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Abstract—The majority of large-scale data intensive appli-
cations executed by data centers are based on MapReduce or
its open-source implementation, Hadoop. Such applications are
executed on large clusters requiring large amounts of energy,
making the energy costs a large fraction of the data center’s
overall costs. Therefore minimizing the energy consumption
when executing MapReduce jobs is a critical concern for data
centers. In this paper, we propose a framework for improving
the energy efficiency of MapReduce applications, while satis-
fying the service level agreement (SLA). We first model the
problem of energy-aware scheduling of MapReduce jobs as an
Integer Program. We then propose a greedy algorithm, called
Energy-aware MapReduce Scheduling Algorithm (EMRSA),
that finds the assignments of map and reduce tasks to the
machine slots in order to minimize the energy consumed when
executing the application. We perform experiments on a large
Hadoop cluster to determine the energy consumption of several
MapReduce benchmark applications, and then use this data in
an extensive simulation study to characterize the performance
of the proposed algorithm. The results show that EMRSA
is able to find job schedules consuming 40% less energy on
average than the schedules obtained by a common practice
scheduler that minimizes the makespan.

Keywords-MapReduce; big data; minimizing energy con-
sumption; scheduling.
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two schedulers, however, do not consider improving the
energy efficiency when executing MapReduce applications.
Improving energy efficiency of MapReduce applications
leads to a significant reduction of the overall cost of data
centers. In this paper, we design a MapReduce scheduling
algorithm that improves the energy efficiency of running
each individual application, while satisfying the senieeel
agreement (SLA). Our proposed scheduling algorithm can be
easily incorporated and deployed within the existing Hadoo
systems.

In most of the cases, processing bigdata involves run-
ning production jobs periodically. For example, Facebook
processes terabytes of data for spam detection daily. Such
production jobs allow data centers to use job profiling
techniques in order to get information about the resource
consumption for each job. Job profiling extracts critical
performance characteristics of map and reduce tasks far eac
underlying application. Data centers can use the knowledge
of extracted job profiles to pre-compute new estimates of
jobs’ map and reduce stage durations, and then construct
an optimized schedule for future executions. Furthermore,
the energy consumption of each task on a machine can be
profiled using automatic power-meter tools such as PDU
Power Strip [6], which is currently a standard practice iteda

Electricity used in US data centers in 2010 accounted forenters. Many researchers studied different profiling -tech

about 2% of total electricity used nationwide [1]. In adafit]

niques [7], [8], and several MapReduce scheduling studies

the energy consumed by the data centers is growing atly on such techniques [9], [10]. Our proposed algorithm
over 15% annually, and the energy costs make up about 42%chedules MapReduce production jobs having as the primary
of the data centers’ operating costs [2]. Considering thabbjective the minimization of energy consumption.

server costs are consistently falling, it should be no ssepr

Most of the existing research on MapReduce scheduling

that in the near future a big percentage of the data center$dbcused on improving the makespan (i.e., minimizing the

costs will be energy costs. Therefore, it is critical for tada

time between the arrival and the completion time of an

centers to minimize their energy consumption when offeringapplication) of the MapReduce job’s execution (e.g., [11],

services to customers.

[12], [13], [14]). However, makespan minimization is not

Big data applications run on large clusters within datanecessarily the best strategy for data centers. Data sarter
centers, where their energy costs make energy efficiencgbligated to deliver the services by their specified deadlin
of executing such applications a critical concern. On theand it is not in their best interests to execute the services
other hand, MapReduce [3] and its open-source implemeras fast as they can in order to minimize the makespan.
tation, Hadoop [4], have emerged as the leading computinghis strategy fails to incorporate significant optimizatio
platforms for big data analytics. For scheduling multiple opportunities available for data centers to reduce theirgn
MapReduce jobs, Hadoop originally employed a FIFOcosts. The majority of production MapReduce workloads
scheduler. To overcome the issues with the waiting time irconsists of a large number of jobs that do not require fast
FIFO, Hadoop then employed the Fair Scheduler [5]. Thesexecution. By taking into account the energy consumed by



