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ABSTRACT
Most future large-scale sensor networks are expected to follow a
two-tier architecture which consists of resource-rich master nodes
at the upper tier and resource-poor sensor nodes at the lower tier.
Sensor nodes submit data to nearby master nodes which then an-
swer the queries from the network owner on behalf of sensor nodes.
Relying on master nodes for data storage and query processing
raises severe concerns about data confidentiality and query-result
correctness when the sensor network is deployed in hostile environ-
ments. In particular, a compromised master node may leak hosted
sensitive data to the adversary; it may also return juggled or incom-
plete query results to the network owner. This paper, for the first
time in the literature, presents a suite of novel schemes to secure
multidimensional range queries in tiered sensor networks. The pro-
posed schemes can ensure data confidentiality against master nodes
and also enable the network owner to verify with very high proba-
bility the authenticity and completeness of any query result by in-
specting the spatial and temporal relationships among the returned
data. Detailed performance evaluations confirm the high efficacy
and efficiency of the proposed schemes.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General—Secu-
rity and protection; C.2.1 [Computer Communication Networks]:
Network Architecture and Design—Wireless communication

General Terms
Design, Performance, Security

Keywords
Sensor networks, multidimensional range query, security

1. INTRODUCTION
Many sensor networks are expected to be deployed in remote

and extreme environments such as oceans, volcanos, animal habi-
tats, and battlefields. It is often impossible or prohibitive to main-
tain a stable always-on communication connection from the sensor
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Figure 1: An abstract two-tier sensor network architecture.

network to the external network owner. This situation necessitates
in-network data storage [1–4] such that data continuously produced
by sensor nodes are stored inside the network. The network owner
can access the data when needed via an ad-hoc communication con-
nection (e.g., a satellite link) or by physical means like dispatching
robots to the sensor network [2].

Despite rapid progress in storage technology, it remains econom-
ically infeasible to furnish individual sensor nodes, which may be
in tens of thousands, with large storage space. It is, however, viable
to equip relatively fewer nodes with several gigabytes of NAND
flash storage for a few tens of dollars [2]. Consider Fig. 1 as an
example. Such special nodes, which we call master nodes, col-
lect data from nearby sensor nodes, store them locally for extended
periods of time, and answer various ad-hoc data queries from the
network owner. Master nodes can also have abundant resources in
energy and computation and form a multi-hop wireless mesh net-
work among themselves using long-range high-bandwidth radios.
Such a two-tier network architecture is known to be indispensable
for increasing network capacity and scalability, reducing system
management complexity, and prolonging network lifetime [1, 5].

Relying on master nodes for data storage and query processing
raises significant security concerns. For instance, if a sensor net-
work is deployed in hostile military or homeland security scenar-
ios, master nodes are attractive targets of attack and may be com-
promised by the adversary. As another example, we envision that
in the near future there might be sensor networks built to provide
commercial data service which may face various attacks from busi-
ness competitors. The adversary may launch two types of severe
attacks through compromised master nodes. First, the adversary
can read all the data stored on them which are possibly very sensi-
tive (e.g., intrusion events). This attack calls for sound defenses to
ensure data confidentiality while still enabling efficient data query



processing. Second, the adversary may instruct compromised mas-
ter nodes to return juggled and/or incomplete data in response to
ad-hoc queries from the network owner. This attack is more subtle
and harmful than blind DoS attacks on the sensor network, espe-
cially when the query results are used as the basis for making crit-
ical military or business decisions. To defend this attack, we must
enable the network owner to check the authenticity and complete-
ness of any query result. The term authenticity means that all the
data in the result originated from the purported sources and have
not been tampered with, and completeness means that the result
includes all the data satisfying the query.

Range queries are an important and common type of queries in
sensor networks which ask for data with one or multiple attributes
falling in specified ranges (called one-dimensional or multidimen-
sional range queries) [6, 7]. An exemplary multidimensional range
query is “Return all observed objects with weights between 170 and
220 pounds and moving speeds between 3 and 5 miles per hour.”
This paper is concerned with supporting secure range queries, es-
pecially multidimensional range queries, against possibly compro-
mised master nodes. Extending our work to other types of data
queries [8] is left for future work.

To the best of our knowledge, secure range queries in sensor net-
works has received attention only recently [4, 9]. Aiming at one-
dimensional range queries, both schemes [4, 9] could ensure data
confidentiality and also enable query-result authenticity and com-
pleteness verification with different communication and computa-
tion overhead. How to secure more general multidimensional range
queries, however, remains an open challenging task.

