
Truthful Computation Offloading Mechanisms for
Edge Computing

Weibin Ma
Department of Computer and

Information Sciences
University of Delaware

Newark, Delaware, USA
Email: weibinma@udel.edu

Lena Mashayekhy
Department of Computer and

Information Sciences
University of Delaware

Newark, Delaware, USA
Email: mlena@udel.edu

Abstract—Edge computing (EC) is a promising paradigm
providing a distributed computing solution for users at the edge
of the network. Preserving satisfactory quality of experience
(QoE) for users when offloading their computation to EC is
a non-trivial problem. Computation offloading in EC requires
jointly optimizing access points (APs) allocation and edge service
placement for users, which is computationally intractable due
to its combinatorial nature. Moreover, users are self-interested,
and they can misreport their preferences leading to inefficient
resource allocation and network congestion. In this paper, we
tackle this problem and design a novel mechanism based on al-
gorithmic mechanism design to implement a system equilibrium.
Our mechanism assigns a proper pair of AP and edge server
along with a service price for each new joining user maximizing
the instant social surplus while satisfying all users’ preferences in
the EC system. Declaring true preferences is a weakly dominant
strategy for the users. The experimental results show that our
mechanism outperforms user equilibrium and random selection
strategies in terms of the experienced end-to-end latency.

Index Terms—Edge Computing, Access Point Allocation, Ser-
vice Placement, Pricing, Algorithmic Mechanism Design.

I. INTRODUCTION

With the explosive growth of smart devices, a bulk of
computationally intensive applications, as exemplified by face
recognition, online gaming, and video streaming, are becom-
ing prevalent. However, the smart devices possess limited
resources (e.g., limited computation capabilities and battery
lifetime), which may lead to unsatisfactory computation ex-
perience. The commonly used approach is to offload com-
putational tasks to a powerful cloud platform [1]. However,
the long distance between devices and the cloud will cause a
significant increase in delay and network congestion.

To overcome this challenge, edge computing (EC) has
recently been introduced as an emerging solution that enables
offloading computational tasks to the physically proximal EC
mini-datacenters, called cloudlets [2], [3]. While EC brings
many opportunities to guarantee quality of experience (QoE)
for users, new challenges arise due to the restricted coverage of
cloudlets and their limited computational resources. To main-
tain the QoE of users, designing efficient realtime computation
offloading is hence becoming crucial in edge computing. The
computation offloading problem consists of jointly optimizing
access points (APs) allocation and edge service placement

for EC users, which is computationally intractable due to its
combinatorial nature.

In this paper, we design a novel mechanism called compu-
tation offloading and pricing mechanism (COPM) to satisfy
QoE of each joining user by meeting its application-specific
end-to-end latency requirements. The goal of our proposed
mechanism is to maximize the instant social surplus, which
is defined as the sum of the valuation of the new user and
the system. To tackle the complexity of COPM, we then
propose an online offloading mechanism, called DAPA. When
a new user requests an edge service at any time, DAPA
collects current information of the system and then assigns an
optimal decision pair (the best AP for connection and the best
edge server for computation) to the user. It also determines
the user’s corresponding payment for the edge service. If no
feasible solution exists for this user, DAPA suggests the new
user offloading its task to the remote cloud.

When a new user requests an edge service, it will report
its maximum tolerable end-to-end latency in order to receive
the best decision pair to offload and complete its task. A
user may misreport this value to increase its own utility.
Such an action could inversely decrease the overall system
efficiency. Therefore, designing an incentive-compatible (or
truthful) mechanism in which users have no incentive to
lie about their true preferences is extremely important for
achieving system efficiency and implementing a system equi-
librium. Our goal is to design an efficient incentive-compatible
mechanism to determine an optimal decision pair with a
corresponding payment for each user satisfying their QoE
requirements while maximizing the instant social surplus. To
the best of our knowledge, this is the first work that simul-
taneously optimizes online AP allocation, service placement,
and pricing of computation offloading by utilizing algorithmic
mechanism design. Our proposed mechanism implements a
weakly dominant strategy equilibrium for users.

The rest of the paper is organized as follows. Section II
reviews related work. The system model is described in
Section III. The problem formulation and COPM mechanism
are presented in Section IV. In Section V, we describe our
efficient online algorithmic solution. Performance evaluation
is carried out in Section VI. Section VII concludes the paper.

II. RELATED WORK

In the presence of multiple cloudlets, resource management
becomes extremely important as it directly impacts edge
service quality and system efficiency. Xu et al. [4] formulated
a capacitated cloudlet placement problem to minimize the
average transmission delay between users and cloudlets and
proposed an approximation algorithm to solve it. Jia et al. [5]
studied the load balancing problem among multiple cloudlets.
Bhatta and Mashayekhy [6] proposed a heuristic cost-aware
cloudlet placement approach that guarantees minimum latency
for edge services. Wang et al. [7] formulated the dynamic
resource allocation problem in edge computing considering
user mobility and proposed an online algorithm to solve it by
decoupling the problem into a series of solvable sub-problems.
However, none of these studies considers the selfish behavior
of the users.