the map and reduce tasks when making scheduling decisional,. [21] proposed an algorithm that dynamically reconfigure
the data centers can utilize their resources efficiently andlusters by scaling up and down the number of nodes based
reduce the energy consumption. Our proposed energy-awaom the cluster utilization. Land and Patel [22] proposed a
scheduling algorithm captures such opportunities andfsign framework for energy management in MapReduce clusters
cantly reduces the MapReduce energy costs, while satisfyinby powering down all nodes in the cluster during a low
the SLA. utilization period. Wirtz and Ge [23] conducted an experi-
Our Contribution. To the best of our knowledge this is mental study on the .MapReduce efficiency. They analyzed
the effects of changing the number of concurrent worker

the first study that designs an algorithm for detailed taSknodes, and the effects of adjusting the processor frequency

placement of a MapReduce job to machines with the p”mar#)ased on workloads. Goiri et al. [24] proposed a MapReduce

focus on minimizing the energy consumption. Our propose ramework for a data center powered by renewable sources
algorithm can be incorporated into higher level energy man-. energy such as solar or wind, and by the electrical grid
agement policies in data centers. We first model the probf-or backups. Their proposed fra,mework schedules jobs to
lem of scheduling MapReduce tasks for energy efficiencyr_naximize thé green energy consumption by delaying many

as an integer program. In the absence of CornpUtationa")ﬁackground computations within the jobs’ bounded time.

trac_table optimal algqrithms for solving this problem, we Li et al. [25] studied the performance of three hypervisors
design a greedy algorithm, called Energy-aware MapReducgy running several MapReduce benchmarks. Some of the

Scheduling Algorithm (EMRSA). EMRSA provides very considered performance criteria are completion time, CPU,

fast solutions making it suitable for deployment in real . S .
roduction MaoReduce clusters. The time complexit Ofand disk utilizations. However, they did not focus on energy
EMRSA is pol pnomial in the nuhber of ma ang red){Jceand power consumption as the performance criteria. Wang et
slots, the nEm)l;er of map tasks, and the nurI?]ber of reducal' [26] proposed a task scheduling technique for MapRe-
tasks’ respectivel Wep erforr;l experiments on a lar §uce that improves the system throughput in job-intensive
' P y- P P g nvironments without considering the energy consumption.

SH;dec;glp h;;uséir d;%edgteenrg:rr:qzr}(hz eﬂi;%{) ncson;l:g]?rgg’r? l?Eowever, none of the above frameworks and systems exploit
P PP ; %ﬁe job profiling information when making the decisions for

this data in an extensive simulation study to charactehiee t : -
. task placement on the nodes to increase the energy efficiency
performance of the proposed algorithm. The results show

that EMRSA is capable of finding close to optimal solutions.Of e>_<ecut|ng l\/_lap_R_educe jobs. Our pro_posegl algorithm
considers the significant energy consumption differendées o

Related Work. There exists an extensive body of research ordifferent task placements on machines, and finds an energy
resource allocation and scheduling in data centers andslou efficient assignment of tasks to machines.

that does not consider the energy efficiency (e.g., [11],, [15 organization. The rest of the paper is organized as follows.
[16]). However, in this literature review, we only discuss |n Section II, we describe the problem of scheduling MapRe-
briefly the studies that are directly related to energy S/in duce jobs for energy efficiency. In Section Ill, we present ou
in data centers. Kaushik et al. [17] proposed an approa((froposed algorithm. In Section IV, we evaluate the algarith
to partition the servers in a Hadoop cluster into hot andyy extensive experiments. In Section V, we summarize our

cold zones based on their performance, cost, and powgsylts and present possible directions for future researc
characteristics, where hot zone servers are always powered

on and cold zone servers are mostly idling. Cardosa et !l ENERGY-AWARE MAPREDUCE SCHEDULING