This paper, for the first time in the literature, investigates tech-
niques to secure multidimensional range queries in two-tier sensor
networks. We employ the bucketing technique [10, 11] to achieve
data confidentiality and also query-result authenticity verification
while ensuring efficient query processing (§ 3). Our major con-
tributions are a suite of novel techniques for the network owner
to verify query-result completeness (§ 4). In particular, our first
construction is a deterministic approach that is an extension of the
technique in [4] to multidimensional cases (§ 4.1). It allows the
network owner to immediately catch misbehaving master nodes at
the cost of communication overhead growing exponentially with
the number of dimensions or queriable data attributes. We then
present two novel probabilistic techniques with significantly less
communication overhead, including a spatial crosscheck technique
and a temporal crosscheck technique. The former aims to create
some relationships among data generated by sensor nodes affili-
ated with the same master node (§ 4.2), while the latter aims to
embed some relationships among data produced in different time
periods (§ 4.3). These two techniques can collectively allow the
network owner to verify with overwhelming probability whether a
query result is complete by examining the spatial and temporal re-
lationships among the returned data. We further propose a random
probing technique as a complement to spatial and temporal cross-
check techniques to cope with compromised sensor nodes (§ 4.4).
Built upon symmetric cryptographic primitives, our techniques are
shown to be very effective and efficient through comprehensive the-
oretical analysis and performance evaluations.

2. NETWORK, QUERY, AND ADVERSARY
MODELS

2.1 Network Model
We consider a large-scale two-tier sensor network with thou-

sands of resource-poor sensor nodes and relatively fewer resource-

rich master nodes, as shown in Fig. 1. Master nodes have abun-
dant resources in storage, energy (a solar panel and/or heavy-duty
rechargeable batteries), and computation; they also communicate
in a multi-hop fashion via relatively long-range high-rate radios.
In contrast, sensor nodes are more constrained in storage, energy,
computation, and communication capabilities.

Each master node is in charge of a physical region of the net-
work field, called a cell. Sensor nodes in a cell are affiliated with
the master node in that cell. Here we follow the conventional as-
sumption that master nodes and sensor nodes know their respective
geographic locations and also which cell they are in, which can be
realized by many existing techniques such as [12, 13]. Depending
on concrete applications, the cells of two neighboring master nodes
may overlap, in which case sensor nodes in the overlapping region
are affiliated with both master nodes.

We do not assume an always-on communication connection to
the external network owner. Instead, the network owner can query
data by an on-demand wireless link (e.g., a satellite link) connected
to some master node(s). To prevent storage overflow of master
nodes, mobile sinks [14] can also be periodically (e.g., quarterly)
dispatched to collect data and empty the storage of master nodes.

As in [4,9], we assume that time is divided into epoches and that
sensor and master nodes are loosely synchronized. At the end of
each epoch, each sensor node submits to its master node all the data
(if any) it produced during that epoch. Without loss of generality,
we subsequently focus on a cell C with N sensor nodes {Si}N

i=1

and a compromised (yet undetected) master node M. It is worth
noting that all the operations also apply to all the other cells with
or without compromised master nodes.

2.2 Multidimensional Range Queries
Event data generated by sensor nodes can generally be described

as a tuple of attribute values {Aj}dj=1, where d ≥ 1 depends on
concrete sensor network applications. Each attribute Aj represents
a sensor reading or an aspect of the event such as the weight of
an observed object, its location, its speed and moving trajectory, or
its appearance or lingering time. Let A ⊆ {Aj}dj=1 be a subset of
attributes the network owner is interested in. For sake of simplicity,
we will focus on the following type of primitive multidimensional
range queries,

(cell = C) ∧ (epoch = t) ∧
Aa∈A

(la ≤ Aa ≤ ha), (1)

where C and t denote the cell ID and the interested epoch, re-
spectively, and [la, ha] is the interested range of attribute Aa. For
other types of range queries which, for example, involve multiple
epoches and/or cells or the union of attributes, they can be con-
verted into multiple primitive range queries. Our work can also be
easily extended to support range queries concerning specific sensor
nodes. Note that prior work [4, 9] aims at single-attribute (or one-
dimensional) range queries, which are a special case of ours with
only one queriable attribute (i.e., d = 1).

2.3 Adversary Model
Tremendous efforts have been made to secure sensor network

communications, see for example [15–22]. This paper focuses on
secure multidimensional range queries, an open challenge. We re-
sort to the existing rich literature for other important issues such as
key management, secure routing, broadcast authentication, secure
localization, DoS mitigation, and particularly secure and reliable
message transmissions.

