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Abstract—Secure neighbor discovery is fundamental to mobile
ad hoc networks (MANETs) deployed in hostile environments and
refers to the process in which two neighboring nodes exchange
messages to discover and authenticate each other. It is vulnerable
to the jamming attack in which the adversary intentionally trans-
mits radio signals to prevent neighboring nodes from exchanging
messages. Anti-jamming communications often rely on spread-
spectrum techniques, which depend on a spreading code common
to the communicating parties but unknown to the jammer. The
spread code, however, is impossible to establish before the com-
municating parties successfully discover each other. While several
elegant approaches have been recently proposed to break this
circular dependence, the unique features of neighbor discovery
in MANETs make them not directly applicable. In this paper, we
propose JR-SND, a jamming-resilient secure neighbor discovery
scheme for MANETs based on direct-sequence spread spectrum
and random spread-code predistribution. JR-SND enables neigh-
boring nodes to securely discover each other with overwhelming
probability despite the presence of omnipresent jammers. Detailed
theoretical and simulation results confirm the efficacy and effi-
ciency of JR-SND.

Index Terms—Jamming, secure neighbor discovery, MANET.

I. INTRODUCTION

S ECURE neighbor discovery is a fundamental functionality
in mobile ad hoc networks (MANETs) deployed in hostile

environments [2]. It refers to the process that neighboring nodes
exchange messages to discover and authenticate each other.
As the basis of other network functionalities such as medium
access control and routing, secure neighbor discovery need be
frequently performed due to node mobility.

The open wireless medium in MANETs renders secure
neighbor discovery particularly vulnerable to the jamming at-
tack, in which the adversary intentionally transmits noise-like
signals to prevent neighboring nodes from exchanging mes-
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sages and thus discovering each other. Traditional anti-jamming
communications often depend on spread-spectrum techniques
[3], which all require that the communicating parties use a
common spread code (unknown to the adversary) to spread the
signals such that the transmissions are unpredictable and thus
resilient to jamming.

Applying spread-spectrum techniques for jamming-resilient
secure neighbor discovery in MANETs, unfortunately, faces sev-
eral challenges. One the one hand, if all nodes share a common
spread code, the adversary can acquire the spread code after com-
promising any node, which leads to a single point of failure. On
the other hand, if each pair of nodes share a unique code so that
compromising any node would not affect the spread codesshared
between non-compromised node pairs, two neighboring nodes,
however, do not know which spread code to use if jamming
takes place before they successfully discover and authenticate
each other. This situation thus leads to a circular dependency.

There are a few recent attempts such as [4]–[13] to break
the circular dependency between anti-jamming communica-
tions and spread-code establishment. The unique features of
MANET neighbor discovery, however, make these elegant
solutions unsuitable. In particular, since node encounters are
unpredictable in MANETs, each node must be always prepared
to accept and validate potential neighbor discovery requests.
The existing solutions [4]–[13] all depend on some publicly
known communication strategies such as public spread-code
sets. The adversary can thus use such public knowledge to
inject arbitrary many neighbor discovery requests in the whole
network, leading to a special Denial-of-Service (DoS) attack
in which all nodes are forced to perform endless verifications
of neighbor discovery requests (which often involve expensive
digital signature verifications). Moreover, nodes may encounter
for only a short while due to high mobility. This requires neigh-
bor discovery to be done in a very short time, say a few seconds,
while most existing solutions do not meet this requirement.

The above situation motivates us to design a novel solution
specially tailored for jamming-resilient secure neighbor discov-
ery in MANETs. Our key observation is that most MANETs
are inherently different from the civilian applications targeted
by [4]–[13]. Specifically, MANETs in hostile environments
such as the battlefield are normally controlled by the same
authority. It is thus feasible to preload every node with some
secret spread codes shared with a few others for subsequent
anti-jamming communications in the field. Such spread-code
pre-distribution is nevertheless infeasible in civilian networks
which lacks a single authority and features dynamic join and
leave of unknowns.
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In this paper, we propose JR-SND, a novel jamming-resilient
secure neighbor discovery scheme for single-authority DSSS-
based MANETs. Inspired by random key pre-distribution
schemes for sensor networks such as [14], JR-SND requires the
MANET authority to generate a pool of secret spread-codes and
pre-load every node with a constant number of spread codes
randomly drawn from the pool prior to network deployment.
During the network operation, two neighboring nodes can use
their spread codes to conduct anti-jamming secure neighbor
discovery via DSSS communication. In particular, JR-SND
allows two neighboring nodes to directly discover each other
if they share at least one common spread code unknown to
omnipresent jammers or indirectly discover each other if there
exists a multi-hop path connecting them, along which every
two neighboring nodes have successfully discovered each other.
As time goes by, the adversary may compromise some nodes
to know their spread codes, but the non-compromised codes
will remain secret. Compared to prior work [4]–[13] in terms
of their use in secure neighbor discovery, JR-SND can greatly
mitigate the aforementioned DoS attack because it can only be
launched by the adversary using limited compromised spread
codes which can fortunately be revoked after being identified.

Our main contributions are summarized as follows.

• We identify jamming-resilient secure neighbor discov-
ery in MANETs as a related problem that cannot be
addressed by existing anti-jamming techniques such as
[4]–[13].

• We propose a novel Jamming-Resilient Secure Neighbor
Discovery (JR-SND) scheme by combining DSSS with
key pre-distribution [14], which is the first of its kind. JR-
SND consists four components, including a new random
spread-code pre-distribution scheme that supports the
fine control of the impact of compromised spread codes,
a direct neighbor discovery protocol and two indirect
neighbor discovery protocols, which jointly enable any
two neighboring nodes to quickly discover each other
with high probability under severe jamming attacks.

• We confirm the efficacy of JR-SND by theoretical analy-
sis and extensive simulation studies.

The rest of this paper is structured as follows. Section II
discusses the related work. Section III briefly introduces the
background of DSSS. Section IV introduces our network and
adversary models. Section V illustrates the design of JR-SND.
Section VI presents the performance evaluation of JR-SND, and
Section VII concludes this paper.

II. RELATED WORK

Several schemes have been proposed to enable two nodes
to establish a secret spread code (or key) under the jamming
attack. In their seminal work [5], Strasser et al. proposed
using Uncoordinated Frequency Hopping (UFH) to enable two
communication parties without a common secret to establish
a secret key for the use of subsequent more efficient FHSS
communications. This technique was later improved in [6], [7],
[12], [13] to reduce the key-establishment latency and commu-
nication overhead. Under the above techniques, the adversary

Fig. 1. A simplified system diagram of DSSS.

can inject arbitrary many message fragments leading to a DoS
attack. In [8], Jin et al. addressed the same problem by propos-
ing an intractable forward-decoding and efficient backward-
decoding scheme based on DSSS. Their scheme, however,
requires the sender to know the MAC address of the receiver
which is unfortunately unknown before the sender successfully
discovers the receiver.

Another line of research has been devoted to enable
jamming-resistant broadcast communication. The schemes pro-
posed in [9]–[11] are all based on DSSS and a publicly known
spread-code set and thus vulnerable to the DoS attack men-
tioned earlier. In [15], Xiao et al. proposed a collaborative UFH
scheme in which earlier receivers of a broadcast message serve
as relays for other nodes, and the scheme was subsequently ana-
lyzed in [16]. More recently, jamming-resistant communication
against inside attacker has been studied in [17]–[19]. These
schemes are based on frequency hopping and thus cannot be
directly applied to our target scenarios.