al. [18] proposed a spatio-temporal tradeoff that includes PROBLEM

efficient spatial placement of tasks on nodes and temporal A MapReduce job comprising a specific number of map
placement of nodes with tasks having similar runtimes inand reduce tasks is executed on a cluster composed of
order to maximize utilization. Leverich and Kozyrakis [19] multiple machines. The job’s computation consists of a map
proposed a method for cluster energy management fgphase followed by a reduce phase. In the map phase, each
MapReduce jobs by selectively powering down nodes withmap task is allocated to a map slot on a machine, and
low utilization. Their method uses a cover set strategy thaprocesses a portion of the input data producing key-value
exploits the replication to keep at least one copy of apairs. In the reduce phase, the key-value pairs with the same
data-block. As a result, in low utilization periods some of key are then processed by a reduce task allocated to a reduce
the nodes that are not in the cover set can be powereslot. As a result, the reduce phase of the job cannot begin
down. Chen et al. [20] proposed a method for reducinguntil the map phase ends. At the end, the output of the
the energy consumption of MapReduce jobs without relyingreduce phase is written back to the distributed file system.
on replication. Their approach divides the jobs into time-In Hadoop, job scheduling is performed by a master node
sensitive and less time-sensitive jobs, where the formerunning a job tracker process, which distributes jobs to a
are assigned to a small pool of dedicated nodes, and theumber of worker nodes in the cluster. Each worker runs a
latter can run on the rest of the cluster. Maheshwari etask tracker process, and it is configured with a fixed number



of map and reduce slots. The task tracker periodically sendslot for execution. Constraints (4) ensure that each reduce
heartbeats to the job tracker to report the number of fre¢ask is assigned to a slot. Constraints (5) ensure that pro-
slots and the progress of the running tasks. cessing time of the application does not exceed its deadline
We consider a big data application consisting of a setConstraints (6) and (7) represent the integrality requineis
of map and reduce tasks that needs to be completed Hgr the decision variables. The solution to EMRS-IP cossist
deadline D. Tasks in each set can be run in parallel, butof X and Y, whereY;; = > temur 0iYij, @ € R, and
no reduce task can be started until all map tasks for thg € B.
application are completed. Lét and’R be the set of map Note that based on constraints (5), the scheduler can
and reduce tasks of the application, andand B the set of  assign all reduce tasks after finishing all map tasks without
slots on heterogeneous machines available for executeng ttexceeding the deadline. This is due to the fact that these
map and the reduce tasks, respectively. The speed and thenstraints can be interpretedii@axy,ca Y ;¢ v Pij Xij +
energy consumption of the machines may not be the samenaxv; ey ,cr PijYiy < D. As a result, all reduce
We denote by;; the energy consumption of slpte { A, B} tasks can be assigned after timexv,ca ;v Pij Xij-
when executing taske {M, R} and byp;; the processing In addition, the scheduler can assign multiple map tasks to
time of taski € { M, R} when executed on sigte {4,8}.  a machine, as well as multiple reduce tasks. This is due to
We assume that the processing time of the tasks are knowthe fact that in bigdata applications the number of tasks is
In doing so, we use the knowledge of extracted job profilegreater than the number of machines available in a cluster.
to pre-compute the processing time of map and reduce tasks,

along with their energy consumption. We define an indicator ~ |ll. ENERGY-AWARE MAPREDUCE SCHEDULING

variabledy;, Vt,i € M UTR, characterizing the dependencies
of the map and reduce tasks as follows:

(1)

5 — 1 if task ¢ should be assigned after task
"7 lo  otherwise

ALGORITHM

We design a greedy algorithm, called Energy-aware
MapReduce Scheduling Algorithm (EMRSA), that finds
energy-efficient schedules for MapReduce jobs. A key chal-
lenge when designing the algorithm is that the user only

We formulate the Energy-aware MapReduce Schedulingpecifies the deadline for the job without specifying a
problem as an Integer Program (called EMRS-IP) as followsdeadline for the map phase. However, since the reduce

Minimize Y > e Xii+ > > D Suei Vi (2)

jEAIEM jEBIER tE MUR
Subject to:
d Xiy=1VYieM (3)
JEA
Yo D duYy=1VieR (4)
jEBtEMUR
Z Pij Xij + Z Z Ouipij Yy < D,
ieEM 1ER tEMUR
Vjie AV eB  (5)
Xij = {07 1},V7/ eM, VJ cA (6)
Y, ={0,1},Vie R, VjeB @)

where the decision variableX;; andY;; are defined as
follows:

1 if map task: is assigned to sl
X, = P . LG
0 otherwise
1 if reduce taski is assigned to slof
Yi; = . 9)
0 otherwise

The objective function is to minimize the energy con-

tasks are dependent on the map tasks, the data center has
to determine a reasonable deadline for the map tasks with
respect to the availability of the map slots in the data agente

in order to utilize its resources efficiently. The proposed
algorithm finds the assignments of map tasks to the map slots
satisfying the determined map deadline. Finally, EMRSA
finds the assignments of reduce tasks to the reduce slots
satisfying the deadline, where all the reduce tasks sttet af

the map deadline.

