to twice the on-demand prices in some
cases. To generate bids, we generate a random number, b0

i ,
for each user i from the range [0.013, 0.24] for a small VM
instance. Then, we multiply the random number by the to-
tal weights of VMs in the user’s requested bundle. The total



Table 4: Users’ true types
User 1 2 3 4 5 6 7 8
ki1 0 1 2 0 2 1 2 3
ki2 0 2 0 0 0 0 0 2
ki3 2 0 2 2 0 0 0 1
ki4 0 0 3 1 2 3 1 1
vi 30 18 95 10 5 15 7 80

Table 5: Different scenarios for user 8’s type declaration

Case S8 v8 Scenario Status

I < 3, 2, 1, 1 > $80 v̂8 = v8, Ŝ8 = S8 W
II < 3, 2, 1, 1 > $90 v̂8 > v8, Ŝ8 = S8 W
III < 3, 2, 1, 1 > $70 v̂8 < v8, Ŝ8 = S8 W
IV < 3, 2, 1, 1 > $10 v̂8 < v8, Ŝ8 = S8 L
V < 3, 2, 1, 3 > $80 v̂8 = v8, Ŝ8 > S8 W
VI < 3, 2, 1, 5 > $80 v̂8 = v8, Ŝ8 > S8 L

weight of a VM instance for user i is
PM

m=1 2m−1kim. The
parameters and their generated values for the experiments
are listed in Table 3.

4.2 Analysis of Results
We first compare the performance of our mechanism, PTAS-

VMPAC, with that obtained by VCG-VMPAC for eight
users. In order for VCG-VMPAC to be able to solve the
VMPAC problem, we consider smaller capacities of the two
resources as follows: 100 cores, and 1800 (10GB) of storage.
Fig. 1 shows the social welfare of eight users based on the
selected ǫ, where ǫ is 0.5, 0.33, 0.25, 0.2 corresponding to
q equal to 1, 2, 3, 4, respectively. We also show the social
welfare in the optimal case obtained by VCG-VMPAC. The
results show that the obtained social welfare is within ǫ dis-
tance of the optimal social welfare. For example, for ǫ = 0.5,
the social welfare is 223 and the optimal social welfare is 230
satisfying: (1 − 0.5)230 = 115 < 223 < 230. For smaller ǫ,
PTAS-VMPAC obtained the optimal social welfare. Fig. 2
shows the execution time of PTAS-VMPAC for the same
selected ǫ, and the execution time of VCG-VMPAC. The
results show that PTAS-VMPAC is able to find a near opti-
mal social welfare in much shorter time. This is due to the
fact the PTAS-VMPAC is a polynomial time approximation
scheme.

In addition, we investigate the effects of untruthful dec-
larations by a user. In this set of experiments, our goal is
to show that our proposed mechanism, PTAS-VMPAC, is
robust against manipulation by a user. The true types of
the eight users are shown in Table 4. The PTAS-VMPAC
(ǫ = 0.33) allocates resources to user 1, 2, 3, 7 and 8 in the
case that all users declare their true types. The payments of
the winning users based on C-PAY are 3, 3, 18, 0, and 10,
respectively.

We assume that user 8 lies about her type θ̂8. The conse-
quence of such a declaration depends on her reported value
v8 and the bundle S8. We consider different scenarios as
shown in Table 5, where user 8 does not reveal her true
type. Fig. 3 shows the payment and utility of the user for
all the cases. Case I is when the user declares her true type.
In case II, when user 8 reports a value greater than her true
type, she is still a winner and the mechanism determines
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the same payment for her as in case I. In case III, user 8
reports a value less than her true type, but not less than the
price determined by our mechanism. In this case, the user
is still winning, and pays the same amount as in case I. In
case IV, user 8 reports a value below her true value. In this
case, she will not get her requested bundle. In case V, she
declares a larger bundle and still obtains the bundle due to
available capacities. In case VI, she declares a larger bundle
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but becomes a loser since the cloud provider does not have
enough resources to fulfill her request. In all cases, the user
can not increase her utility by declaring a type other than
her true type.

We now analyze the performance of PTAS-VMPAC for
different number of users. The results are presented for an
average of 10 cases for each number of users. Fig. 4 shows the
social welfare for 24 to 64 users where ǫ is 0.5 and 0.33. This
figure shows that for each number of users, the social welfare
increases as ǫ decreases. For example, for 24 users by de-
creasing ǫ from 0.5 to 0.33, PTAS-VMPAC obtains a higher
social welfare. In addition, the social welfare increases by
increasing the number of users since the cloud provider is
able to allocate more VMs, and obtain higher social welfare.
Fig. 5 shows the execution time of PTAS-VMPAC for dif-
ferent number of users, where ǫ is 0.5 and 0.33. This figure
shows that by increasing the number of users, the execution
time of PTAS-VMPAC increases. However, this increase is
polynomial in the number of users. In addition, by decreas-
ing ǫ, the execution time of PTAS-VMPAC increases. This
is the case for any PTAS algorithm.

Fig. 6 and Fig. 7 show the utilization of cores and storage,
respectively. Here the utilization is defined as the percentage
of the available resources that are allocated by the mecha-
nism. The results show that the utilization of the cloud re-
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sources using PTAS-VMPAC is increasing by decreasing ǫ.
This is due to the fact that the allocations achieved by
PTAS-VMPAC by decreasing ǫ gets closer to the optimal
allocation which utilizes more effectively the resources.

5. CONCLUSION
We proposed a truthful PTAS mechanism for autonomic

resource allocation in clouds that provides incentives to the
users to reveal their true valuations for the requested bundles
of VM instances. We also designed a truthful VCG based
mechanism using a dynamic programming approach. We in-
vestigated the properties of our proposed PTAS mechanism
by performing extensive simulation experiments. The re-
sults showed that the proposed mechanism determines near
optimal allocations while giving the users incentives to re-
port their true valuations for the bundles of VM instances.
We plan to perform more experiments and implement the
mechanism as part of an integrated solution for autonomic
management of resources in an experimental cloud comput-
ing system.
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