There are also some work that are loosely related to ours.
Anti-jamming in general CDMA systems have been investi-
gated in [20], [21]. In [22], Lu et al. proposed a scheme that
achieves the minimum message transmission latencies for smart
grid systems under jamming attack. More recently, Yan et al.
[23] proposed an anti-jamming scheme that explores interfer-
ence cancellation and transmit precoding capabilities of MIMO
technology.

III. BACKGROUND ON DSSS

DSSS is a modulation technique widely used in code division
multiple access (CDMA) systems, e.g., IS-95. In a DSSS sys-
tem (see Fig. 1), the sender spreads the data signal by multiply-
ing it by an independent “noise” signal known as a spread code,
which is a pseudorandom sequence of “1” and “−1” bit values
at a frequency much higher than that of the original signal.
The energy of the original signal is thus spread into a much
wider band. The receiver can reconstruct the original signal by
multiplying the received signal by a synchronized version of the
same spread code, which is known as a de-spreading process.

To transmit a message, the sender first transforms the mes-
sage into a non-return-to-zero (NRZ) sequence by replacing
each bit “0” with “−1” and then multiplies each bit of the mes-
sage by a spread code to get the spread message also known as
the chip sequence. For example, if the message to be transmitted
is “10,” and the spread code is “+1 − 1 − 1 + 1,” the resulting
chip sequence is “+1 − 1 − 1 + 1 − 1 + 1 + 1 − 1.” The chip
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sequence is then converted into the RF signal through the D/A
converter and the PSK modulator and finally transmitted.

On the receiver side, similar operations are performed in
a reverse order. The receiver first samples and demodulates
the received signal and then performs A/D conversion to ob-
tain the chip sequence. The receiver then computes the cor-
relation between the obtained chip sequence and the shared
spread code, where the correlation between two NRZ sequences
(u1, · · · , uN) and (v1, · · · , vN) is defined as 1

N

∑N
i=1 uivi. Note

that the correlation of two identical sequences is one, while the
expected correlation of two independent random sequences is
zero. A correlation higher (lower) than a predefined threshold
τ (−τ ) indicates a bit 1 (−1). For example, if pseudorandom
sequences of N = 512 bits are used as spread codes, τ can be
set 0.15 to ensure correct de-spreading [9].

IV. NETWORK AND ADVERSARY MODELS

A. Network Model

We consider a MANET consisting of n nodes deployed in
some hostile environment such as the battle field. For simplic-
ity, we assume that each MANET node has two DSSS antennas
with a transmission speed of R b/s for anti-jamming communi-
cations, one for receiving and the other for transmitting. The
extension of JR-SND to an arbitrary number of antennas is
left as future work. Due to node mobility, every node need
periodically perform neighbor discovery to discover others
within its transmission range. We assume that each node can
monitor the transmission activities associated with a few spread
codes in real time, each shared with one unique neighbor. This
assumption has been made in existing CDMA transmitter-based
MAC protocols [24] and can be easily realized by hardware.
This implies that an incoming message spread using the code
under real-time monitoring can be de-spread with negligible
delay. However, if a node has many spread codes, it may not be
able to simultaneously monitor all of them and have to buffer
the incoming signals for off-line de-spreading processing in
case that these signals can be de-spread using some spread
codes that are not currently being monitored. In addition, if
a node does not detect any transmission with any code under
real-time monitoring for a threshold amount of time, it will stop
monitoring that code under the assumption that the correspond-
ing neighbor has moved out of its transmission range.

As in [9], we choose pseudorandom codes for DSSS com-
munications for their ease of generation and good auto/
cross-correlation properties. We assume that the concurrent
transmissions spread with different pseudorandom codes inter-
fere with each other with negligible probability, which holds if
the length of spread codes is sufficiently large, e.g., N = 512.
We refer the readers to [9] for more detailed discussions about
pseudorandom codes.

To prevent the adversary from impersonating legitimate
nodes, neighbor discovery must be conducted in a secure fash-
ion such that two nodes accept each other as mutual neigh-
bors after authenticating each other’s credentials issued by the
MANET authority. Throughout the paper, by saying two nodes
successfully discover each other, we mean that they physically

detect each other’s existence and also achieve mutual authen-
tication. There are many mutual authentication methods that
suffice our purpose and often involve a three-way handshake be-
tween two involved nodes. To ease our presentation, we assume
an approach as in [25] based on Identity-Based Cryptography
[26], in which each node A has an ID IDA as its public key and
an ID-based private key K−1

A obtained from the authority before
network deployment. Note that, however, JR-SND can also rest
on many other mutual authentication schemes.

B. Adversary Model

We focus on defending against jamming attack in this paper
and refer readers to existing rich literature for defenses against
other important attacks such as wormhole attack [27]–[30].

We assume an omnipresent adversary or jammer J aiming
to jam neighbor discovery and thus prevent neighboring nodes
from discovering each other anywhere in the network. J is
assumed to be computationally bounded, which means that if
J does not know the spread code being used, it is infeasible
for him to recover it by exhaustive search within the network
lifetime. This assumption is common in DSSS systems [8], [9]
and holds if the spread code is sufficiently long, e.g., N = 512.
JR-SND relies on a large set of random spread codes chosen
by the MANET authority, which are initially all kept secret
from J . As time goes by, J may compromise some MANET
nodes and acquire the secret codes held by them. Compared to
unattended sensor nodes in sensor networks, MANET nodes are
more powerful and often carried and used by humans such as
soldiers so that they can be under good self and mutual moni-
toring. It is reasonable to assume that J can only compromise a
small fraction (say, up to 5%) of MANET nodes. JR-SND does
not work well if this assumption does not hold.

To jam an ongoing DSSS transmission spread with any
spread code, J need transmit using the same code and also
synchronize with the target transmission. As in [9], we assume
that J can always recover chip synchronization without de-
spreading a message, which can be realized by energy detectors
or modulation-specific characteristics. In other words, J only
need determine which spread code to use to jam the transmis-
sion. We focus on two types of jammers.

• Random jammer: whenever J detects an ongoing trans-
mission, J jams it with a random compromised spread
code.

• Reactive jammer: whenever J detects an ongoing trans-
mission, J first tries to identify which spread code is
being used. If the code is successfully identified, it then
uses it to jam the rest of the message.

Random jamming places no additional requirements on J ’s
computation capability, while reactive jamming requires J to
identify the correct spread code being used before the end of
the targeted message transmission.

Besides the jamming attack, the adversary may also exploit
the operations of JR-SND to launch the DoS attack by injecting
arbitrary fake neighbor-discovery requests to occupy legitimate
nodes with endless verifications of these fake requests. JR-SND
is highly resilient to this DoS attack, as will be manifested later.
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To simplify the analysis, we assume that J consists of
multiple jamming devices with similar transmitters to those of
legitimate nodes. We further assume that J can transmit at most
z signals in parallel to attempt jamming any targeted neighbor-
discovery message, where z � N. Without this limitation on
J ’s capability, J can jam any targeted transmission without
knowing the spread code by simply transmitting noise signals
using z transmitters concurrently [8], in which case there is no
workable solution.

V. THE JR-SND DESIGN

In this section, we present the design of JR-SND. We first
present a quorum-based spread-code pre-distribution scheme as
a nontrivial adaption of existing key pre-distribution schemes
[14]. We then present a direct neighbor-discovery protocol
(D-NDP), a multi-hop neighbor-discovery protocol (M-NDP),
and a location-aware multi-hop neighbor-discovery protocol
(LAM-NDP). The following terms will be used throughout.

• Physical neighbors: Two nodes are called physical neigh-
bors if they are in each other’s transmission range.