The design of the algorithm requires a metric that charac-
terizes the energy consumption of each machine and induces
a order relation among the machines. We define such metric,
called energy consumption rate of a slotj, as follows:

Sen s

ecr}" = sz\y Pij Vie A (10)
Dvier

eort = ZTR P ;R Pii i e B (11)

whereecr* andecr’; represent the energy consumption rate
of map slotj and reduce slof, respectively. A lowekcr"
means a higher priority for the slgt to which a task is
assigned.

The Energy-aware MapReduce Scheduling Algorithm

sumed when executing the MapReduce application considEMRSA) is given in Algorithm 1. In the first phase,
ering the dependencies of reduce tasks on the map taskSMRSA builds two priority queue™ and Q" to keep
Constraints (3) ensure that each map task is assigned totle order of the map and reduce slots based on their energy
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gorithm 1 EMRSA

1: Create an empty priority queu@™
2: Create an empty priority queug”
3: for all j € A do

10

54

oy o0

ecr™ = 7W%M Pij
Q™ .enqueuéj, ecr’)
, J
for all j € B do
eij
ViER Pij

ecr’ = =
T s T
Q".enqueugy, ecry)

1 D™ «— o0; D" «+— oo

: while @™ is not emptyand Q" is not emptydo
7™ = Q™ .extractMin()
47 = Q" .extractMin()

pijm

f= viem "t
vier Pii"
T™: Sorted unassigned map tasks M based orp;jm
77 sorted unassigned reduce tasks R based orp;;»
if 7™ =@ and 7" = () then
break
1" = argmax;cm pgjm
i" = argmax,c7r ptjr
p"=0;p" =0
if D™ = oo and p;m jm + p;rj» > D then
No feasible schedule
return
while p™ 4+ p" 4 pym jm +pirjr < D and p™ + pymjm < D™
and pr +pi7‘j7‘ < D" and (Tm 7£ PDorT" # @) do
Tm =T\ "}
Tr =T\ {i"}
p™ =p™ + pimm
p" =p" + pirjr
Yirjr =1
if f>1then
" = Argmax; cm ptjm
while Z—Pimi™ £ and p™ 4 p” + pymjm < D and
pm +pZnLJm S D™ and 7™ # (Z) do
T =Tm\ (i}
p™ = p™ 4 pimym
Xim,jm =1
i = argmax;cym ptjm

for reduce tasks).
else
The code forf < 1 is similar to lines 32-38 and is not
presented here.
1 = argmingczm pjm
do

Tm =T7m\ {i}
P =p" + pijm
Xi]"rn = 1

© = argminge 7m pgjm .
Assign small reduce tasks (repeat lines 41-46 for redasles}.

if D™ = oo then
D™ =D —p"
D"=D-D™

Cif 7™ £ @ or T" # () then
No feasible schedule
return

: Output: XY

Balance the assignment of reduce tasks (repeat lines 32-3

lowest energy consumption rates (i.¢” and ;") from the
priority queues. For these slots, the ratio of processimg ti

of map tasks to that of the reduce tasks, denoted fhyis
calculated (line 13). This ratio is used in the task assigitme
process in each iteration of the algorithm. Then, EMRSA
sorts the unassigned map and reduce tasks based on their
processing time on the selected slots (lines 14-15). Ittele
the longest map task™ and reduce task” from the sorted
sets7™ and 7", respectively (lines 18-19). Then it checks
the feasibility of allocating map task™ to slot j™ and
reduce task” to slot ;7 by checking the total processing
time of the tasks against the deadlibe(lines 21-22). If the
assignment of map task® and reduce task” is feasible
(line 24), the algorithm continues to select tasks fr@rt

