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Abstract—The majority of large-scale data intensive appli-
cations executed by data centers are based on MapReduce or
its open-source implementation, Hadoop. Such applications are
executed on large clusters requiring large amounts of energy,
making the energy costs a large fraction of the data center’s
overall costs. Therefore minimizing the energy consumption
when executing MapReduce jobs is a critical concern for data
centers. In this paper, we propose a framework for improving
the energy efficiency of MapReduce applications, while satis-
fying the service level agreement (SLA). We first model the
problem of energy-aware scheduling of MapReduce jobs as an
Integer Program. We then propose a greedy algorithm, called
Energy-aware MapReduce Scheduling Algorithm (EMRSA),
that finds the assignments of map and reduce tasks to the
machine slots in order to minimize the energy consumed when
executing the application. We perform experiments on a large
Hadoop cluster to determine the energy consumption of several
MapReduce benchmark applications, and then use this data in
an extensive simulation study to characterize the performance
of the proposed algorithm. The results show that EMRSA
is able to find job schedules consuming 40% less energy on
average than the schedules obtained by a common practice
scheduler that minimizes the makespan.

Keywords-MapReduce; big data; minimizing energy con-
sumption; scheduling.

I. I NTRODUCTION

Electricity used in US data centers in 2010 accounted for
about 2% of total electricity used nationwide [1]. In addition,
the energy consumed by the data centers is growing at
over 15% annually, and the energy costs make up about 42%
of the data centers’ operating costs [2]. Considering that
server costs are consistently falling, it should be no surprise
that in the near future a big percentage of the data centers’
costs will be energy costs. Therefore, it is critical for thedata
centers to minimize their energy consumption when offering
services to customers.

Big data applications run on large clusters within data
centers, where their energy costs make energy efficiency
of executing such applications a critical concern. On the
other hand, MapReduce [3] and its open-source implemen-
tation, Hadoop [4], have emerged as the leading computing
platforms for big data analytics. For scheduling multiple
MapReduce jobs, Hadoop originally employed a FIFO
scheduler. To overcome the issues with the waiting time in
FIFO, Hadoop then employed the Fair Scheduler [5]. These

two schedulers, however, do not consider improving the
energy efficiency when executing MapReduce applications.
Improving energy efficiency of MapReduce applications
leads to a significant reduction of the overall cost of data
centers. In this paper, we design a MapReduce scheduling
algorithm that improves the energy efficiency of running
each individual application, while satisfying the servicelevel
agreement (SLA). Our proposed scheduling algorithm can be
easily incorporated and deployed within the existing Hadoop
systems.

In most of the cases, processing bigdata involves run-
ning production jobs periodically. For example, Facebook
processes terabytes of data for spam detection daily. Such
production jobs allow data centers to use job profiling
techniques in order to get information about the resource
consumption for each job. Job profiling extracts critical
performance characteristics of map and reduce tasks for each
underlying application. Data centers can use the knowledge
of extracted job profiles to pre-compute new estimates of
jobs’ map and reduce stage durations, and then construct
an optimized schedule for future executions. Furthermore,
the energy consumption of each task on a machine can be
profiled using automatic power-meter tools such as PDU
Power Strip [6], which is currently a standard practice in data
centers. Many researchers studied different profiling tech-
niques [7], [8], and several MapReduce scheduling studies
rely on such techniques [9], [10]. Our proposed algorithm
schedules MapReduce production jobs having as the primary
objective the minimization of energy consumption.

Most of the existing research on MapReduce scheduling
focused on improving the makespan (i.e., minimizing the
time between the arrival and the completion time of an
application) of the MapReduce job’s execution (e.g., [11],
[12], [13], [14]). However, makespan minimization is not
necessarily the best strategy for data centers. Data centers are
obligated to deliver the services by their specified deadlines,
and it is not in their best interests to execute the services
as fast as they can in order to minimize the makespan.
This strategy fails to incorporate significant optimization
opportunities available for data centers to reduce their energy
costs. The majority of production MapReduce workloads
consists of a large number of jobs that do not require fast
execution. By taking into account the energy consumed by



the map and reduce tasks when making scheduling decisions,
the data centers can utilize their resources efficiently and
reduce the energy consumption. Our proposed energy-aware
scheduling algorithm captures such opportunities and signifi-
cantly reduces the MapReduce energy costs, while satisfying
the SLA.