• Logical neighbors: Two nodes are called logical neigh-
bors if they have discovered each other after executing
JR-SND.

A. Random Spread-Code Pre-Distribution

Before network deployment, the MANET authority gener-
ates a pool of s � 2N random spread codes, denoted by C =
{Ci}s

i=1. Only the authority has the full knowledge of C. The
authority then uses the following method to distribute m spread
codes to each node such that any Ci ∈ C is shared by no more
than l nodes, where the choice of l will be discussed later.

The distribution process consists of m rounds, during each
of which each node is assigned one spread code. Specifically,
let us temporarily assume that n = lw for some integer w and
then s = wm. In each round i ∈ [1, m], the authority randomly
partitions the n nodes into w subsets of equal cardinality l and
then assigns Cw(i−1)+j to all the nodes in the jth subset. It is
easy to see that after m rounds, every node is preloaded with m
spread codes, and every code is exactly shared by l nodes. We
will denote by CA the set of spread codes of node A.

Now we consider the case where n cannot be divided by
l, i.e., n = lw − l′ for some 0 < l′ < l. In this case, the au-
thority can introduce l′ virtual nodes during spread-code pre-
distribution. This will only result in some codes being shared
by less than l nodes and thus will not affect the performance
very much. Moreover, the l − l′ virtual nodes can be reserved
for nodes joining the network later.

Our scheme permits new nodes to join the network later. In
particular, the authority can assign the spread codes of a virtual
node to a unique new node. If there are more than l′ new nodes,
the authority can conduct the previous distribution process for
each additional w new nodes with existing s codes, which will
result in every code being shared by one more node. We do not
expect too many new nodes in the target scenario, so the number
of nodes sharing any code will be only slightly larger than l.

B. D-NDP: Direct Neighbor Discovery Protocol

We now introduce D-NDP by which two physical neighbors
with common spread codes can directly discover each other.

During the network operation, each node periodically initi-
ates neighbor discovery in a randomized manner. Specifically,
in every interval of length T, each node initiates the D-NDP
process once at a random time point. Below we use nodes A
and B as an example to illustrate the process. We assume that
they share at least one secret spread code, say Ci ∈ CA ∩ CB.

Assume that A initiates the D-NDP process prior to B.
Starting from a random time point, A repeatedly broadcasts a
HELLO message for r rounds, where r is a system parameter.
In each round, the HELLO message is broadcasted m times,
and each time a distinct code in CA is used for spreading. For
example, the HELLO message spread with Ci is

A → ∗ : {HELLO, IDA}Ci
,

where HELLO is a message type identifier of lt bits, IDA is
A’s ID, and {}∗ denotes the message spread with the spread
code at the subscript. Each message in D-NDP is encoded with
an error-correcting code (ECC) such as [31] to increase the
transmission reliability. In particular, assuming that each node
ID is of lid bits, the original message is thus of lt + lid bits.
Node A then applies ECC to generate an encoded message of
lh = (1 + μ)(lt + lid) bits, where μ > 0 is a system parameter.
This ECC method can tolerate up to a fraction of μ/(1 + μ)

bit errors or losses, which means that J must use the correct
spread code Ci to jam at least μ(lt + lid) bits to prevent B from
decoding {HELLO, IDA}Ci

.
It takes roughly time th = lhN/R to broadcast one HELLO

message spread with one spread code and mth to finish one
round, where R is the chip rate. There are r copies of the
HELLO message spread with the same code. It is possible
that B may miss the head of one {HELLO, IDA}Ci

copy due
to improper synchronization or other reasons. However, as long
as B buffers the incoming signals for a duration of at least tb =
(m + 1)th, it can certainly buffer a complete {HELLO, IDA}Ci

.
To synchronize with and de-spread any incoming message,

node B buffers the received signal and tries to identify any
message in the buffer using a sliding window algorithm similar
to the one used in [9]. Specifically, assume that B has buffered
f chips of the incoming signal, denoted by (p1, · · · , pf ), in
which the first complete {HELLO, IDA}Ci

may start at any
chip position. To locate it, B computes the correlation between
(pi, · · · , pi+N−1) and each spread code in CB, for all 1 ≤ i ≤ f .
The correlation between the sequence (pi, · · · , pi+N−1) and
code Ci higher (or lower) than the predefined threshold τ (or
−τ ) for the smallest i indicates a bit “1” or “−1” spread
with Ci starting at chip position pi and thus the beginning
of {HELLO, IDA}Ci

. Node B then uses Ci to de-spread the
rest of the message, i.e., computes the correlation between
(pi+jN, · · · , pi+(j+1)N−1) and Ci to de-spread the (j + 1)th bit,
for all 1 ≤ j < lh.

Now we discuss the choice of r. The challenge here is that
we cannot simply assume that each node can monitor the
transmission activities associated with arbitrary many spread
codes in real time, which otherwise requires very complex and
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expensive hardware [24]. Therefore, we must take into account
nodes’ computation capability. Assume that it takes time ρN
to compute the correlation between two chip sequences of N
bits, where ρ is a constant determined by each node’s compu-
tation capability. For example, if each receiver can compute
4.7 × 108 correlations of two binary sequences of 256 bits
as assumed in [9]. We thus have ρ ≈ 8.3 × 10−12 s/bit in
such cases and anticipate an even higher ρ in practice. Since
node B buffers totally f = Rtb incoming chips each time, it
takes up to tp = ρNmRtb to scan all the chip positions, each
requiring computing m correlations. Note that there may be
multiple or no valid HELLO messages in the buffer. The former
and latter cases correspond to multiple or no nodes initiating
neighbor discovery with B, respectively. Therefore, even after
recovering one valid HELLO message from the buffer, B still
need process the rest of it. Let λ = tp/tb = ρNmR be the ratio
between processing time and buffering duration. For example,
if N = 512, m = 1000, and R = 22 Mbps, we have λ ≈ 94
in the above example, which indicates the huge gap between
the receiving and processing capabilities. To accommodate this
gap, each node independently maintains a simple buffering and
processing schedule as follows. During each duration [itp, (i +
1)tp], for all i ≥ 1, it processes the signal buffered during
[itp − tb, itp] and immediately deletes processed chips; it also
buffers the signal arriving during [(i + 1)tp − tb, (i + 1)tp]. It
can be easily shown that the buffer will not overflow with this
schedule. Under this schedule, it suffices to let A broadcast the
HELLO message for a total duration of rmth = (λ + 1)tb =
(λ + 1)(m + 1)th to ensure that node B buffers a complete
{HELLO, IDA}Ci

, so we have r = �(λ + 1)(m + 1)/m�.
After de-spreading {HELLO, IDA}Ci

, node B knows that A is
in its transmission range and Ci ∈ CA ∩ CB. It then repeatedly
sends an ECC-coded CONFIRM message spread with Ci,

B → A : {CONFIRM, IDB}Ci .

Node B then starts to monitor Ci in real time. Similar to
A transmitting HELLO message, node B keeps transmitting
the CONFIRM message for tp = ρNmRtb or until receiving a
response from A which can be de-spread with Ci. If B does not
receive a response before its timer expires, it stops monitoring
Ci in real time and considers A having moved away.

Node A uses the same approach to de-spread B’s CONFIRM
message and knows that B shares Ci with it. Because Ci may
also be known by up to l − 2 other nodes, A and B cannot
authenticate each other. To conduct mutual authentication, node
A computes a shared key KAB using its ID-based private key
K−1

A and IDB [25]. It then sends to B the following ECC-coded
message spread with Ci,

A → B : {
IDA, nA, fKAB (IDA|nA)

}
Ci

,

where nA is a random nonce to defend against message replay
attacks, f∗(·) denotes a message authentication code (MAC)
with the key at the subscript, and | denotes concatenation.