and 7", and updates the variables accordingly (lines 25-
30). To keep the assignments of the tasks in alignment with
the ratio of processing tim¢, the algorithm balances the
assignment. In doing so, jf > 1 (i.e., the load of processing
time of map tasks is greater than that of reduce tasks) and
the ratio of the current assignment is less thfarthen the
algorithm assigns more map tasks to balance the allocated
processing time close tf (lines 32-37). If the ratio of the
current assignment is greater thinthe algorithm assigns
more reduce tasks to balance the allocated processing time
(lines 38). After allocating the map and reduce tasks with
the largest processing time, the algorithm assigns smail ma
and reduce tasks while satisfying the deadline (lines 41-47
At the end of the first iteration, the algorithm sets the map
and reduce deadlines based on the allocated tasks (lines 48-
50). The time complexity of EMRSA is polynomial in the
number of map slots, the number of reduce slots, the number
of map tasks, and the number of reduce tasks, respectively.

A. Example

We now describe how the EMRSA algorithm works by
considering an example. We consider a job with 2 map
tasks{t]", t5*} and 2 reduce taskf?, 5} with a deadline
of 12, and a data center with 3 map sldts, as, a3} and
2 reduce slots{b;,b2}. The processing time and energy
consumption of the map and reduce tasks are presented in
Table | and Table Il, respectively. For example, té8khas 8
units of processing time and 8 units of energy consumption if
it runs on map slot;; (i.e.,p;1 = 8 ande;; = 8). Then, we
haveecr™ = {1,2.5,4.5} andecr” = {3, 1.5} for the map
and reduce slots. After the sorting st&p* = {a1, as, a3}
andQ" = {b, b1 }. Based on the sorted sets of sla®¥? and
9", the first map slot to take into accountds, and the first
reduce slot ish,. For these slots, the longest tasks &fe
and ¢, respectively (i.e.,.X;; = 1 and Y, = 1). Based
on the deadline, the algorithm cannot assign more tasks to
these slots. Therefore, the deadlines for the map and reduce

consumption rates (lines 1-8). EMRSA initializes the deadtasks areD™ = 8 and D" = 12 — 8 = 4, respectively. That

lin

es for map taskspP™, and reduce taskd)”, to infinity.

means, map tasks can be assigned to the other slots with

In each iteration, the algorithm chooses the slots with theéhe deadline of 8, and the reduce tasks can be assigned to



Table I: Example: Map tasks. Table Ill: Terasort configurations for job profiling.

Map tasks Workload Records Map tasks | Reduce tasks
Processing time | Energy consumption | 64,424,509 16 28
ay az as ay a2 as 1l 257,698,037 64 112
7 8 4 2 8 12 12 1] 515,396,075 128 224
Tasks
to" 3 2 1 3 4 3 v 773,094,112 192 336

Table II: Example: Reduce tasks. find the optimal results for OPT and MSPAN even after

Reduce tasks 3 hours. To analyze the results of EMRSA, we present two
Processing time| Energy consumption classes of experiments, small-scale and large-scale.eln th
by by by by small-scale experiments, we compare the results of OPT,
o | 2 3 6 3 MSPAN, and EMRSA for small MapReduce jobs. Since
i I 2 6 4 we cannot obtain the optimal results for large MapReduce

jobs, we implemented a greedy algorithm for makespan
minimization, called G-MSPAN. G-MSPAN schedules the
. . tasks on the machines such that the processing time of
the other slots from time 8 by the deadline of 12. The map,| machines are balanced. It assigns longer tasks to faster
tasks assignment is as follows. So far we ha\e = 1, the  machines to keep the balance. EMRSA, OPT, MSPAN, and
algorithm chooses the second map slotft, and finds the  s_pvspaAN algorithms are implemented in C++ and the
longest task that has not been assigned to any slot yet. Thatneriments are conducted on AMD 2.93GHz hexa-core
meansty' is assigned taw, (i.e., X; = 1). For the reduce  gya)-processor systems with 90GB of RAM which are part
tasks assignment, we already havig = 1. The algorithm ot the Wayne State Grid System. In this section, we describe

chooses the second reduce slodn, and finds the longest he experimental setup and analyze the experimental sesult
task that has not been assigned to any slot yet. That means

t5 is assigned td; (i.e., Y1 = 1). This solution leads to A Experimental Setup
a total energy consumption of 21 units, while satisfying the We performed extensive experiments on a large Hadoop
deadline constraint. cluster of 224 processors and measure the energy and