Our Contribution. To the best of our knowledge this is
the first study that designs an algorithm for detailed task
placement of a MapReduce job to machines with the primary
focus on minimizing the energy consumption. Our proposed
algorithm can be incorporated into higher level energy man-
agement policies in data centers. We first model the prob-
lem of scheduling MapReduce tasks for energy efficiency
as an integer program. In the absence of computationally
tractable optimal algorithms for solving this problem, we
design a greedy algorithm, called Energy-aware MapReduce
Scheduling Algorithm (EMRSA). EMRSA provides very
fast solutions making it suitable for deployment in real
production MapReduce clusters. The time complexity of
EMRSA is polynomial in the number of map and reduce
slots, the number of map tasks, and the number of reduce
tasks, respectively. We perform experiments on a large
Hadoop cluster to determine the energy consumption of
several MapReduce benchmark applications, and then use
this data in an extensive simulation study to characterize the
performance of the proposed algorithm. The results show
that EMRSA is capable of finding close to optimal solutions.

Related Work. There exists an extensive body of research on
resource allocation and scheduling in data centers and clouds
that does not consider the energy efficiency (e.g., [11], [15],
[16]). However, in this literature review, we only discuss
briefly the studies that are directly related to energy savings
in data centers. Kaushik et al. [17] proposed an approach
to partition the servers in a Hadoop cluster into hot and
cold zones based on their performance, cost, and power
characteristics, where hot zone servers are always powered
on and cold zone servers are mostly idling. Cardosa et
al. [18] proposed a spatio-temporal tradeoff that includes
efficient spatial placement of tasks on nodes and temporal
placement of nodes with tasks having similar runtimes in
order to maximize utilization. Leverich and Kozyrakis [19]
proposed a method for cluster energy management for
MapReduce jobs by selectively powering down nodes with
low utilization. Their method uses a cover set strategy that
exploits the replication to keep at least one copy of a
data-block. As a result, in low utilization periods some of
the nodes that are not in the cover set can be powered
down. Chen et al. [20] proposed a method for reducing
the energy consumption of MapReduce jobs without relying
on replication. Their approach divides the jobs into time-
sensitive and less time-sensitive jobs, where the former
are assigned to a small pool of dedicated nodes, and the
latter can run on the rest of the cluster. Maheshwari et

al. [21] proposed an algorithm that dynamically reconfigures
clusters by scaling up and down the number of nodes based
on the cluster utilization. Land and Patel [22] proposed a
framework for energy management in MapReduce clusters
by powering down all nodes in the cluster during a low
utilization period. Wirtz and Ge [23] conducted an experi-
mental study on the MapReduce efficiency. They analyzed
the effects of changing the number of concurrent worker
nodes, and the effects of adjusting the processor frequency
based on workloads. Goiri et al. [24] proposed a MapReduce
framework for a data center powered by renewable sources
of energy such as solar or wind, and by the electrical grid
for backups. Their proposed framework schedules jobs to
maximize the green energy consumption by delaying many
background computations within the jobs’ bounded time.
Li et al. [25] studied the performance of three hypervisors
by running several MapReduce benchmarks. Some of the
considered performance criteria are completion time, CPU,
and disk utilizations. However, they did not focus on energy
and power consumption as the performance criteria. Wang et
al. [26] proposed a task scheduling technique for MapRe-
duce that improves the system throughput in job-intensive
environments without considering the energy consumption.
However, none of the above frameworks and systems exploit
the job profiling information when making the decisions for
task placement on the nodes to increase the energy efficiency
of executing MapReduce jobs. Our proposed algorithm
considers the significant energy consumption differences of
different task placements on machines, and finds an energy
efficient assignment of tasks to machines.

Organization. The rest of the paper is organized as follows.
In Section II, we describe the problem of scheduling MapRe-
duce jobs for energy efficiency. In Section III, we present our
proposed algorithm. In Section IV, we evaluate the algorithm
by extensive experiments. In Section V, we summarize our
results and present possible directions for future research.