Although the adversary may directly compromise sensor nodes
to read their data and manipulate their behavior, it is much more
tempting to take over master nodes for their significant roles in the



two-tier sensor network. The adversary is assumed to have compro-
mised some master nodes whereby to launch attacks against data
confidentiality and query-result authenticity and completeness. The
adversary may also compromise sensor nodes to aid compromised
master nodes. We, however, follow the conventional assumption
that non-compromised sensor nodes are always the majority. Since
every master node is only responsible for its own cell, the collusion
of compromised master nodes will not do more harm. Our sub-
sequent discussion thus concentrates on one compromised master
node M in charge of a cell with N sensor nodes {Si}N

i=1.

3. CONFIDENTIALITY-PRESERVING
RANGE QUERIES

In this section, we illustrate how to prevent the adversary from
accessing data stored on M while ensuring efficient range-query
processing and query-result authentication. The discussion on que
ry-result completeness is deferred to § 4.

To ensure data confidentiality against M, it is necessary to store
encrypted data atM for whichM has no decryption keys. For this
purpose, node Si, ∀i ∈ [1, N ], is preloaded with a distinct initial
key Ki,0 uniquely shared with the network owner. At the end of
epoch t ≥ 1, Si generates an epoch key by Ki,t = h(Ki,t−1)
and erases Ki,t−1 from its memory, where h(·) denotes a good
hash function. Such epoch keys are used to realize forward-secure
encryption of data produced in each epoch. For example, suppose
that the adversary compromises M and Si during epoch t + 1.
He will not be able to read the encrypted data Si submitted to M
in the past t epoches, as all the encryption (or decryption) keys
{Ki,x}t

x=1 no longer exist in Si.
The most straightforward approach for data confidentiality is to

let Si encrypt all the data generated during epoch t as a whole be-
fore sending them to M. Since M does not know Ki,t, it can-
not read the data. Although providing strong confidentiality, this
method fails to support efficient query processing. In particular,M
need return to the network owner all the encrypted data it collected
from {Si}N

i=1 in the specified epoch, as it cannot locate the en-
crypted data items exactly matching the query. The network owner
can then derive all the epoch keys to decrypt the encrypted data
and locate the data of interest if any. Since the network owner may
only have interest in the data falling in narrow ranges, this method
is obviously very inefficient especially when data retrieval is an ex-
pensive process, e.g., through an on-demand satellite link.

We adapt the technique in [10, 11] to strike a balance between
data confidentiality and query efficiency. More specifically, the do-
main of attribute Aj , ∀j ∈ [1,d], is divided into ωj ≥ 1 con-
secutive non-overlapping intervals under a public partitioning rule
known to the master node and all the sensor nodes, sequentially
numbered from 1 to ωj . A d-dimensional bucket is defined by a
tuple, V = 〈v1, v2, · · · , vd〉 (called bucket ID hereafter), where
vj ∈ [1, ωj ], j ∈ [1,d], is the interval index of Aj . Although
it is possible that ωi 6= ωj for i 6= j, we hereafter assume that
ωj = ω, ∀j ∈ [1,d], to simplify the presentation. When node Si

produces some data falling into some bucket, we say that Si gen-
erated that bucket. We also denote by Yi the number of buckets Si

generated during epoch t and by Vi,j , j ∈ [1, Yi], the jth bucket
ID.

At the end of epoch t, every node in cell C encrypts all the data
items falling into the same buckets as a whole and sends them with
the corresponding bucket IDs to M. Consider node Si as an ex-
ample. Assume that Yi = 2 and that Si has 3 and 2 data items in
buckets Vi,1 = 〈3, 5〉 and Vi,2 = 〈6, 3〉, respectively. Si sends the

following message to M at the end of epoch t:

Si →M : i, t,〈〈3, 5〉, {Data1, Data2, Data3}Ki,t〉,
〈〈6, 3〉, {Data4, Data5}Ki,t〉,

where {·}? denotes an OCB-like authenticated encryption primi-
tive [23] using the key on the subscript. For conciseness, let us
denote all the data items in bucket Vi,j by Di,j . Then the above
message can be represented as

Si →M : i, t, 〈Vi,1, {Di,1}Ki,t〉, 〈Vi,2, {Di,2}Ki,t〉.
The query process is straightforward. The network owner first

converts the desired data ranges (see Eq. (1)) into a set of bucket
IDs, denoted byQt, and then sends 〈C, t,Qt〉 toM. Upon receipt
of the query, M returns all the encrypted data buckets received
during epoch t whose IDs are within Qt along with their corre-
sponding sensor node IDs. The network owner can then derive all
the corresponding epoch keys whereby to decrypt the received data
buckets. Since the data ranges of interest may not exactly span con-
secutive full buckets, some buckets in the query reply may contain
superfluous data items (false positives) the network owner does not
want. One way to reduce such false positives and thus the commu-
nication overhead is to use finer bucketing, i.e., increasing ω. This
measure may, however, help M more accurately estimate the data
distribution and thus jeopardize the data confidentiality to some ex-
tent. We refer to [11] for optimal bucketing strategies which can
achieve a good balance between false positives and data confiden-
tiality.