However, the solution that minimizes the makespan willexecution time for several MapReduce benchmarks [27]. The
selectX;3 = 1 and Xy, = 1 to obtain a map makespan of cluster is composed of 10 nodes, two racks of four Intel
2 units, and will selec;; = 1 andY, = 1 to obtain a nodes and one rack of two AMD nodes. The Intel nodes
reduce makespan of 2 units. This solution leads to a totahave 96GB memory, 12 2.96GHZ Intel processors, and a
makespan of 4 units with a total energy consumption of 26600GB SAS 15K Hard Drive. The AMD nodes have 128GB
Both approaches obtain schedules that meet the deadlinmemory, 64 2.6GHZ AMD processors, and a 600GB SAS
However, our proposed algorithm reduces the energy cont5K Hard Drive. The cluster has a total of 1TB memory, 224
sumption by 19%. Note that the makespan for our approacprocessors, and 6TB of storage. Energy measurements were
is 11. taken using APC AP8641 PDU Power Strip that provides
real-time remote monitoring of each outlet.

We run and profiled several Terasort workloads from the

We perform extensive experiments in order to investigateHiBench benchmark set [28]. HiBench is a comprehensive
the properties of the proposed algorithm, EMRSA. Webenchmark provided by Intel to characterize the perforraanc
compare the performance of EMRSA with that of otherof MapReduce based data analysis running in data centers.
two algorithms: (i) OPT, that obtains the optimal solution The Terasort workload contains both map and reduce tasks.
minimizing the energy consumption; and (ii) MSPAN, that We used four Terasort workloads for job profiling, with the
obtains the optimal solution minimizing the makespan. OPTconfigurations presented in Table Ill. For each workload, we
is obtained by optimally solving the EMRSA-IP problem collect its start time, finish time, the consumed power and
(Equations (2) to (7)), while MSPAN is obtained by op- other performance metrics. For example for workload Il
timally solving the IP corresponding to the MapReducethe map tasks have a total energy consumption of 3,350 W,
makespan minimization problem (same constraints as imvhile the reduce tasks have a total energy consumption of
ERMSA-IP, but the objective is makespan minimization).2,800 W. Based on the collected job profiles, we generated
Both OPT and MSPAN were implemented using IBM ILOG five small MapReduce jobs that we use in the small-scale
CPLEX Optimization Studio Multiplatform Multilingual experiments, and four large MapReduce jobs, that we use
eAssembly. For large jobs, however, CPLEX could notin the large-scale experiments. The execution time and the

IV. EXPERIMENTAL RESULTS
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Figure 1: EMRSA performance (small-scale experimentg)Efgergy Consumption; (b) Execution time.
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Figure 2: Energy Consumption (small-scale experimeng)Map tasks; (b) Reduce tasks.

energy consumption of the map and reduce tasks composirexecution of OPT makes it prohibitive to use in practice.
these jobs were generated from uniform distributions t@avin In addition, it is practically impossible to use OPT when
as the averages the average energy consumption and thiecomes to scheduling bigdata jobs due to its prohibitive
average execution time of the map and reduce tasks extractedntime. EMRSA is very fast and a practical alternative for

from the job profiled in our experiments. scheduling bigdata jobs, leading to 40% reduction in energy
_ consumption. However, the energy consumption obtained by
B. Analysis of Results MSPAN is far from the optimal solution, making it not