Game theory has been widely used to model and analyze
different allocation problems. Algorithmic mechanism design
deals with efficiently-computable algorithmic solutions in the
presence of strategic players who may misreport their input,
and it has been used in distributed computing [8]–[10]. Za-
vodovski et al. [11] proposed an incentive compatible double
auction mechanism, called DeCloud, to offer pay-as-you-go
edge services, where ad hoc clouds can be spontaneously
formed on the edge of the network. Kiani and Ansari [12]
proposed a revenue-maximizing auction-based mechanism for
edge computing resources. However, the mechanism is not
incentive compatible. Ma et al. [13] modeled the resource
allocation problem as a three-sided cyclic game (3CG), where
edge nodes and service providers cooperate for completing
user requests and compete for their own interest. 3CG is
proved to have pure-strategy Nash equilibria and an approxi-
mation ratio.

Nevertheless, none of the existing work jointly addresses
the AP allocation and service placement problem along with
determining service pricing in the EC system. In this paper, we
propose an online incentive-compatible computation offload-
ing mechanism to address this problem.

III. EDGE COMPUTING SYSTEM MODEL

We consider an EC system with a set of cloudlets, each
of which is equipped with an AP (e.g., base station or WiFi
hotspots) and edge servers, to provide edge services for users
(Fig. 1). A regional cloudlet (or a group of cloudlets) can act as
the EC coordinator with the responsibility of collecting system
information such as the user requests and system status. We
denote a set of cloudlets by M = {1, 2, . . . ,M} and a set of
users by N = {1, 2, . . . , N}. Users join and leave the system
dynamically. Each cloudlet j ∈ M has one or multiple edge
servers with computation capability Fj(τ) (i.e., CPU cycles
per second) and memory capacity Dj(τ) at time τ . Each
AP i ∈ M can provide service to Pi users simultaneously
and has a bandwidth Bi(τ). The cloudlets are interconnected
by a wired network (e.g., wide-area network (WAN) or local-
area network (LAN)).

2

5

Cloudlet

Centralized	Cloud

Core	Network

1 3

4

User 1
User 2

User 3 User 4User 6

User 5

Fig. 1: EC system.

Each user has a computational task requiring remote ex-
ecution (a user can have multiple tasks, and each is treated
independently in this system). The task of user k ∈ N is
defined by (Ck, Dk, Tk), where Ck represents the total amount
of computational cycles required to obtain the outcome of
the task, Dk denotes the data size of the task, and Tk is
the maximum tolerable end-to-end latency, measured in time
units, for completing the task. Each user can be connected to
a cloudlet via an AP through a wireless communication (e.g.,
WiFi, 4G, or 5G) to offload a task.

A decision pair (i, j) is made by the coordinator for each
new joining user k, where i ∈ M represents the AP to
connect to and j ∈ M denotes the assigned edge server at
cloudlet j ∈ M. Even though a user is connected to its nearby
AP, its allocated edge server can be at any cloudlet in the EC
system. If assigned AP i and edge server j of user k are not
associated with each other (i.e., not in the same cloudlet), the
system transfers its task from cloudlet i to cloudlet j.

The system state is represented by I(τ) = (P (τ), Q(τ))
at any time instant τ , where P (τ) and Q(τ) represent the
status of the system in terms of users connected to all APs
and computational tasks served by all edge servers at τ ,
respectively. Specifically, at any time τ , they present the sets
of decision variables defined as follows:

pki (τ) =

{
1 if user k is connected to AP i,
0 otherwise.

(1)

qkj (τ) =

{
1 if user k is served by cloudlet j,
0 otherwise.

(2)

Therefore, at time τ , the total number of users connected
to AP i is ui(τ) =

∑
k∈N p

k
i (τ), the total number of

computational tasks of users served by cloudlet j is vj(τ) =∑
k∈N q

k
j (τ), and the total number of computational tasks

of users sent to cloudlet j via AP i is x(i,j)(τ) =∑
k∈N p

k
i (τ)qkj (τ). To make the mathematical formulation a

linear convex, we can linearize x(i,j)(τ). We first define a
binary decision variable yij , and define the following set of
constraints:

yij(τ) ≥ pki (τ) + qkj (τ)− 1, ∀i, j ∈M. (3)

to ensure that yij(τ) is one if both pki (τ) and qkj (τ) are one;
and zero otherwise. We then define:

x(i,j)(τ) =
∑
i∈M

∑
j∈M

yij(τ). (4)

When a new user joins the system, it will impact the
system and all existing users. Users using the same AP, edge
server, or both as the new user may experience an additional
delay. We model the new system state Î after a decision
pair (i∗, j∗) is assigned to a new joining user k at time τ ,
assuming existing users in the system are following their
assigned decision pairs. We simply simulate the new system
state Î = (P̂ , Q̂) considering p̂ki∗(τ) = 1 and q̂kj∗(τ) = 1
while the states of other APs i 6= i∗ and edge servers j 6= j∗

remain unchanged. In addition, ûi∗(τ) = ui∗(τ − 1) + 1 and
v̂j∗(τ) = vj∗(τ − 1) + 1.