II. ENERGY-AWARE MAPREDUCE SCHEDULING

PROBLEM

A MapReduce job comprising a specific number of map
and reduce tasks is executed on a cluster composed of
multiple machines. The job’s computation consists of a map
phase followed by a reduce phase. In the map phase, each
map task is allocated to a map slot on a machine, and
processes a portion of the input data producing key-value
pairs. In the reduce phase, the key-value pairs with the same
key are then processed by a reduce task allocated to a reduce
slot. As a result, the reduce phase of the job cannot begin
until the map phase ends. At the end, the output of the
reduce phase is written back to the distributed file system.
In Hadoop, job scheduling is performed by a master node
running a job tracker process, which distributes jobs to a
number of worker nodes in the cluster. Each worker runs a
task tracker process, and it is configured with a fixed number



of map and reduce slots. The task tracker periodically sends
heartbeats to the job tracker to report the number of free
slots and the progress of the running tasks.

We consider a big data application consisting of a set
of map and reduce tasks that needs to be completed by
deadlineD. Tasks in each set can be run in parallel, but
no reduce task can be started until all map tasks for the
application are completed. LetM andR be the set of map
and reduce tasks of the application, andA andB the set of
slots on heterogeneous machines available for executing the
map and the reduce tasks, respectively. The speed and the
energy consumption of the machines may not be the same.
We denote byeij the energy consumption of slotj ∈ {A,B}
when executing taski ∈ {M,R} and bypij the processing
time of taski ∈ {M,R} when executed on slotj ∈ {A,B}.
We assume that the processing time of the tasks are known.
In doing so, we use the knowledge of extracted job profiles
to pre-compute the processing time of map and reduce tasks,
along with their energy consumption. We define an indicator
variableδti, ∀t, i ∈ M∪R, characterizing the dependencies
of the map and reduce tasks as follows:

δti =

{

1 if task i should be assigned after taskt

0 otherwise
(1)

We formulate the Energy-aware MapReduce Scheduling
problem as an Integer Program (called EMRS-IP) as follows:

Minimize
∑

j∈A

∑

i∈M

eijXij +
∑

j∈B

∑

i∈R

∑

t∈M∪R

δtieijYij (2)

Subject to:
∑

j∈A

Xij = 1,∀i ∈ M (3)

∑

j∈B

∑

t∈M∪R

δtiYij = 1,∀i ∈ R (4)

∑

i∈M

pijXij +
∑

i∈R

∑

t∈M∪R

δtipij′Yij′ ≤ D,

∀j ∈ A,∀j′ ∈ B (5)

Xij = {0, 1},∀i ∈ M, ∀j ∈ A (6)

Yij = {0, 1},∀i ∈ R, ∀j ∈ B (7)

where the decision variablesXij and Yij are defined as
follows:

Xij =

{

1 if map taski is assigned to slotj

0 otherwise
(8)

Yij =

{

1 if reduce taski is assigned to slotj

0 otherwise
(9)

The objective function is to minimize the energy con-
sumed when executing the MapReduce application consid-
ering the dependencies of reduce tasks on the map tasks.
Constraints (3) ensure that each map task is assigned to a

slot for execution. Constraints (4) ensure that each reduce
task is assigned to a slot. Constraints (5) ensure that pro-
cessing time of the application does not exceed its deadline.
Constraints (6) and (7) represent the integrality requirements
for the decision variables. The solution to EMRS-IP consists
of X and Ŷ , where Ŷij =

∑

t∈M∪R
δtiYij , i ∈ R, and

j ∈ B.
Note that based on constraints (5), the scheduler can

assign all reduce tasks after finishing all map tasks without
exceeding the deadline. This is due to the fact that these
constraints can be interpreted tomax∀j∈A

∑

i∈M
pijXij +

max∀j′∈B

∑

i∈R
pij′Yij′ ≤ D. As a result, all reduce

tasks can be assigned after timemax∀j∈A

∑

i∈M
pijXij .

In addition, the scheduler can assign multiple map tasks to
a machine, as well as multiple reduce tasks. This is due to
the fact that in bigdata applications the number of tasks is
greater than the number of machines available in a cluster.

III. E NERGY-AWARE MAPREDUCE SCHEDULING

ALGORITHM

We design a greedy algorithm, called Energy-aware
MapReduce Scheduling Algorithm (EMRSA), that finds
energy-efficient schedules for MapReduce jobs. A key chal-
lenge when designing the algorithm is that the user only
specifies the deadline for the job without specifying a
deadline for the map phase. However, since the reduce
tasks are dependent on the map tasks, the data center has
to determine a reasonable deadline for the map tasks with
respect to the availability of the map slots in the data center
in order to utilize its resources efficiently. The proposed
algorithm finds the assignments of map tasks to the map slots
satisfying the determined map deadline. Finally, EMRSA
finds the assignments of reduce tasks to the reduce slots
satisfying the deadline, where all the reduce tasks start after
the map deadline.