1) Small-scale experiments; We analyze the performance su.it(_alb!e. for scheduling MapRedyce jobs with the goal of
of EMRSA, OPT, and MSPAN for five small MapReduce Minimizing the energy consumption.
jobs, where the number of map tasks and reduce tasks Fig. 1b represents the execution time of OPT and
are within a range of 20 to 30 tasks. For example, theEMRSA. The results show that EMRSA finds the assign-
smallest job represented §20M, 20R) has 20 map tasks Mments in significantly less amount of time than OPT and
and 20 reduce tasks. We consider that the jobs are executdSPAN. As shown in this figure, EMRSA obtains the
on a cluster configured with 20 map and 20 reduce slotssolution in a time that is five orders of magnitude less than
Fig. la represents the energy consumption of the job#hat of OPT.
scheduled by the three algorithms we consider. The results In Fig. 2, we present the energy consumption of map and
show that EMRSA obtains the assignments of map andeduce tasks in more details. The energy consumption for the
reduce tasks with energy consumption close to the optimahap tasks scheduled by EMRSA is closer to the optimal than
solution, obtained by OPT. OPT and EMRSA are able tothe energy consumption for the reduce tasks. This is due to
schedule the tasks with an average 49% and 40% less enerthe fact that for the selected small jobs, the load of the map
consumption that that of MSPAN, respectively. While it is tasks is greater or equal to that of the reduce tasks. In the
desirable to use OPT as a scheduler to reduce cost, the slavext subsection, we show how EMRSA performs when the
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Table IV: Workloads for the large scale experiments. o RSN
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load of the reduce tasks is greater than that of the map tasks. !

2) Large-scale experiments. We analyze the performance Workioad
of EMRSA and the greedy Makespan, called G-MSPAN, for _ _ i i
four large MapReduce jobs, where the number of map taskd '9ure 4: Energy Consumption (large-scale experiments).
and reduce tasks are presented in Table IV. We consider
that the cluster is configured with 128 map and 128 reduce
slots. Fig. 4 shows the energy consumption of EMRSA From all the above results, we conclude that EMRSA
and G-MSPAN. The results show that EMRSA is able toObtains MapReduce job schedules with significantly less
find schedules requiring an average of 32% less energ§n€rgy consumption, and requires small execution times,
than that of those obtained by G-MSPAN. Such reductioaking it a suitable candidate for scheduling bigdata appli
in energy consumption can be a great incentive for datgations in data centers. In addition, the schedules olstaine
centers to incorporate EMRSA for scheduling MapReducd®Y EMRSA provide energy savings close to the optimal. The
jobs to reduce their costs. Note that the amount of energ{ﬁSU"S show that makespan minimization is .not necessarily
savings obtained by EMRSA in the large-scale experiment&® best strategy to consider when scheduling MapReduce
is compared with that obtained by the G-MSPAN. However,JObS for energy efficiency in data centers. This is due to the
in the small-scale experiments, we presented the amourf@ct that data centers are obligated to deliver the reqdeste
of energy savings of EMRSA compared to the optimalServices according to the SLA, where such agreement may
makespan minimization algorithm. Both EMRSA and G- provide significant optimization opportunities to reduce e

MSPAN find the results in less than a second for all selecte§'9Y COSts. Such reduction in energy costs is a great inveent
MapReduce jobs. for data centers to adopt our proposed scheduling algorithm

In Fig. 3, we present the energy consumption of map
and reduce tasks separately in more detail. When the load
of the reduce tasks is higher than that of the map tasks We proposed an Energy-aware MapReduce Scheduling
(e.g., workload 1V), EMRSA captures more optimization Algorithm, EMRSA, that schedules the individual tasks
opportunities available for reduce tasks for energy savingof a MapReduce application for energy efficiency while
When the load of the map tasks is higher than that of reducemeeting the application deadline. EMRSA provides very
tasks (e.g., workload 1), EMRSA captures more optimizationfast solutions making it suitable for execution in realdim
opportunities available for map tasks for energy saving. settings. We performed experiments on a large Hadoop

V. CONCLUSION



cluster to determine the energy consumption of severdll3] F. Chen, M. S. Kodialam, and T. V. Lakshman, “Joint schedul-
MapReduce benchmark applications, and then used this data
in an extensive simulation study to analyze the performance

of EMRSA. The results showed that EMRSA is capable[1

of obtaining significant energy savings compared to the

standard makespan minimization algorithms. For the futurey; g
we plan to design and implement a scheduler for multiple

MapReduce jobs with the primary focus of energy consump-

tion.
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