When a user leaves the system, the coordinator updates the
system state by releasing the communication and computing
resources allocated to that user. Specifically, considering an
assigned decision pair (i∗, j∗), we have ûi∗(τ) = ui∗(τ −
1)− 1, v̂j∗(τ) = vj∗(τ − 1)− 1, and other related parameters
will be updated, accordingly.

We next describe the AP allocation model, the service
placement model, and the end-to-end latency model in detail.

A. Access Point Allocation Model

As mentioned, each cloudlet is associated with an AP. It is
possible that a user is within a range of multiple APs and can
access any of them, but the user will be connected to only one
AP for each of its tasks. We define an indicator variable δki
that characterizes the availability of AP i ∈M to user k ∈ N
at time τ as follows:

δki(τ) =

{
1 if AP i is available to user k at τ ,
0 otherwise.

This indicates whether user k can connect to AP i at time τ
or not. Therefore, we have the following constraint for AP
selection: ∑

i∈M
δki(τ)pki (τ) = 1,∀k ∈ N , (5)

which implies that each user can only connect to one available
AP at time τ .

If too many users choose to connect to the same AP simulta-
neously, they may incur severe interference, which eventually
leads to lower uplink data rate. This would negatively affect
the performance of computation offloading in the EC system.
Therefore, the system needs to guarantee the following:

ui(τ) ≤ Pi, ∀i ∈M. (6)

B. Service Placement Model

When a user requests an edge service, the EC coordinator
needs to decide where to properly place computational re-
sources (e.g., VM or Container) to serve this user. Specifically,
the requested resources can be hosted on any cloudlet j ∈M
that satisfies the QoE requirements of the user and improves
the efficiency of the EC system. If tasks can only be executed

on edge servers associated with their connected APs, as
the number of arriving users increases, the EC system will
be overloaded quickly leading to unsatisfactory performance.
Therefore, we seek to find a proper service placement for each
user’s task.

Each user’s task is served by only one cloudlet, thus we
have: ∑

j∈M
qkj (τ) = 1,∀k ∈ N . (7)

In addition, the assignment of tasks to edge servers of each
cloudlet should not exceed its capacity:∑

k∈N

qkj (τ)Dk ≤ Dj(τ),∀j ∈M. (8)

Moreover, we need to ensure that the total number of users
connecting to APs is exactly equal to the total number of users
served by the cloudlets all the time. Therefore, we have:∑

i∈M
ui(τ) =

∑
j∈M

vj(τ). (9)

C. End-to-End Latency Model

End-to-end latency includes the network delay of trans-
mitting the data to a cloudlet (communication delay), the
processing time at the cloudlet (computation delay), and finally
the network transport delay of transmitting the results to the
user’s device (communication delay).

C.1) Communication Delay. The communication delay con-
sists of the transmission delay of the user connecting to a
proper AP and the transferring delay of the AP relaying to a
proper edge server if the connected AP and edge server are
not associated with each other.

Transmission Delay. Transmission delay is determined by the
wireless communication conditions (e.g., the number of users
connected to same AP). Assuming the bandwidth of an AP is
equally allocated to all users connecting to it, the bandwidth
allocated to user k at time τ from AP i is rki(τ) = Bi/ui(τ).
Therefore, the uplink transmission delay of offloading task k
to AP i at time τ is calculated as:

Λt
k,i(τ) =

Dk

rki(τ)
=
Dkui(τ)

Bi
. (10)

Transferring Delay. When the connected AP i is not associated
with the assigned edge server j, i.e., i 6= j, we consider a trans-
ferring delay Λf

i,j(τ) as a function of hop distance between the
cloudlet of the connected AP and the desired cloudlet. This is
due to the fact that the cloudlets are interconnected via LAN
and their physical distance is small. Obviously, if i = j, there
is no transferring delay, i.e., Λf

i,j(τ) = 0.
Similar to many studies (e.g., [1], [14]), we neglect the

delay from the edge server to send the computational results
back to the user when the connected AP is associated with the
assigned edge server (i.e., no transferring delay). Otherwise,
we consider the transferring delay as the total backhaul delay.
This is because that the size of computation outcome for many

applications or computational tasks (e.g., image recognition)
is usually much smaller than the size of input data.

C.2) Computation Delay. We consider the computational ca-
pabilities of a cloudlet are fairly divided among its assigned
tasks. The computation delay of the task of user k executed
on an edge server of cloudlet j at time τ is calculated using:

Λc
k,j(τ) =

Ckvj(τ)

Fj
,∀j ∈M. (11)

C.3) Total Delay. The end-to-end latency (total delay) experi-
enced by user k with an assigned decision pair (i, j) at time τ
is as follows:

Λl
k,(i,j)(τ) = Λt

k,i(τ) + 2Λf
i,j + Λc

k,j(τ) (12)

Furthermore, the system needs to ensure that the total delay
experienced by user k does not exceed its maximum tolerable
end-to-end latency, that is:

Λl
k,(i,j)(τ) ≤ Tk,∀k ∈ N . (13)

IV. MECHANISM DESIGN-BASED OFFLOADING

Users can be modeled as selfish players that can game the
system leading to network congestion, imbalance load, and
inefficient resource allocation. Algorithmic mechanism design
provides a suitable approach to incentivize players to cooperate
with the system in order to reach desirable outcomes. The goal
of algorithmic mechanism design is to design a system for such
self-interested players, such that their strategies at equilibrium
lead to expected system performance. In this section, we
propose a computation offloading and pricing mechanism
(COPM) to solve the dynamic computation offloading problem
in edge computing based on algorithmic mechanism design.