Since B is currently monitoring Ci, it can de-spread the above
response in real time after negligible delay. Node B proceeds to
compute a shared key KBA based on its ID-based private key
K−1

B and IDA, which is equal to KAB according to [25]. Then

B uses KBA to compute fKBA(IDA|nA) and compares it with the
received fKAB (IDA|nA). If they are equal, B knows that A has
computed the same key, which means that A is an authenticated
logical neighbor with a valid ID-based public/private key pair
issued by the MANET authority. It is worth noting that no nodes
other than A and B could compute the shared key KAB [25].
Node B proceeds to transmit the following ECC-coded response

B → A : {
IDB, nB, fKBA(IDB|nB)

}
Ci

,

where nB is the random nonce chosen by B. Node B then com-
putes a session spread code as CBA = hKBA(nB ⊗ nA) and starts
monitoring CBA in real time, where h∗(·) is a cryptographic
hash function of N bits keyed with the subscript and ⊗ denotes
bitwise XOR operation.

After de-spreading the above response, node A verifies
fKBA(IDB|nB) using KAB similar to what B does. If the verifi-
cation is successful, A accepts B as a logical neighbor and also
computes CAB = hKAB(nA ⊗ nB) which is equal to CBA. Finally,
A starts to monitor CAB in real time.

In the cases that B shares x ≥ 2 spread codes with A whereby
to de-spread multiple copies of the HELLO message, D-NDP
employs a redundancy design that lets B use all the x shared
codes to sequentially spread the same CONFIRM message. The
last two messages both are also spread by A and B with all
the x codes sequentially. In other words, we can consider the
execution between A and B as x separate sub-sessions involving
the same four messages and establishing the same session
spread code. This redundancy design can greatly enhance the
jamming resilience of neighbor discovery which fails only if
all the x sub-sessions fail. Consider the following example.
Assume that among x ≥ 2 shared codes, x − 1 of them are
compromised. The D-NDP execution will succeed under blind
reactive jamming since B can only receive the HELLO message
spread with the non-compromised code whereby to spread the
subsequent messages. However, a more intelligent attack is that
J does not jam the HELLO message but only targets at the
later three transmissions. Assuming B receives x copies of the
HELLO messages and randomly chooses one code from total
x codes to spread the CONFIRM message, it is very likely that
a compromised code will be selected. In such cases, J may
jam the later message transmission, leading to a D-NDP failure.
Under our design, this intelligent attack can no longer succeed.

C. M-NDP: Multi-Hop Neighbor Discovery Protocol

Two physical neighbors may fail to directly discover each
other via D-NDP either because they have no common spread
codes or because J has compromised their common spread
codes whereby to successfully jam the D-NDP message trans-
missions. Now we introduce M-NDP that allows two physical
neighbors to indirectly discover each other as long as there is
a jamming-resilient path connecting them, along which every
two adjacent nodes have discovered each other.

We illustrate the M-NDP operations with the scenario in
Fig. 2 as an example, where both solid and dashed line segments
represent jamming-resilient paths, and A and B cannot directly
discover each other via D-NDP.
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Fig. 2. Illustration of M-NDP.

As in D-NDP, all nodes need to periodically initiate the
M-NDP process at some random time point of its own choice.
Assume that A initiates the M-NDP process prior to B. Let
LA denote the set of logical neighbors of A, where LA =
(C, D, E, F) in Fig. 2. Node A unicasts an M-NDP request to
each node in LA. For example, the request sent to C is

A → C : {IDA,LA, nA, ν, SIGK−1
A

}CAC,

where nA is a random nonce, ν ≥ 1 is a parameter chosen by
A determining the maximum number of hops the request can
traverse, SIG∗ denotes a digital signature operation on the prior
data with the private key at the subscript, and CAC is the session
spread code shared between A and C.

After receiving the M-NDP request, C first verifies the
signature SIGK−1

A
using IDA as the public key [25]. If the

signature verification succeeds, C compares LA with its own
logical neighbor list LC. Then for each node in LC − LA, say
B, node C unicasts a modified request

C → B : {IDA,LA, nA, ν, SIGK−1
A

, IDC,LC, SIGK−1
C

}CCB .

Upon receiving this new request from C, node B first verifies
the signatures SIGK−1

C
and SIGK−1

A
using IDC and IDA as the

public keys, respectively. If both verifications succeed, B further
checks whether C ∈ LA ∩ LB, i.e., whether C is indeed the
common neighbor of A and B. If not, B discards the message;
otherwise, B returns the following M-NDP response to C,

B → C : {IDA, IDC, IDB,LB, nB, ν, SIGK−1
B

}CBC ,

where ν is copied from the M-NDP request. As in D-NDP, B
also computes a shared key KBA based on its private key K−1

B
and IDA, by which B further derives the session spread code
CBA = hKBA(nB ⊗ nA). Node B proceeds to repeatedly send a
HELLO message {HELLO, IDB}CBA

for a duration of τh, where
τh is the longest transmission delay for the M-NDP response to
traverse ν hops. In addition, B checks whether the number of
hops that the M-NDP request has traversed is equal to ν; if not,
B further forwards a modified M-NDP request to all the nodes
in LB − LA ∪ LC, i.e., adding its node ID, logical neighbor list
and signature.

In general, when receiving an M-NDP request, every node
does the following: verify the ID-based signatures of the sender

and all previous nodes; check each node’s logical neighbor list
to see whether there is a legitimate path between the source and
itself; derive the secret key and session spread code uniquely
shared with the source and start sending the HELLO message
spread with the derived session code; send a modified M-NDP
request by adding its own ID and logical neighbor list to the
nodes not appearing in the logical neighbor lists of the received
request, if the number of hops that the request has traversed is
less than ν. The request is dropped if either of the first two steps
fails.

On receiving the M-NDP response, C verifies SIGK−1
B

using

IDB as the public key. If the signature is correct, C forwards a
modified M-NDP response to A as

{IDA, IDC, IDB,LB, nB, ν, SIGK−1
B

,LC, SIGK−1
C

}CCA .

In general, the M-NDP response is processed by each inter-
mediate node in a similar way as M-NDP request does, i.e.,
each node verifies the previous signatures and adds its own ID,
logical neighbor list and signature.

Upon receiving the response, node A first verifies SIGK−1
C

and SIGK−1
B

using IDC and IDB as the public keys, respectively.

If both signatures are correct, A further checks whether C ∈ LB,
i.e., whether there is a legitimate path between the destination
and itself. If so, A uses its private key K−1

A and IDB to compute
the shared key KAB = KBA whereby to derive the session spread
code CAB = hKAB(nA ⊗ nB) which is equal to CBA. It then starts
to monitor CAB in real time.

If A and B are indeed physical neighbors, then A can receive
the HELLO message from B spread with CBA. If so, A accepts
B as its authenticated logical neighbor and returns a CONFIRM
message spread with CAB. Once receiving the CONFIRM mes-
sage, node B accepts A as its authenticated logical neighbor.

Using digital signatures in M-NDP is necessary to prevent
the DoS attack in which compromised nodes forge arbitrary
many M-NDP requests. Consider Fig. 2 as an example. Assume
that node C is compromised and sends B a forged M-NDP
request claimed to be initiated from source X. Since C does not
have the correct private key of X to generate its correct signature
on the M-NDP request, B can immediately detect this forged
request in the first step and knows that C is compromised. Such
immediate detection is unlikely without digital signatures. It
is worth noting that the once daunting digital signature opera-
tions are growingly trivial on even resource-constrained mobile
devices.