The design of the algorithm requires a metric that charac-
terizes the energy consumption of each machine and induces
a order relation among the machines. We define such metric,
calledenergy consumption rate of a slot j, as follows:

ecrm
j =

∑

∀i∈M

eij

pij

M
,∀j ∈ A (10)

ecrr
j =

∑

∀i∈R

eij

pij

R
,∀j ∈ B (11)

whereecrm
j andecrr

j represent the energy consumption rate
of map slotj and reduce slotj, respectively. A lowerecrm

j

means a higher priority for the slotj to which a task is
assigned.

The Energy-aware MapReduce Scheduling Algorithm
(EMRSA) is given in Algorithm 1. In the first phase,
EMRSA builds two priority queuesQm and Qr to keep
the order of the map and reduce slots based on their energy



Algorithm 1 EMRSA
1: Create an empty priority queueQm

2: Create an empty priority queueQr

3: for all j ∈ A do

4: ecrm
j

=

∑

∀i∈M

eij

pij

M

5: Qm.enqueue(j, ecrm
j

)
6: for all j ∈ B do

7: ecrr
j

=

∑

∀i∈R

eij

pij

R

8: Qr .enqueue(j, ecrr
j
)

9: Dm ←∞; Dr ←∞
10: while Qm is not emptyand Qr is not emptydo
11: jm = Qm.extractMin()
12: jr = Qr .extractMin()

13: f =

∑

∀i∈M
pijm

∑

∀i∈R
pijr

14: T m: sorted unassigned map tasksi ∈M based onpijm

15: T r : sorted unassigned reduce tasksi ∈ R based onpijr

16: if T m = ∅ and T r = ∅ then
17: break
18: im = argmaxt∈T m ptjm

19: ir = argmaxt∈T r ptjr

20: pm = 0; pr = 0
21: if Dm =∞ and pimjm + pirjr > D then
22: No feasible schedule
23: return
24: while pm + pr + pimjm + pirjr ≤ D and pm + pimjm ≤ Dm

and pr + pirjr ≤ Dr and (T m 6= ∅ or T r 6= ∅) do
25: T m = T m \ {im}
26: T r = T r \ {ir}
27: pm = pm + pimjm

28: pr = pr + pirjr

29: Ximjm = 1
30: Yirjr = 1
31: if f > 1 then
32: im = argmaxt∈T m ptjm

33: while
pm

+pimjm

pr < f and pm + pr + pimjm ≤ D and
pm + pimjm ≤ Dm and T m 6= ∅ do

34: T m = T m \ {im}
35: pm = pm + pimjm

36: Ximjm = 1
37: im = argmaxt∈T m ptjm

38: Balance the assignment of reduce tasks (repeat lines 32-37
for reduce tasks).

39: else
40: The code forf < 1 is similar to lines 32-38 and is not

presented here.
41: i = argmint∈T m ptjm

42: while pm+pr +pijm ≤ D and pm+pijm ≤ Dm and T m 6= ∅
do

43: T m = T m \ {i}
44: pm = pm + pijm

45: Xijm = 1
46: i = argmint∈T m ptjm

47: Assign small reduce tasks (repeat lines 41-46 for reduce tasks).
48: if Dm =∞ then
49: Dm = D − pr

50: Dr = D −Dm

51: if T m 6= ∅ or T r 6= ∅ then
52: No feasible schedule
53: return
54: Output: X, Y

consumption rates (lines 1-8). EMRSA initializes the dead-
lines for map tasks,Dm, and reduce tasks,Dr, to infinity.
In each iteration, the algorithm chooses the slots with the