A. Utility Functions

A.1) User-Centric Model. A user k ∈ N sends its offloading
request in the form of (Ck, Dk, Tk) at time τ to the EC
system. The valuation of user k for a decision pair (i, j)
considering Λl

k,(i,j)(τ) (experienced latency) and Tk is defined
as:

V
(i,j)
k,Tk

(τ) = ψk(Tk − Λl
k,(i,j)(τ)), (14)

where ψk is a constant value representing user k’s monetary
preference per unit of time for its QoE.

The utility of user k when it follows assigned decision
pair (i, j) at time τ is determined by:

U
(i,j)
k,Tk

(τ) = V
(i,j)
k,Tk

(τ)︸ ︷︷ ︸
valuation

−w(i,j)
k (τ)︸ ︷︷ ︸

payment

, (15)

where w(i,j)
k (τ) is the payment of the user for completing its

task through the assigned decision pair. We assume that users
are risk-neutral and want to maximize their utilities.

A.2) System-Centric Model. The EC system aims to maximize
the social surplus of all current users (excluding new users)
while satisfying the QoE of each user.

When new user k joins the system with an assigned decision
pair (i∗, j∗) at time τ , we define the valuation of the system
as follows:

Vs,(i∗,j∗)(τ) =
∑

n∈N\k

∑
i∈M

∑
j∈M

A · Λl
n,(i,j)(τ), (16)

where A is a vector of parameters α, β, γ representing the
monetary preferences per unit of time in transmission, trans-
ferring, and computation parts of the offloading, respectively.
In particular, αi is the monetary value of time for AP i ∈M;
β(i,j) is the monetary value of time for transferring a task to
edge server j via assigned AP i; and γj is the monetary value
of time for edge server j ∈ M. Therefore, the valuation of
the system is calculated as:

Vs,(i∗,j∗)(τ) =
(∑

i∈M

∑
n∈N\k

αiΛ̂
t
n,i(τ)+

∑
i∈M

∑
j∈M

β(i,j)x(i,j)(τ)2Λ̂f
i,j+∑

j∈M

∑
n∈N\k

γjΛ̂
c
n,j(τ)

)
,

(17)

where Λ̂t
n,i(τ) and Λ̂c

n,j(τ) are the new transmission delay and
the new computation delay of the current users (∀n ∈ N \ k)
after user k joins at time τ , respectively. In particular, for
all AP i 6= i∗ and edge server j 6= j∗, we have Λ̂t

n,i(τ) =

Λt
n,i(τ − 1) and Λ̂c

n,j(τ) = Λc
n,j(τ − 1) for all users. For

AP i∗ and edge server j∗, the value of Λ̂t
n,i∗(τ) and Λ̂c

n,j∗(τ)
will be calculated according to new ûi∗(τ) = ui∗(τ − 1) +
1 and new v̂j∗(τ) = vj∗(τ − 1) + 1, respectively. Note that
the transferring delay between any two cloudlets will not be
affected by the new joining user (i.e., Λ̂f

i,j = Λf
i,j), since it

depends on their number of hop distances.
The utility of the system is defined as:

Us,(i∗,j∗)(τ) = ws(τ)︸ ︷︷ ︸
payment

−Vs,(i∗,j∗)(τ)︸ ︷︷ ︸
valuation

(18)

Note that the EC system is better off as the total delay of all
current users decreases. Moreover, the mechanism is budget
balanced, where the exchanged payments are equal. Meaning
that: ws(τ) = w

(i,j)
k (τ).

B. COPM: Computation Offloading and Pricing Mechanism

The state of the EC system changes dynamically over time
by the arrival and departure of users. At any time a new user
requests to join, we define a game between the new user as a
player and all current users in the EC system. The objective
is to maximize the utilities of both the new user and the EC
system. We propose the instant social surplus to handle the
dynamic changes of the EC system:

Definition 1 (Instant social surplus). The instant social
surplus at any time τ is the sum of the utility of new user
and the utility of the system:

Us,(i∗,j∗)(τ) + U
(i,j)
k,Tk

(τ) = V
(i,j)
k,Tk

(τ)− Vs,(i∗,j∗)(τ). (20)

The EC system aims to assign user k a proper decision
pair (i, j) maximizing the instant social surplus while guaran-
teeing this user’s QoE and the system’s capacity constraints.

Users can choose to lie about their true preferences (i.e.,
maximum tolerable end-to-end latency) in order to increase
their own utility. Such an action could inversely decrease the
overall system efficiency. Therefore, designing an incentive-
compatible mechanism in which users have no incentive to lie
about their true preferences is extremely crucial in reality. In
an incentive-compatible mechanism, truth-telling is a dominant
strategy. As a result, it never pays off for any user to deviate
from reporting its true preference, irrespective of what the
other users report as their preferences.