Different from D-NDP, M-NDP may incur false positives,
which means that some nodes that are not physical neighbors
may falsely discover each other, e.g., A may discover nodes G
and H in Fig. 2. To address this limitation, we further present a
location-aware multi-hop neighbor discovery protocol (LAM-
NDP) in the next subsection.

D. LAM-NDP: Location-Aware Multi-Hop Neighbor
Discovery Protocol

LAM-NDP is designed to eliminate the false positives in-
curred by M-NDP by exploring the location information of
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Fig. 3. Illustration of LAM-NDP.

MANET nodes. For this purpose, LAM-NDP requires every
MANET node to be capable of localizing itself via GPS sig-
nals or other localization techniques such as [32], which are
becoming pervasive in modern mobile devices. Different from
M-NDP, each LAM-NDP initiator includes its position in its
LAM-NDP request and specifies the propagation range within
which the request can be forwarded, and each node replies
to the LAM-NDP request only if it is within the transmission
range of the LAM-NDP initiator.

We illustrate the LAM-NDP operations with the scenario
in Fig. 3 as an example. As in M-NDP, all nodes need to
periodically initiate the LAM-NDP process at some random
time point of its own choice. Assume that node A initiates the
LAM-NDP process prior to node J. Recall that LA denotes
the set of logical neighbors of A, where LA = {B, F}. Node
A unicasts an LAM-NDP request to each node in LA. For
example, the request sent to F is

A → F : {IDA,LA, nA, lA, R, SIGK−1
A

}CAF ,

where lA is node A’s location, R is the propagation range
chosen by A determining the maximum distance within which
the request can be forwarded, and nA and SIGK−1

A
have the same

meanings as in M-NDP request.
After receiving the LAM-NDP request, node F first verifies

that it is within the propagation range of node A based on lA, R
and its own location. If so, it then verifies the signature SIGK−1

A
using IDA as the public key [25]. If the signature verification
succeeds, then for each node in LF \ LA, say G, F unicasts a
modified request

F → G : {IDA,LA, nA, R, SIGK−1
A

, IDF,LF, SIGK−1
F

}CFG .

On receiving the LAM-NDP request from F, node G first
checks whether it is within the propagation or transmission
range of node A based on lA, R and its own location. If it is
outside of the both ranges, the LAM-NDP request is dropped.
Otherwise, G verifies the signatures SIGK−1

A
and SIGK−1

F
using

IDA and IDF as public keys, respectively [25]. Since node G
is within the propagation range r of the request, it unicasts a

modified request to every node in LG \ (LA
⋃

LF) = {H, I}.
For example, the request sent to node H is

G → H : {IDA,LA, nA, R, SIGK−1
A

, IDF,LF, SIGK−1
F

,

IDG,LG, SIGK−1
G

}CGH .

Different from M-NDP, since node G is not within A’s trans-
mission range, it will not return an LAM-NDP response to A
via F.

Once node H receiving the LAM-NDP request, it knows
that it is within A’s transmission range. H then verifies all
three signatures using the corresponding node IDs as public
keys and checks all the logical neighbor lists in the request to
see if there is a legitimate path connecting A and itself. If all
the verifications succeed, H returns the following LAM-NDP
response to G,

H → G : {IDA, lA, IDF, IDG, IDH,LH, lh, nH, R,

SIGK−1
H

,LG, SIGK−1
G

,LF, SIGK−1
F

, }CHG,

where lh is H’s location, nH is a random nonce, and R is
copied from the LAM-NDP request. As in M-NDP, H also
computes a shared key KHA based on its private key K−1

H
and IDA, by which H further derives the session spread code
CHA = hKHA(nH ⊗ nA). Node H proceeds to repeatedly send a
HELLO message {HELLO, IDH}CHA

for a duration of τh, where
τh is the longest transmission delay for the LAM-NDP response
to traverse three hops, i.e., the number of hops the LAM-NDP
request has traversed.

In general, when receiving an (modified) LAM-NDP request,
every node does the following:

1) Check if it is within the propagation or transmission range
of the LAM-NDP initiator. If it is within neither range, the
LAM-NDP request is dropped.

2) Verify every ID-based signature in the LAM-NDP
request.

3) Check each intermediate node’s logical neighbor list to
see whether there is a legitimate path between the LAM-
NDP initiator and itself.

4) If it is within the transmission range of the LAM-NDP
initiator, derive the secret key and session spread code
uniquely shared with the LAM-NDP initiator and start
sending a HELLO message spread with the session code.

5) If it is within the propagation range of the LAM-NDP
request, unicast a modified LAM-NDP request by adding
its own ID and logical neighbor list to the nodes not
appearing in the logical neighbor lists of the received
LAM-NDP request.

The LAM-NDP response is processed by each intermediate
node in a similar way as the M-NDP, i.e., each node verifies the
previous signatures and adds its own ID, logical neighbor list
and signature.

On receiving the LAM-NDP response, A verifies each signa-
ture using the corresponding node ID as the public key. If all the
signatures are correct, A further checks if there is a legitimate
path between H and itself. If so, A uses its private key K−1

A and
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IDH to compute the shared key KAH = KHA whereby to derive
the session spread code CAH = hKAH (nA ⊗ nH) which is equal
to CHA. It then starts to monitor CAH in real time.

Since A and H are indeed physical neighbors, A can receive
the HELLO message from H spread with CHA. If so, A accepts
H as its authenticated logical neighbor and returns a CONFIRM
message spread with CAH . Once receiving the CONFIRM
message, node H accepts A as its authenticated logical neighbor.

E. Discussion

Here we discuss the applicability of LAM-NDP to heteroge-
neous MANET and some attacks besides jamming related to
JR-SND with possible solutions.

1) Applicability of LAM-NDP to Heterogeneous MANET:
LAM-NDP can be easily adapted for heterogeneous MANETs
where only a fraction of the MANET nodes have localization
capability. Specifically, an LAM-NDP initiator can include in
an LAM-NDP request both R, i.e., the propagation range within
which the request can be forwarded, and ν, i.e., the maximum
number of hops the request can traverse. Upon receiving the
LAM-NDP request, a node with localization capability will
forward the request if it is within the propagation range of
the LAM-NDP initiator, whereas a node without localization
capability can ignore the propagation range and forwards the
request if the number of hops that the request has traversed is
less than ν. Such adaptation can be viewed as a combination of
M-NDP and LAM-NDP, and the resulting neighbor-discovery
latency and the number of false positives thus lie between those
of M-NDP and LAM-NDP.

2) Resilience to Denial of Service Attacks: As mentioned
earlier, existing anti-jamming solutions such as [4]–[10] all
depend on some publicly known communication strategies such
as public spread-code sets. If they were adopted for secure
neighbor discovery in MANETs, J would be able to use such
public knowledge to keep injecting fake neighbor-discovery re-
quests, thus leading to a special Denial-of-Service (DoS) attack
in which all nodes are forced to perform endless verifications of
neighbor-discovery requests.

In contrast, JR-SND constrains the impact of this DoS attack
to the number of secret spread codes compromised by J . Com-
promised spread codes can also be revoked in many ways so
that non-compromised nodes will not use them for spreading/
de-spreading messages. For example, a simple yet effective
method is to let each node A maintain a counter for each
secret code Cx it has. Whenever A receives an invalid neighbor-
discovery request spread with Cx (e.g., the signature is incor-
rect), it increases the corresponding counter by one. Once the
counter for Cx exceeds some predefined threshold γ , which
indicates that Cx is compromised with high probability, A
locally revokes Cx by removing it from its spread-code set.
Consequently, subsequent messages spread with Cx will not
be received by node A. Recall our random spread-code pre-
distribution method for D-NDP and M-NDP in which each code
is shared by at most l nodes. With our defense in place, J
can use a compromised code to launch the DoS attack on other
l − 1 non-compromised nodes with the same code for at most
(l − 1)γ times instead of arbitrary many.