lowest energy consumption rates (i.e.,jm and jr) from the
priority queues. For these slots, the ratio of processing time
of map tasks to that of the reduce tasks, denoted byf , is
calculated (line 13). This ratio is used in the task assignment
process in each iteration of the algorithm. Then, EMRSA
sorts the unassigned map and reduce tasks based on their
processing time on the selected slots (lines 14-15). It selects
the longest map taskim and reduce taskir from the sorted
setsT m andT r, respectively (lines 18-19). Then it checks
the feasibility of allocating map taskim to slot jm and
reduce taskir to slot jr by checking the total processing
time of the tasks against the deadlineD (lines 21-22). If the
assignment of map taskim and reduce taskir is feasible
(line 24), the algorithm continues to select tasks fromT m

and T r, and updates the variables accordingly (lines 25-
30). To keep the assignments of the tasks in alignment with
the ratio of processing timef , the algorithm balances the
assignment. In doing so, iff > 1 (i.e., the load of processing
time of map tasks is greater than that of reduce tasks) and
the ratio of the current assignment is less thanf , then the
algorithm assigns more map tasks to balance the allocated
processing time close tof (lines 32-37). If the ratio of the
current assignment is greater thanf , the algorithm assigns
more reduce tasks to balance the allocated processing time
(lines 38). After allocating the map and reduce tasks with
the largest processing time, the algorithm assigns small map
and reduce tasks while satisfying the deadline (lines 41-47).
At the end of the first iteration, the algorithm sets the map
and reduce deadlines based on the allocated tasks (lines 48-
50). The time complexity of EMRSA is polynomial in the
number of map slots, the number of reduce slots, the number
of map tasks, and the number of reduce tasks, respectively.

A. Example

We now describe how the EMRSA algorithm works by
considering an example. We consider a job with 2 map
tasks{tm

1
, tm

2
} and 2 reduce tasks{tr

1
, tr

2
} with a deadline

of 12, and a data center with 3 map slots{a1, a2, a3} and
2 reduce slots{b1, b2}. The processing time and energy
consumption of the map and reduce tasks are presented in
Table I and Table II, respectively. For example, tasktm

1
has 8

units of processing time and 8 units of energy consumption if
it runs on map slota1 (i.e., p11 = 8 ande11 = 8). Then, we
haveecrm = {1, 2.5, 4.5} andecrr = {3, 1.5} for the map
and reduce slots. After the sorting step,Qm = {a1, a2, a3}
andQr = {b2, b1}. Based on the sorted sets of slots,Qm and
Qr, the first map slot to take into account isa1, and the first
reduce slot isb2. For these slots, the longest tasks aretm

1

and tr
1
, respectively (i.e.,X11 = 1 and Y12 = 1). Based

on the deadline, the algorithm cannot assign more tasks to
these slots. Therefore, the deadlines for the map and reduce
tasks areDm = 8 andDr = 12 − 8 = 4, respectively. That
means, map tasks can be assigned to the other slots with
the deadline of 8, and the reduce tasks can be assigned to



Table I: Example: Map tasks.

Map tasks

Processing time Energy consumption

a1 a2 a3 a1 a2 a3

Tasks
tm
1

8 4 2 8 12 12

tm
2

3 2 1 3 4 3

Table II: Example: Reduce tasks.

Reduce tasks

Processing time Energy consumption

b1 b2 b1 b2

Tasks
tr
1

2 3 6 3

tr
2

2 2 6 4

the other slots from time 8 by the deadline of 12. The map
tasks assignment is as follows. So far we haveX11 = 1, the
algorithm chooses the second map slot inQm, and finds the
longest task that has not been assigned to any slot yet. That
meanstm

2
is assigned toa2 (i.e., X22 = 1). For the reduce

tasks assignment, we already haveY12 = 1. The algorithm
chooses the second reduce slot inQr, and finds the longest
task that has not been assigned to any slot yet. That means
tr
2

is assigned tob1 (i.e., Y21 = 1). This solution leads to
a total energy consumption of 21 units, while satisfying the
deadline constraint.

However, the solution that minimizes the makespan will
selectX13 = 1 andX22 = 1 to obtain a map makespan of
2 units, and will selectY11 = 1 and Y22 = 1 to obtain a
reduce makespan of 2 units. This solution leads to a total
makespan of 4 units with a total energy consumption of 26.
Both approaches obtain schedules that meet the deadline.
However, our proposed algorithm reduces the energy con-
sumption by 19%. Note that the makespan for our approach
is 11.