We propose an optimal incentive-compatible offloading
mechanism, COPM, that consists of a decision pair allocation
scheme and a payment determination scheme. To achieve
incentive compatibility, we need to design an optimal decision
pair allocation scheme (subsection B.1) along with a payment
function (subsection B.2) designed based on Vickrey-Clarke-
Groves (VCG) pricing [15]. We describe our offloading mech-
anism design in detail in the following.

B.1) Decision Pair Allocation Scheme. The goal of the EC
system is to allocate an optimal decision pair to each new
joining user in order to maximize the instant social surplus
while satisfying the user’s preference. We define the Maxi-
mization of Instant Social Surplus problem, called MISS, as
follows:

max
(i,j)∈P

−Vs,(i,j)(τ) + V
(i,j)
k,Tk

(τ) (21)

s.t. (3)(4)(5)(6)(7)(8)(9)(13) and
integrality for the decision variables,

where P represents the set of all feasible decision pairs for
user k.

Since the MISS optimization problem is complicated, we
use the factorization techniques to obtain a simplified version
of MISS, called MISS2.

Observation 1. The MISS problem is equivalent to finding a
decision pair that minimizes the sum of increase in the total

delay of all current users (not including the new user) and the
total delay of the new user itself.

According to Eq. (14) and (17), the objective function of
MISS in Eq. (21) can be rewritten as Eq. (19). The detailed
proof is given in our technique report [16].

Since the EC system knows the state of the system, it is easy
to find that in Eq. (19), Term 1 representing the utility of the
system before new user k joins (i.e., Vs,(i,j)(τ)) is constant.
Term 2 is also constant as ψk and Tk do not depend on the
decision pair. Since the values of αi, γj , and ψk are predefined
constants, the MISS problem has an equivalent minimization
problem defined as MISS2 as follows:

min
(i,j)∈P

{
αi

∑
n∈N\k

(Λ̂t
n,i(τ)− Λt

n,i(τ − 1))

︸ ︷︷ ︸
increase in transmission delay

+

γj
∑

n∈N\k

(Λ̂c
n,j(τ)− Λc

n,j(τ − 1))

︸ ︷︷ ︸
increase in computation delay

+

ψk (Λ̂t
k,i(τ) + 2Λ̂f

(i,j) + Λ̂c
k,j(τ))︸ ︷︷ ︸

total delay of new user

}
(22)

s.t. (3)(4)(5)(6)(7)(8)(9)(13) and
integrality for the decision variables.

Therefore, the objective now becomes to find an optimal
decision pair (i∗, j∗) for user k such that the sum of the
increase in total delay of all current users (not including user k)
after user k joins (first two terms of Eq. (22) in MISS2) and
the total delay of user k is minimized (third term of MISS2).
After COPM calculates a proper decision pair for each new
user by solving MISS2, it calculates a corresponding payment
for each user.

B.2) Payment Determination Scheme. After solving the MISS2

problem, an optimal decision pair (i∗, j∗) is calculated by the
EC coordinator for each new joined user k. The coordinator
then needs to compute their payments (e.g., each user k should

− Vs,(i,j)(τ) + V
(i,j)
k,Tk

(τ)

= −
{ ∑

i∈M

∑
n∈N\k

αiΛ
t
n,i(τ − 1) +

∑
i∈M

∑
j∈M

2βijxij(τ − 1)Λf
(i,j) +

∑
j∈M

∑
n∈N\k

γjΛ
c
n,j(τ − 1)

}
︸ ︷︷ ︸

Term 1

+ ψkTk︸ ︷︷ ︸
Term 2

−

{{
αi∗

∑
n∈N\k

(Λ̂t
n,i∗(τ)− Λt

n,i∗(τ − 1)) + 2βi∗j∗xi∗j∗(τ − 1)(Λ̂f
(i∗,j∗) − Λf

(i∗,j∗)︸ ︷︷ ︸
=0

) + γj∗
∑

n∈N\k

(Λ̂c
n,j∗(τ)− Λc

n,j∗(τ − 1))
}

︸ ︷︷ ︸
the value of increase in total delay of the current users (excluding the new user) when new user k joins

+
{
ψk

(
Λ̂t
k,i∗(τ) + 2Λ̂f

(i∗,j∗) + Λ̂c
k,j∗(τ)

)}
︸ ︷︷ ︸

the value of total delay of new user k

}

(19)

pay for using its assigned AP i∗ and edge server j∗). We define
the payment based on the marginal cost pricing as follows:

w
(i∗,j∗)
k (τ) = Vs,(i∗,j∗)(τ)− Vs,(i,j)(τ − 1) ={

αi∗

∑
n∈N\k

(
Λ̂t
n,i∗(τ)− Λt

n,i∗(τ − 1)
)
+

γj∗
∑

n∈N\k

(
Λ̂c
n,j∗(τ)− Λc

n,j∗(τ − 1)
)}
,

(23)

where Vs,(i,j)(τ − 1) represents the valuation of the EC
system right before user k joins, and Vs,(i∗,j∗)(τ) denotes
the valuation of the EC system of all current users (not
including the joined user k), calculated according to Eq. (17).
Considering the first two terms of Eq. (22), the payment of
each user k is exactly equal to the increase in valuations of
other current users in the EC system.