In addition to ensuring data confidentiality, the authenticated en-
cryption primitive allows the network owner to detect forged or jug-
gled data in the query result, asM does not know the correct epoch
keys. Unfortunately,Mmay still omit data from some nodes which
satisfy the query, leading to query-result incompleteness. This is-
sue is tackled in the following section.

4. QUERY-RESULT COMPLETENESS
VERIFICATION

In this section, we present a set of schemes for the network owner
to verify the completeness of query results. Without loss of general-
ity, we still consider cell C with sensor nodes {Si}N

i=1 and a com-
promised (yet undetected) master node M. For clarity only, we
first temporarily ignore compromised sensor nodes and then dis-
cuss their impact in § 4.4.

To make subsequent theoretical analysis tractable, we make the
following assumptions.

• There are totally µ (non-empty) data buckets generated in
cell C during each epoch, and each node Si on average pro-
duces Yi = µ/N buckets.1

• A query about cell C and epoch t is represented by 〈C, t,Qt〉,
where Qt ⊆ Ω denotes the set of queried bucket IDs and
Ω = {〈v1, v2, · · · , vd〉|vi ∈ [1, ω], i ∈ [1,d]}. We fur-
ther define γ = |Qt|/ωd as the ratio of queried bucket IDs
among all the ωd ones.

• M omits each data bucket satisfying Qt from the query re-
sponse with equal dropping probability δ < 1. Note that M
may use various δs for different queries.

In what follows, we first present a verification scheme as a direct
extension of the encoding technique [4] to multidimensional cases.
1We may ignore the rounding operation hereafter for simplifying
the notation.



Then we introduce two novel probabilistic crosscheck schemes and
further propose a random probing scheme to deal with compro-
mised sensor nodes. The following two performance metrics will
be used throughout.

• Pdet–detection probability: the probability that M is de-
tected as having returned incomplete data.

• T–communication cost: the total communication energy con-
sumption in bits resulting from completeness verification in
cell C. Here we assume the same energy to transmit and
receive each bit across each hop.

Note that we are only interested in minimizing the energy consump-
tion of sensor nodes while ignoring the energy consumption for
messages exchanged between master nodes and the network owner
for two reasons. First, such message transmissions only involve
master nodes which communicate via long-range, high-bandwidth
radios. Second, master nodes are assumed to have plenty of energy
(e.g., a solar panel and/or heavy-duty rechargeable batteries) than
energy-constrained sensor nodes.

4.1 Completeness Verification based on
Encoding Numbers

The basic idea of the encoding technique is to let each sensor
node return some unforgeable proof for each empty bucket. Con-
sider Si as an example. Let Vi = {Vi,j}Yi

j=1 ⊆ Ω denote the buck-
ets Si generated in epoch t and Di,j be the data items in bucket
Vi,j . At the end of epoch t, Si generates a so-called encoding num-
ber for each empty bucket Vi,k ∈ Ω \ Vi as

num(Vi,k, t) = hle(i||t||Vi,k||Ki,t), (2)

where hle(·) denotes a good hash function of le bits and Ki,t is
Si’s epoch key. num(Vi,k, t) is the proof that Si did not generate
data in bucket Vi,k during epoch t and can be verified by the net-
work owner who knows Ki,t. Finally, Si submits toM all the data
buckets and encoding numbers as follows.

Si →M : i, t, {Vi,j , {Di,j}Ki,t |Vi,j ∈ Vi},
{Vi,k, num(Vi,k, t)|Vi,k ∈ Ω \ Vi}.

Upon receiving the query 〈C, t,Qt〉, M should generate a hash
of all the concatenated encoding numbers from all the N nodes
with corresponding empty bucket IDs in Qt.

NUMQt = hlc( ||
Vi,k∈Qt∩Ω\Vi,i∈[1,N ]

num(Vi,k, t)),

where hlc(·) denotes a good hash function of lc bits. Then M
returns all the data buckets satisfying Qt along with NUMQt .