IV. EXPERIMENTAL RESULTS

We perform extensive experiments in order to investigate
the properties of the proposed algorithm, EMRSA. We
compare the performance of EMRSA with that of other
two algorithms: (i) OPT, that obtains the optimal solution
minimizing the energy consumption; and (ii) MSPAN, that
obtains the optimal solution minimizing the makespan. OPT
is obtained by optimally solving the EMRSA-IP problem
(Equations (2) to (7)), while MSPAN is obtained by op-
timally solving the IP corresponding to the MapReduce
makespan minimization problem (same constraints as in
ERMSA-IP, but the objective is makespan minimization).
Both OPT and MSPAN were implemented using IBM ILOG
CPLEX Optimization Studio Multiplatform Multilingual
eAssembly. For large jobs, however, CPLEX could not

Table III: Terasort configurations for job profiling.

Workload Records Map tasks Reduce tasks

I 64,424,509 16 28

II 257,698,037 64 112

III 515,396,075 128 224

IV 773,094,112 192 336

find the optimal results for OPT and MSPAN even after
3 hours. To analyze the results of EMRSA, we present two
classes of experiments, small-scale and large-scale. In the
small-scale experiments, we compare the results of OPT,
MSPAN, and EMRSA for small MapReduce jobs. Since
we cannot obtain the optimal results for large MapReduce
jobs, we implemented a greedy algorithm for makespan
minimization, called G-MSPAN. G-MSPAN schedules the
tasks on the machines such that the processing time of
all machines are balanced. It assigns longer tasks to faster
machines to keep the balance. EMRSA, OPT, MSPAN, and
G-MSPAN algorithms are implemented in C++ and the
experiments are conducted on AMD 2.93GHz hexa-core
dual-processor systems with 90GB of RAM which are part
of the Wayne State Grid System. In this section, we describe
the experimental setup and analyze the experimental results.

A. Experimental Setup

We performed extensive experiments on a large Hadoop
cluster of 224 processors and measure the energy and
execution time for several MapReduce benchmarks [27]. The
cluster is composed of 10 nodes, two racks of four Intel
nodes and one rack of two AMD nodes. The Intel nodes
have 96GB memory, 12 2.96GHZ Intel processors, and a
600GB SAS 15K Hard Drive. The AMD nodes have 128GB
memory, 64 2.6GHZ AMD processors, and a 600GB SAS
15K Hard Drive. The cluster has a total of 1TB memory, 224
processors, and 6TB of storage. Energy measurements were
taken using APC AP8641 PDU Power Strip that provides
real-time remote monitoring of each outlet.

We run and profiled several Terasort workloads from the
HiBench benchmark set [28]. HiBench is a comprehensive
benchmark provided by Intel to characterize the performance
of MapReduce based data analysis running in data centers.
The Terasort workload contains both map and reduce tasks.
We used four Terasort workloads for job profiling, with the
configurations presented in Table III. For each workload, we
collect its start time, finish time, the consumed power and
other performance metrics. For example for workload III,
the map tasks have a total energy consumption of 3,350 W,
while the reduce tasks have a total energy consumption of
2,800 W. Based on the collected job profiles, we generated
five small MapReduce jobs that we use in the small-scale
experiments, and four large MapReduce jobs, that we use
in the large-scale experiments. The execution time and the
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Figure 1: EMRSA performance (small-scale experiments): (a) Energy Consumption; (b) Execution time.
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Figure 2: Energy Consumption (small-scale experiments): (a) Map tasks; (b) Reduce tasks.

energy consumption of the map and reduce tasks composing
these jobs were generated from uniform distributions having
as the averages the average energy consumption and the
average execution time of the map and reduce tasks extracted
from the job profiled in our experiments.

B. Analysis of Results

1) Small-scale experiments: We analyze the performance
of EMRSA, OPT, and MSPAN for five small MapReduce
jobs, where the number of map tasks and reduce tasks
are within a range of 20 to 30 tasks. For example, the
smallest job represented by(20M, 20R) has 20 map tasks
and 20 reduce tasks. We consider that the jobs are executed
on a cluster configured with 20 map and 20 reduce slots.
Fig. 1a represents the energy consumption of the jobs
scheduled by the three algorithms we consider. The results
show that EMRSA obtains the assignments of map and
reduce tasks with energy consumption close to the optimal
solution, obtained by OPT. OPT and EMRSA are able to
schedule the tasks with an average 49% and 40% less energy
consumption that that of MSPAN, respectively. While it is
desirable to use OPT as a scheduler to reduce cost, the slow

execution of OPT makes it prohibitive to use in practice.
In addition, it is practically impossible to use OPT when
it comes to scheduling bigdata jobs due to its prohibitive
runtime. EMRSA is very fast and a practical alternative for
scheduling bigdata jobs, leading to 40% reduction in energy
consumption. However, the energy consumption obtained by
MSPAN is far from the optimal solution, making it not
suitable for scheduling MapReduce jobs with the goal of
minimizing the energy consumption.