Our proposed mechanism, COPM, is incentive compatible.
Due to the space limitation, the detailed proof of incentive-
compatibility of COPM is given in our technique report [16].

V. DAPA: ONLINE ALGORITHMIC-BASED OFFLOADING

We now describe our online algorithmic solution for our
mechanism by proposing Dynamic Allocation and Pricing
Algorithm (DAPA), presented in Algorithm 1. When any new
user k requests edge service with (Ck, Dk, Tk) at time τ ,
DAPA first finds all available APs and available edge servers
for this user (lines 3-4). Also, DAPA has the information of all
current users whose tasks are not yet completed when the new
user joins (this is updated based on users leaving the system).
This information is in S(τ − 1), and for each existing user n
it consists of allocated AP n.i, allocated edge server n.j, start
time n.st, end time n.et, complete time, transmission delay,
transferring delay, and computation delay. If the arrival time
of user k is larger than the end time of any existing user
in S(τ − 1), it indicates that these users have completed their
tasks and left the system before user k joins. Thus, DAPA
applies UPDATE() function to update the system state at τ by
updating ûi(τ) ← ui(τ − 1) − 1, v̂j(τ) ← vj(τ − 1) − 1,
D̂j(τ) ← Dj(τ − 1) + Dn, and other related parameters.
The information of the completed user n will be removed
from S(τ) (lines 7-10).

DAPA defines a 2-D array V and finds the value of instant
social surplus by calculating Eq. (22) for each feasible decision
pair (lines 11-13). Note that here, DAPA is not solving
the MISS or MISS2 problem to find the optimal decision
pair, but simply calculating the value of Eq. (22) having a
decision pair (i, j). The optimal decision pair (i∗, j∗) with
the minimum value is obtained from V (line 14).

DAPA uses the COMPUTENEWDELAY() function to check
if the reported maximum tolerable end-to-end latency of user k
can be met. Specifically, the calculated (i∗, j∗) is temporarily
assigned to user k and then its total delay Λl

k,(i,j)(τ) is
computed. If Λl

k,(i∗,j∗)(τ) ≤ Tk, it implies assigning (i∗, j∗)
to user k is feasible (lines 15-18) and the corresponding price
for using this pair is calculated using Eq. (23). Otherwise, the

Algorithm 1 DAPA: Dynamic Allocation and Pricing Algo-
rithm for Offloading

1: Input: User k edge service request: Ck, Dk, Tk
2: Input: System state I(τ − 1) = (P (τ − 1), Q(τ − 1))
3: Ha ← feasible APs for user k
4: He ← feasible edge servers for user k
5: S(τ − 1)← the set of information of current users
6: V ← ∅ /*2D array of instant social surplus values (22)*/
7: for each current user n ∈ S(τ − 1) do
8: if k.st > n.et then
9: Î(τ)← UPDATE()

10: S(τ)← S(τ − 1) \ n
11: for each AP i ∈ Ha do
12: for each edge server j ∈ He do
13: V[i][j]← value of Eq. (22)
14: (i∗, j∗)← arg min(V)
15: Λl

k,(i∗,j∗)(τ)← COMPUTENEWDELAY(k, (i∗, j∗)) based
on Eq. (12)

16: if Λl
k,(i∗,j∗)(τ) ≤ Tk then

17: w∗ ← payment for using (i∗, j∗) based on Eq. (23)
18: return (i∗, j∗), w∗

19: else
20: user k’s request is sent to the cloud

request of user k cannot be served by the EC system, and it
will be forwarded to the cloud (line 20).

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

1) EC System Data: The simulated area is a 500× 500 m2

square covered by 8 cloudlets, deployed evenly in this area.
The effective radius ri of coverage of each AP i is ran-
domly selected from [75, 100, 125] meters in order to generate
the values of the indicator variable. The coverage areas of
cloudlets can overlap, which indicates each arriving user may
have multiple APs to connect to based on its coordinates. We
set the bandwidth of APs obeys Gaussian distribution with
mean µ = 100 Mbps and standard deviation σ = 0.25µ. The
maximum number of users to be served simultaneously by
AP i (Pi) is uniformly selected from [10, 30]. The edge servers
are heterogeneous, and each edge server can be equipped
with multiple CPU cores. The computation capability of
edge servers (Fj) is uniformly selected from [5, 10] GHz.
The transferring delay between two cloudlets is uniformly
distributed in [0.1, 0.5] sec. The memory capacity Dj of each
edge server j is 8 GB.