3) Node Replication Attacks: Assume that J has compro-
mised some node X. It can launch another more subtle attack in
which it uses X’s information to repeatedly perform seemingly
legitimate neighbor discovery with all the other nodes that
share some common spread codes with X. This attack can be
viewed as node X being replicated throughout the network and
is difficult to defend against.

One possible solution is to let some witness nodes keep track
of each node’s encounter history, and each node checks with
a new plausible neighbor’s witness nodes before accepting it
even if the JR-SND operations have succeeded. For example,
suppose that A and B perform neighbor discovery. After a
successful execution of the JR-SND scheme, they both need
to check with some witnesses of the other. If A is found to
have encountered many nodes at distributed locations during
a short time window, its witness nodes can raise an alarm to
inform B and other nodes in the network. It is worth noting
that similar ideas have been used in detecting node replication
attack in sensor networks [33] and blackhole attacks in delay-
tolerant networks [34]. We, however, stress that how to choose
witness nodes in MANETs is still an open challenge. Since
all existing neighbor-discovery schemes such as [2], [27], [28],
[35] designed for MANETs are vulnerable to this attack, this
issue deserves further investigation.

4) Repeater Jamming Attacks: In [36], Hang et al. demon-
strated that repeater jamming is more effective than random
jamming. This attack can be viewed as a special kind of reactive
jamming. It is, however, not detrimental and can be solved
by error-correcting coding. Alternatively, we can replace each
spread code with a code sequence as in [9]. Further investiga-
tion on this issue is left as future work.

VI. PERFORMANCE EVALUATION

In this section, we evaluate JR-SND via both theoretical
analysis and simulation studies.

A. Performance Analysis

1) Analysis of the Code Pre-Distribution Scheme: We first
analyze the proposed spread code pre-distribution scheme. For
simplicity, we assume that n can be divided by l. It can be easily
seen that any two nodes are assigned the same spread code at
each round with probability l−1

n−1 . Since the operations in each
round are independent from those of others, the probability that
any two nodes share x spread codes after m rounds is given by

Pr[x] =
(

m
x

) (
l − 1

n − 1

)x (
n − l

n − 1

)m−x

. (1)

In addition, assume that J has compromised q nodes. Every
spread code in C is compromised with probability

α = 1 −

(
n − l

q

)
(

n
q

) . (2)

The expected number of compromised codes is thus sα.
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2) Analysis of D-NDP: We have the following theorem
regarding Pd, the probability that two physical neighbors can
discover each other via D-NDP.

Theorem 1: Assuming that the adversary has compromised
q nodes, two physical neighbors can discover each other via
D-NDP with probability

P− ≤ Pd ≤ P+, (3)

where

P− = 1 −
m∑

x=0

Pr[x]αx,

P+ = 1 −
m∑

x=0

Pr[x]αx(β + β ′ − ββ ′)x
, (4)

Pr[x] is given in Eq. (1), α=1−
(

n−l
q

)/(
n
q

)
as given in Eq. (2),

c = sα, β = min
{

z(1+μ)
cμ , 1

}
, and β ′ = min

(
3z(1+μ)

cμ , 1
)

.

We give the proof of Theorem 1 in Appendix VII-A. The
following theorem is about the average neighbor-discovery
latency T of D-NDP.

Theorem 2: Two physical neighbors can discover each other
via D-NDP with an average latency

T ≈ ρm(3m + 4)N2lh
2

+ 2Nlf
R

+ 2tkey, (5)

where lh = (1 + μ)(lt + lid), lf = (1 + μ)(lid + ln + lmac), ln
and lmac are the lengths of nonce and MAC, respectively, and
tkey is the time needed to compute a shared key.

We give the proof of Theorem 1 in Appendix VII-B.
3) Analysis of M-NDP: We have the following theorem

regarding the average neighbor-discovery latency T of M-NDP.
Theorem 3: Two physical neighbors connected by a ν-hop

jamming-resilient path can discover each other via M-NDP
with an average latency

T = Tν + 2ν(ν + 1)tver + 2νtsig, (6)

where

Tν = N

R

(
3ν(ν + 1)

2

(
(g + 1)lid + 2lsig

) + 2ν(ln + lν)

)
,

(7)

and g is the average number of logical neighbors each node has.
We give the proof of Theorem 3 in Appendix VII-C. In our

preliminary work [1], we have analyzed the neighbor discovery
probability of M-NDP for a special case when ν = 2, which is
omitted here. We will evaluate the neighbor discovery proba-
bility of M-NDP using simulation. Since the number of hops an
LAM-NDP request traverses is a random variable, we will also
use simulations to evaluate the performance of LAM-NDP.

B. Simulation Results

In this section, we use simulation results to evaluate the
proposed schemes with regard to the neighbor-discovery prob-

TABLE I
DEFAULT EVALUATION PARAMETERS

Fig. 4. The prob. that two nodes share at least one code.

Fig. 5. The prob. of a code being compromised.

ability Pd and latency T. We simulate 2000 MANET nodes in a
5000 × 5000 m2 field, each with a transmission range of 250 m.
Table I summarizes most default evaluation parameters unless
specified otherwise, in which the cryptographic parameters are
adopted from [25]. For our purpose, most of the simulation
code is written in C++. Each measurement is the average over
100 simulation runs, each with a different random seed.

1) Evaluation of Code Pre-Distribution Scheme: Fig. 4
shows the probability that two nodes share at least one code,
i.e., 1 − Pr[0], varying with m (the number of codes preloaded
to each node) and l (the number of nodes sharing the same
code). We can see that the larger m and l, the higher the prob-
ability of two nodes sharing at least one code, and vice versa.
This is anticipated, as the probability of two nodes sharing at
least one code increases as the number of codes preloaded to
each node and the number of nodes sharing the same code
increase.

Fig. 5 shows the probability of each code being compro-
mised (i.e., α in Eq. (2)) varying with l and q (the number
of compromised nodes). As we can see, α increases as l or q
increases, and vice versa. The reason is that the more nodes
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Fig. 6. D-NDP under reactive and random jamming attacks. (a) The impact of m. (b) The impact of q.

Fig. 7. Comparison of the neighbor discovery probabilities of different protocols. (a) Impact of m. (b) Impact of q.

sharing the same code, the fewer codes in total, and the higher
percentage of codes are compromised for the same number of
compromised nodes. Moreover, the more compromised nodes,
the higher the probability of each code being compromised,
which is anticipated. We will show later that this effect does
not have much impact on the neighbor discovery probability
of D-NDP, as one non-compromised code shared between two
neighboring nodes suffices for successful neighbor discovery.

2) Comparison of Reactive and Random Jamming:
Fig. 6 compares the neighbor discovery probability of D-
NDP under random and reactive jamming attacks. We can
see from Fig. 6(a) that the Pd of D-NDP increases as m
increases in all five cases. The reason is that the more spread
codes preloaded to each node, the higher the probability
of two nodes sharing at least one non-compromised code.
Moreover, the neighbor discovery probability of D-NDP under
random jamming attack decreases as z (i.e., the number of
concurrent jamming signals) increases, and is always higher
than that under reactive jamming attack, which is expected
and also observed in Fig. 6(b). In addition, we can see from
Fig. 6(b) that the Pd of D-NDP decreases as the number of
compromised nodes increases, which is of no surprise. Since
reactive jamming is always more effective than random
jamming in jamming neighbor discovery, we will only consider
reactive jamming hereafter.