Fig. 1b represents the execution time of OPT and
EMRSA. The results show that EMRSA finds the assign-
ments in significantly less amount of time than OPT and
MSPAN. As shown in this figure, EMRSA obtains the
solution in a time that is five orders of magnitude less than
that of OPT.

In Fig. 2, we present the energy consumption of map and
reduce tasks in more details. The energy consumption for the
map tasks scheduled by EMRSA is closer to the optimal than
the energy consumption for the reduce tasks. This is due to
the fact that for the selected small jobs, the load of the map
tasks is greater or equal to that of the reduce tasks. In the
next subsection, we show how EMRSA performs when the
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Figure 3: Energy Consumption (large-scale experiments): (a) Map tasks; (b) Reduce tasks.

Table IV: Workloads for the large scale experiments.

Workload Map tasks Reduce tasks

I 160 200

II 300 200

III 250 400

IV 200 500

load of the reduce tasks is greater than that of the map tasks.
2) Large-scale experiments: We analyze the performance

of EMRSA and the greedy Makespan, called G-MSPAN, for
four large MapReduce jobs, where the number of map tasks
and reduce tasks are presented in Table IV. We consider
that the cluster is configured with 128 map and 128 reduce
slots. Fig. 4 shows the energy consumption of EMRSA
and G-MSPAN. The results show that EMRSA is able to
find schedules requiring an average of 32% less energy
than that of those obtained by G-MSPAN. Such reduction
in energy consumption can be a great incentive for data
centers to incorporate EMRSA for scheduling MapReduce
jobs to reduce their costs. Note that the amount of energy
savings obtained by EMRSA in the large-scale experiments
is compared with that obtained by the G-MSPAN. However,
in the small-scale experiments, we presented the amount
of energy savings of EMRSA compared to the optimal
makespan minimization algorithm. Both EMRSA and G-
MSPAN find the results in less than a second for all selected
MapReduce jobs.

In Fig. 3, we present the energy consumption of map
and reduce tasks separately in more detail. When the load
of the reduce tasks is higher than that of the map tasks
(e.g., workload IV), EMRSA captures more optimization
opportunities available for reduce tasks for energy saving.
When the load of the map tasks is higher than that of reduce
tasks (e.g., workload I), EMRSA captures more optimization
opportunities available for map tasks for energy saving.
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Figure 4: Energy Consumption (large-scale experiments).

From all the above results, we conclude that EMRSA
obtains MapReduce job schedules with significantly less
energy consumption, and requires small execution times,
making it a suitable candidate for scheduling bigdata appli-
cations in data centers. In addition, the schedules obtained
by EMRSA provide energy savings close to the optimal. The
results show that makespan minimization is not necessarily
the best strategy to consider when scheduling MapReduce
jobs for energy efficiency in data centers. This is due to the
fact that data centers are obligated to deliver the requested
services according to the SLA, where such agreement may
provide significant optimization opportunities to reduce en-
ergy costs. Such reduction in energy costs is a great incentive
for data centers to adopt our proposed scheduling algorithm.

V. CONCLUSION

We proposed an Energy-aware MapReduce Scheduling
Algorithm, EMRSA, that schedules the individual tasks
of a MapReduce application for energy efficiency while
meeting the application deadline. EMRSA provides very
fast solutions making it suitable for execution in real-time
settings. We performed experiments on a large Hadoop



cluster to determine the energy consumption of several
MapReduce benchmark applications, and then used this data
in an extensive simulation study to analyze the performance
of EMRSA. The results showed that EMRSA is capable
of obtaining significant energy savings compared to the
standard makespan minimization algorithms. For the future,
we plan to design and implement a scheduler for multiple
MapReduce jobs with the primary focus of energy consump-
tion.
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