2) User Data: The Poisson process plays an important
role in modeling systems, as it is usually used in scenarios
where the goal is to count the occurrence of certain events
happenning at a certain rate but completely at random [17]. In
this paper, we assume that user arrival events can be modeled
as a Poisson process with rate λ = na/3600, where na = 1200
represents the number of users arriving in the EC system
within one hour. Each user k has a computation offloading
request, and its location is arbitrary. The data size Dk of user k

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hours)

0

5

10

15

20

25

30
Us

er
s c

on
ne

ct
in

g
to

 A
P

AP1
AP2

AP3
AP4

AP5
AP6

AP7
AP8

(a) User Equilibrium (UE)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hours)

0

5

10

15

20

25

30

Us
er

s c
on

ne
ct

in
g

to
 A

P AP1
AP2

AP3
AP4

AP5
AP6

AP7
AP8

(b) Random Selection (RS)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hours)

0

5

10

15

20

25

30

Us
er

s c
on

ne
ct

in
g

to
 A

P AP1
AP2

AP3
AP4

AP5
AP6

AP7
AP8

(c) DAPA

Fig. 2: Analysis of workload on APs

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hours)

0
5

10
15
20
25
30

Ta
sk

s i
n

ed
ge

 se
rv

er

Edge Server1
Edge Server2
Edge Server3
Edge Server4

Edge Server5
Edge Server6
Edge Server7
Edge Server8

(a) User Equilibrium (UE)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hours)

0

5

10

15

20

25

30
Ta

sk
s i

n
ed

ge
 se

rv
er

Edge Server1
Edge Server2
Edge Server3
Edge Server4

Edge Server5
Edge Server6
Edge Server7
Edge Server8

(b) Random Selection (RS)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hours)

0

5

10

15

20

25

30

Ta
sk

s i
n

ed
ge

 se
rv

er

Edge Server1
Edge Server2
Edge Server3
Edge Server4

Edge Server5
Edge Server6
Edge Server7
Edge Server8

(c) DAPA

Fig. 3: Analysis of workload on edge servers

is uniformly selected from [5, 60] MB. To specify the required
cycles Ck of the computational task, we consider the general
application type in which 1 bit requires 1000 cycles to be
processed [18]. We roughly classify the users’ tasks into three
categories: urgent (tk+100 sec), mid-urgent (tk+200 sec), and
nonurgent (tk+300 sec), where tk is the minimum total latency
for completing the computational task of user k. We assume
that the reported Tk from user k must be no less than tk.
Moreover, ψk is 1$/h, αi is 50$/h, and γj is 50$/h.

B. Performance of Benchmark

We simulate a real-time scenario with a duration of 3 hours.
To evaluate the performance of our proposed mechanism,
DAPA, we compare it with two other offloading strategies:

1) User Equilibrium (UE): every new user selfishly
chooses the decision pair with the minimum total delay.

2) Random Selection (RS): every new user randomly
chooses a feasible decision pair.

We first show the performance of these mechanisms in terms
of the workload on APs (Fig. 2) and edge servers (Fig. 3).
In particular, these figures show that the dynamics of the
number of users ui(τ) connecting to each AP i and the number
of computational tasks vj(τ) on each edge server j over
time. The results show that DAPA achieves a more efficient
allocation to users such that the workload on each AP and each
edge server are balanced overall. Note that RS should be load
balanced since it randomly selects a decision pair, however,
the experienced time of users by RS is poor (Fig. 4b).

We then investigate the end-to-end latency for completing
the computational task of each user when following its as-
signed decision pair over time. We define Tmin

k as the mini-
mum latency that the EC system can provide for completing
the computational task of user k, that is equal to the value
of experienced latency by choosing the UE strategy if only
this user exists in the system. We normalize the experienced
latency of user k by DAPA (Λl

k) and the minimum latency
(Tmin

k) by dividing them by the reported maximum tolerable
latency Tk of user k. These normalized values are shown
in Fig. 4a. The results show that the experienced end-to-end
latency Λl

k of user k is different but close to the minimum
latency (i.e., Tmin

k green dots). This figure also shows that the
users’ preferences are satisfied over time since the experienced
latency is always less than or equal to the reported maximum
tolerable latency.

Moreover, we study the dynamic changes of the experienced
end-to-end latency of users over time in Fig. 4b. The results
show that the proposed DAPA outperforms UE and RS in
terms of the end-to-end latency that users experience for
completing their tasks as the number of joined users increases.
This is due to the fact that both UE and RS do not have
any policy to consider new users’ impacts on other existing
users in the system. On the contrary, DAPA aims to find the
optimal decision pair for each new user with the objective of
jointly minimizing the sum of the increase in total delay of
all current users (excluding the new user) after the new user
joins and the total delay of the new user. UE leads to the

0 500
1000

1500
2000

2500
3000

3500

New user index

0.2

0.4

0.6

0.8

1.0
Ra

tio
 to

 re
po

rte
d

T k

reported Tk

announced Tmin
k

experienced l
k

(a) Ratio of latency to the reported Tk

0 500
1000

1500
2000

2500
3000

3500

New user index

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(h
ou

rs
)

UE
RS
DAPA

(b) End-to-end latency of users

0 500
1000

1500
2000

2500
3000

3500

New user index

0

2

4

6

8

Va
lu

e
(U

SD
)

payment
cost (negation of utility)
valuation

(c) Payment, valuation, and cost of users

Fig. 4: Analysis of pricing

worst performance as the number of arrived users increases
since it considers selfish assignments and the EC system
rapidly becomes overloaded on APs/edge servers (as shown
in Figs. 2a-3a).