3) Comparison of Neighbor Discovery Protocols:
Fig. 7(a) compares the Pds of D-NDP, M-NDP, LAM-
NDP, D/M-NDP (i.e., the combination of D-NDP and

M-NDP), and D/LAM-NDP (i.e., the combination of D-NDP
and LAM-NDP) with m varying from 5 to 200, where ν

is set to 2 for M-DNP and R is set to the transmission
range of each node for LAM-NDP. We can see that the
Pds of D-NDP, M-NDP and LAM-NDP all increase as
m increases, as the M-NDP and LAM-NDP both rely on
D-NDP, of which Pd increases as m increases. Moreover,
under the default setting, LAM-NDP has the highest neighbor
discovery probability, followed by M-NDP and D-NDP.
In addition, the Pds of D/M-NDP is always higher than
that of M-NDP alone, as two nodes can discover each other
either via D-NDP or M-NDP. For the same reason, the Pd of
D/LAM-NDP is always higher than that of LAM-NDP alone.

Fig. 7(b) compares the Pds of D-NDP, M-NDP, LAM-NDP,
D/M-NDP, and D/LAM-NDP with q varying from 5 to 100.
We can see that the Pds decrease as q increases in all five
cases, among which the Pd of D-NDP drops fastest, e.g., from
0.83 to 0.22 as q increases from 5 to 100. In contrast, the Pds
of M-NDP, LAM-NDP, D/M-NDP, and D/LAM-NDP decrease
much slower. For example, although the Pd of D-NDP is only
0.22 when 100 nodes are compromised, the Pds of M-NDP,
LAM-NDP, D/M-NDP, and D/LAM-NDP are 0.71, 0.95, 0.78,
and 0.96, respectively. Since D-NDP and M-NDP or D-NDP
and LAM-NDP are always used jointly in practice, the overall
performance is always sufficiently good.

4) Evaluation of M-NDP: Fig. 8(a) shows the Pds of
M-NDP and D/M-NDP varying with ν, the number of hops
an M-NDP request can traverse, where the Pd of D-NDP is
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Fig. 8. The impact of ν on the neighbor discovery probability, latency and false positives of M-NDP. (a) Neighbor discovery probability. (b) Neighbor discovery
latency. (c) False positives.

Fig. 9. The impact of propagation range on the neighbor discovery probability and latency of LAM-NDP. (a) Neighbor discovery probability. (b) Neighbor
discovery latency.

0.22 corresponding to q = 100 as shown in Fig. 6(b) the Pds
of LAM-NDP and D/LAM-NDP are plotted for reference only.
We can see that the larger ν, the higher the Pds of M-NDP
and D/M-NDP, and vice versa. In particular, when ν ≥ 4, the
M-DNP and D/M-NDP can achieve Pds over 0.96 and 0.97,
respectively, which are sufficiently good in most cases. In
practice, MANET nodes can dynamically adjust ν to achieve
satisfactory neighbor-discovery probabilities.

Fig. 8(b) shows the neighbor discovery latencies of M-NDP
and D/M-NDP varying with ν, where the Ts of D-NDP, LAM-
NDP and D/LAM-NDP are plotted for reference only. We can
see that the T of M-DNP increases quadratically as ν increases,
which coincides with Eq. (6) in Theorem 6. In addition, under
our default setting, D-NDP has a latency of 1.6 seconds and
the latency of D/M-NDP is always between the Ts of D-DNP
and M-NDP, as two nodes can discover each other either via
D-NDP or M-NDP. Combining Figs. 8(a) and 6(b), we can see
that when ν ≥ 4, D/M-NDP can achieve Pd over 0.97 with
a latency of less than two seconds, which is acceptable in
most cases. Moreover, the neighbor discovery probabilities of
LAM-NDP and D/LAM-NDP are close to those of M-NDP and
D/M-NDP, while their latencies are lower than that of M-NDP
for ν = 2.

Fig. 8(c) shows the average number of false positives in-
curred by M-NDP. We can see that the number of false positives
increases as ν increases. The reason is that the larger ν, the
more nodes within each node’s ν-hop neighborhood that can

receive the M-NDP request, and the larger fraction of these
nodes are outside of the M-NDP initiator’s transmission range.
In contrast, LAM-NDP incurs no false positive by exploring the
location information of each node.

5) Evaluation of LAM-NDP: Fig. 9(a) shows the Pds of
LAM-NDP and D/LAM-NDP varying with propagation range
R within which an LAM-NDP request can traverse, where the
Pd of D-NDP is 0.2 and those of M-NDP and D/M-NDP are
plotted for reference only. We can see that the Pd of LAM-NDP
increases as R increases. This is anticipated because the larger
the R, the more nodes can receive an LAM-NDP request, the
more neighbors can be discovered via LAM-NDP, and vice
versa. We can also see from Fig. 9(a) that the Pd of LAM-NDP
increases much faster when R is smaller than node’s transmis-
sion range than it does when R is smaller than each node’s
transmission range. The reason is that when R is smaller than
node’s transmission range, all the nodes that receive a LAM-
NDP request are physical neighbors of the LAM-NDP initiator
and can be discovered. In contrast, as R exceeds node’s trans-
mission range, the number of nodes that receive an LAM-NDP
request while outside of the LAM-NDP initiator’s transmission
range increases, so the increase in Pd becomes slower.

Fig. 9(b) shows the Ts of LAM-NDP and D/LAM-NDP
with R varying between 0.5 to 1.4 times of transmission range
of each node, where the Ts of M-NDP and D/M-NDP are
plotted for reference only. We can see that the T of LAM-
NDP increases as R increases, which is anticipated. In addition,
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similar to the T of D/M-NDP, the T of D/LAM-NDP is always
between those of D-DNP and LAM-NDP. Moreover, for the
same Pd, the T of LAM-NDP is smaller than that of M-NDP,
which clearly demonstrates the advantage of LAM-NDP
over M-NDP.

6) Other Factors on JR-SND: We have also studied other
potential factors on the performance of JR-SND, which have
limited impact and thus are not shown here due to space
constraints. For example, we have simulated the impact of node
mobility using QualNet 4.5.1. our simulation results show that
two nodes with average velocities 25 m/s encounter each other
for a duration larger than 5 seconds with probability higher than
0.96, which indicates that JR-SND can satisfy the stringing
timing requirement in MANETs with very high mobility. In
addition, our simulation results show that the ECC coding
factor μ has some impact on the neighbor-discovery latency of
D-NDP, which is easy to understand.

7) Summary: We summarize the simulation results as
follows.

• D-NDP can enable two neighbors to directly discover
each other with high probability and low latency.

• M-NDP is built upon D-NDP and improves the neighbor-
discovery probability by letting two neighbors discover
each other via a multi-hop path with moderate latency. It
is suitable for MANETs with moderate node density.

• LAM-NDP is built upon D-NDP and explores the loca-
tion information of each node to simultaneously improve
the neighbor-discovery probability and latency of M-
NDP. It is suitable for MANETs with moderate node
density.

• By combining D-NDP and M-NDP or LAM-NDP, two
nodes can discover each other with overwhelming prob-
ability and low latency.

VII. CONCLUSION

In this paper, we propose JR-SND, a novel solution based
on DSSS and spread-code pre-distribution to achieve jamming-
resilient neighbor discovery in MANETs. JR-SND can enable
two neighboring nodes to successfully discover each other with
overwhelming probability despite omnipresent jammers. The
efficacy and efficiency of our schemes are confirmed by detailed
theoretical analysis and simulation results.

APPENDIX

A. Proof of Theorem 1

Proof: Assuming that J has compromised q nodes, the
expected number of compromised spread codes is thus c =
sα = s

(
1 −

(
n − l

q

) / (
n
q

))
as analyzed in Section VI-A1.

If the spread-code length N is sufficiently long and the spread-
code pool size s � 2N , the probability that J successfully jams
a targeted transmission with a randomly guessed code of N bits
is comparatively negligible to that of J using compromised
codes. We thus assume that J will only attempt jamming using
compromised codes.

We consider random and reactive jamming in this paper, as
stated in Section IV-B. For any ongoing message transmission,
random jamming can succeed if the spread code in use is
compromised and also happens to be chosen by J to jam at
least μ/(1 + μ) of the message. In contrast, reactive jamming
can succeed if the spreading code being used is compromised
and can be identified by J before 1/(1 + μ) of the message is
transmitted. Apparently, reactive jamming has higher require-
ment on J ’s capability than random jamming but is also more
effective. Consequently, the neighbor-discovery probabilities
under random and reactive jamming can be considered as the
upper bound (denoted by P+) and the lower bound (denoted by
P−), respectively.

We first consider random jamming. Assume that nodes A and
B share x spreading codes. Denote by P+(x) the probability that
two nodes can successfully discover each other given that they
share x spreading codes. Obviously, we have P+(0) = 0.

Now let us consider the case of x = 1. Assume that the shared
spreading code is compromised, which happens with probabil-

ity α = 1 −
(

n − l
q

) / (
n
q

)
as given in Eq. (2). Recall that J

can emit at most z jamming signals on a targeted transmission.
Since J must use a code for at least μ/(1 + μ) of the message
transmission time, it can try at most z(1 + μ)/μ distinct codes
randomly chosen from the c compromised codes during the
message transmission. To make the analysis tractable, we make
the most pessimistic assumption that J can distinguish the four
D-NDP messages and applies different jamming strategies to
them. The first HELLO message can be jammed if J selects
the correct code, which happens with probability

β = min

{
z(1 + μ)

μc
, 1

}
. (8)

In contrast, the last three messages are not independent from
each other, and each is spread with the same single code. The
probability of at least one of the last three messages being
jammed is

β ′ = min

{
3z(1 + μ)

μc
, 1

}
. (9)

So we have

P+(1) = 1 − α + α(1 − β)(1 − β ′)

= 1 − α(β + β ′ − ββ ′). (10)

Now we consider x ≥ 2. The D-NDP execution fails if all the
x codes are compromised, which happens with probability αx,
and also all the x compromised codes are selected by J to jam
all the x D-NDP sub-sessions, which happens with probability
(β + β ′ − ββ ′)x. Therefore, for x ≥ 2, we have

P+(x) = 1 − αx + αx (
1 − (β + β ′ − ββ ′)x)

= 1 − αx(β + β ′ − ββ ′)x
. (11)

The probability that the first HELLO message being jammed
is obviously lower than β and very difficult to analyze. As-
sume that the code chosen for the last three messages is
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compromised, which occurs with probability α′. Then at least
of the last three messages is also jammed with probability β ′.
We thus have P̂

+
(x) ≤ 1 − α + α(1 − β ′) for x ≥ 2.

Summarizing the above cases, we have

P+ =
m∑

x=0

P+(x)Pr[x] = 1 −
m∑

x=0

Pr[x]αx(β + β ′ − ββ ′)x
.

(12)

Now we consider reactive jamming under which any mes-
sage spread with a compromised spread code can be jammed.
Two nodes can discover each other if they share at least one
non-compromised spread code. We thus can compute P− =
1 − ∑m

x=0 Pr[x]αx. The actual jamming performance of J is
between random and reactive jamming, i.e., P− ≤ Pd ≤ P+. �

B. Proof of Theorem 2

Proof: Without loss of generality, we assume that A
initiates neighbor discovery with B. To ease the analysis, we
also assume that whenever A or B starts to transmit a message,
the other is processing the previously buffered signal and not
buffering the incoming signal since λ � 1 in practice.

We first consider the time need by nodes A and B to exchange
the first two messages, i.e., identify each other, denoted by
Ti. We define the following timeline. A starts broadcasting the
HELLO message at T1; B starts buffering at T2 and starts buffer
processing at T3; B de-spreads the HELLO message and starts
transmitting the CONFIRM message at T4; A starts buffering at
T5, starts buffer processing at T6, and de-spreads the CONFIRM
message at T7.

Let trB = T3 − T1 be B’s residual processing time of the
previous buffer, and tdB = T4 − T3 be the time for B to de-
spread the HELLO message with Ci. Also let trA = T6 − T4 be
A’s residual processing time of the previous buffer, and tdA =
T7 − T6 the time for A to de-spread the CONFIRM message
using Ci.

Since nodes are not synchronized before discovering each
other, trB and trA are two independent random variables uni-
formly distributed in [0, tp]. Moreover, since A transmits the
HELLO message spread with its m spread codes sequentially,
B may find the message spread with Ci at any buffer place. So
tdB is also a random variable uniformly distributed in [0, tp]. In
contrast, A can de-spread {CONFIRM, IDB}Ci

after processing
at most the first N chip positions, so tdA is a random variable
uniformly distributed in [0, λth]. Let E[·] denote expectation.
We have

E[Ti] ≈ E
[
trB

]+E
[
tdB

]
+E

[
trA

]+E
[
tdA

]
= tp

2
+ tp

2
+ tp

2
+ λth

2

= 3λ(m + 1)th
2

+ λth
2

= ρm(3m + 4)N2lh
2

. (13)

Now we consider the time for A and B to authenticate each
other, denoted by Ta. The last two messages during mutual
authentication involve negligible de-spreading delay but are
much longer than the first two, so we need to consider the
related transmission delays which are both N(1 + μ)(lid + ln +

lmac)/R. Each node also needs to computing the shared key. We
then have

E[Ta] = 2N(1 + μ)(lid + ln + lmac)

R
+ 2tkey. (14)

Finally, we have T = E[Ti] + E[Ta] as shown in Eq. (5). �

C. Proof of Theorem 3

Proof: Assume that two physical neighbors A and B are
connected by a ν-hop jamming resilient path. Consider the M-
NDP request from A to B. The expected size of the M-NDP
request on the ith hop can be computed as li = i(g + 1)lid +
ln + lν + ilsig, where ln, lν, lsig are the lengths of the nonce, ν

and the signature, respectively. The expected total transmission
delay of the M-NDP request across ν hops is then given by

Tν,req = N

R

ν∑
i=1

li = N

R

(
ν(ν+1)

2

(
(g+1)lid+lsig

)+ν(ln+lν)

)
.

In addition, the ith node on the path need verify i signatures and
generate its own signature, which takes time itver + tsig. Here
tver and tsig denote the time needed for one signature verification
and one signature generation, respectively. Similarly, the total
transmission delay of the M-NDP response from B to A can be
computed as

Tν,rsp = N

R

(
ν(ν + 1)

2

(
(g + 2)lid + lsig

) + ν(ln + lν)

)
.

Let Tν =Tν,req+Tν,rsp, we have T=Tν +2ν(ν+1)tver + 2νtsig,

where Tν = N
R

(
ν(ν+1)

2 ((2g + 3)lid + 2lsig) + 2ν(ln + lν)
)

. �
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