We further evaluate how the EC system makes use of
the payments to incentivize each user to report its own true
maximum tolerable end-to-end latency. The payments (red
points), valuations, and costs (i.e., negative utilities) of joined
users are shown in Fig. 4c. The payment of users who join
the system at the beginning is much less than users who arrive
later. This is due to the fact that each user payment depends on
the increase in the end-to-end latency of other existing users
in the system (according to Eq. (23)). When there are fewer
users, their payment is lower. For example, Figs. 2c and 3c
show a decrease in the number of users in the system at 0.6-
0.8 hour, that corresponds to about 800th-1000th joining user
in Fig. 4c with a reduction in their payments. Also, both of the
payments and valuations of the users are always non-negative.
Additionally, when all users report their maximum tolerable
end-to-end latency truthfully, their costs are minimized (i.e.,
utilities are maximized) at the equilibrium obtained by DAPA.

VII. CONCLUSION

In this paper, we studied the dynamic computation offload-
ing problem in the EC system. We formulated the computation
offloading optimization problem for users joining and leaving
the system with the objective of jointly optimizing the access
point allocation and service placement problems. To address
this challenge, we devised an online incentive-compatible
mechanism, DAPA, in which the new users always declare
their true preferences. The effectiveness of the mechanism
was validated by extensive experiments in comparison to User
Equilibrium and Random Selection strategies. For the future
work, we plan to consider the effects of user mobility on the
computation offloading problem in edge computing.

Acknowledgment. This research was supported in part by NSF
grant CNS-1755913.

REFERENCES

[1] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 4, pp. 974–983, 2014.

[2] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[3] E. Farhangi Maleki and L. Mashayekhy, “Mobility-aware computation
offloading in edge computing using prediction,” in Proc. of the 4th IEEE
Intl. Conf. on Fog and Edge Computing, 2020, pp. 1–6.

[4] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo, “Efficient algorithms for
capacitated cloudlet placements,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 10, pp. 2866–2880, 2015.

[5] M. Jia, W. Liang, Z. Xu, and M. Huang, “Cloudlet load balancing in
wireless metropolitan area networks,” in Proc. of the 35th IEEE Conf.
on Computer Communications, 2016, pp. 1–9.

[6] D. Bhatta and L. Mashayekhy, “Generalized cost-aware cloudlet place-
ment for vehicular edge computing systems,” in Proc. of the 11th IEEE
Intl. Conf. on Cloud Computing Technology and Science, 2019, pp. 1–8.

[7] L. Wang, L. Jiao, J. Li, and M. Mühlhäuser, “Online resource allocation
for arbitrary user mobility in distributed edge clouds,” in Proc. of the
37th IEEE Intl. Conf. on Dist. Computing Systems, 2017, pp. 1281–1290.

[8] L. Mashayekhy, N. Fisher, and D. Grosu, “Truthful mechanisms for
competitive reward-based scheduling,” IEEE Transactions on computers,
vol. 65, no. 7, pp. 2299–2312, 2016.

[9] W. Shi, L. Zhang, C. Wu, Z. Li, and F. Lau, “An online auction
framework for dynamic resource provisioning in cloud computing,” in
ACM SIGMETRICS Performance Evaluation Review, vol. 42, no. 1,
2014, pp. 71–83.

[10] N. Sharghivand, F. Derakhshan, and L. Mashayekhy, “QoS-aware match-
ing of edge computing services to Internet of Things,” in Proc. of the
37th IEEE Intl. Perf. Computing and Comm. Conf., 2018, pp. 1–8.

[11] A. Zavodovski, S. Bayhan, N. Mohan, P. Zhou, W. Wong, and J. Kan-
gasharju, “DeCloud: Truthful decentralized double auction for edge
clouds,” in Proc. of the 39th IEEE Intl. Conf. on Distributed Computing
Systems, 2019, pp. 2157–2167.

[12] A. Kiani and N. Ansari, “Toward hierarchical mobile edge computing:
An auction-based profit maximization approach,” IEEE Internet of
Things Journal, vol. 4, no. 6, pp. 2082–2091, 2017.

[13] S. Ma, S. Guo, K. Wang, W. Jia, and M. Guo, “A cyclic game for joint
cooperation and competition of edge resource allocation,” in Proc. of the
39th IEEE Intl. Conf. on Distributed Comp. Systems, 2019, pp. 503–513.

[14] X. Ma, C. Lin, X. Xiang, and C. Chen, “Game-theoretic analysis of
computation offloading for cloudlet-based mobile cloud computing,” in
Proc. of the 18th ACM Intl. Conf. on Modeling, Analysis and Simulation
of Wireless and Mobile Systems, 2015, pp. 271–278.

[15] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic
game theory. Cambridge university press, 2007.

[16] W. Ma and L. Mashayekhy, “Truthful Computation Offloading Mech-
anisms for Edge Computing,” arXiv e-prints, [Online]. Available:
https://arxiv.org/abs/2006.01553, 2020.

[17] D. P. Bertsekas and J. N. Tsitsiklis, Introduction to probability. Athena
Scientific Belmont, MA, 2002, vol. 1.

[18] J. Kwak, Y. Kim, J. Lee, and S. Chong, “Dream: Dynamic resource
and task allocation for energy minimization in mobile cloud systems,”
IEEE Journal on Selected Areas in Communications, vol. 33, no. 12,
pp. 2510–2523, 2015.