On receiving the response, the network owner can infer the empty
buckets of each node in cell C. Since it knows all the epoch keys
{Ki,t}N

i=1, it can proceed to generate all the corresponding encod-
ing numbers whereby to recompute NUMQt . If the result matches
what it received, the network owner considers M legitimate and
malicious otherwise.

4.1.1 Detection probability
Assume that M chooses to omit some qualified data buckets

from the query result. To escape the detection by the network
owner, it has to return a correct NUM′

Qt
corresponding to the

incomplete data. If the length lc of NUM′
Qt

is sufficiently long,
the probability 2−lc of directly guessing a NUM′

Qt
is negligible.

Since M does not know the epoch keys of the corresponding sen-
sor nodes which are necessary to compute the encoding numbers,

the only option left for it is to guess the le-bit encoding numbers of
the omitted data buckets.

Now we derive Pdet,E , the probability that M can be detected.
Since each of the µ buckets is queried with probability γ and omit-
ted with probability δ, the total number of omitted buckets is ap-
proximately µγδ. In addition, M can guess the correct encod-
ing number for each omitted bucket with probability 2−le . The
network owner cannot detect M if all the µγδ buckets’ encod-
ing numbers are guessed correctly, which happens with probability
2−leµγδ . Thus we have

Pdet,E = 1− 2−leµγδ. (3)

If leµγδ is sufficiently large, then the detection probability Pdet,E

will be very high. This encoding technique can thus be viewed as a
deterministic approach.

4.1.2 Communication cost
The communication cost T of this scheme is incurred by trans-

mitting the encoding numbers to M. Since there are totally µ non-
empty buckets and Nωd − µ empty buckets, Nωd − µ encoding
numbers along with the corresponding bucket IDs need to be trans-
mitted. Assuming that the average number of hops between each
sensor node and M is Lavg , then T is given by

TE = (Nωd − µ)(le + dlog ωed)Lavg, (4)

where dlog ωed is the length of a bucket ID in bits. As we can
see, TE is acceptable when µ ' Nωd, i.e., there are almost no
empty buckets. In practice, however, µ ¿ Nωd in event-driven
sensor networks. This means that the communication cost of the
encoding technique exponentially increases with d (the number of
data attributes), i.e., TE = O(ωdd). It is thus necessary to seek
other techniques with better communication efficiency to cope with
resource-constrained sensor nodes.

4.2 Probabilistic Spatial Crosscheck
The encoding technique enables deterministic detection of ev-

ery query result’s incompleteness with a communication cost T =
O(ωdd). If the network owner can tolerate a small number of
incomplete responses before detecting M, it is feasible to design
some probabilistic verification schemes with much less energy con-
sumption.

The key idea of probabilistic spatial crosscheck is to embed some
relationships among data generated by different sensor nodes. If
M omits part of the data in the response, the network owner can
decide with certain probability that the query result is incomplete
by inspecting the relationships among other returned data. This
technique thus forces M to either return all the data satisfying the
query or risk being caught. To enable spatial crosscheck, we in-
troduce a gossip phase at the end of each epoch t, in which sensor
nodes exchange information about their sensed data before sending
them to M. Then each node that has data to submit appends some
randomly-chosen received information to its own data buckets and
then sends encrypted buckets to M.

In particular, during the gossip phase of epoch t, each node with
data for submission, say Si, broadcasts a gossip message within
cell C which contains each of the generated bucket IDs {Vi,j}Yi

j=1

with equal probability pb. Here we do not require the gossip mes-
sages, which only contain bucket indexes, to be encrypted, but we
do assume a suitable broadcast authentication protocol like multi-
level µTESLA [24] to ensure their authenticity.

At the end of the gossip phase, Si receives a gossip message from
every other node that generated data in epoch t and thus knows the
IDs of all the non-empty buckets which include its own ones and
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Figure 2: A snapshot of the verification graph.

are denoted by V. Recall that {Di,j}Yi
i=1 denote the data items in

bucket Vi,j . Then Si appends each element in V along with the
corresponding node ID to each element in {Di,j}Yi

i=1 with equal
probability pe with the exception that Vi,j will not be appended to
Di,j . With this measure, it is possible that a bucket ID may be
appended to multiple data blocks at other sensor nodes and also to
other buckets generated by the same sensor node. Subsequently, Si

sends encrypted data buckets to M as before.
For instance, suppose that Si generated data blocks {Di,j}3j=1

in buckets {Vi,j}3j=1 (i.e., Yi = 3), respectively, and received Vk,1

from node Sk and Vu,1 and Vu,2 from node Su. Also assume that
Si have the following decisions.

• Append 〈i, Vi,2〉 and 〈k, Vk,1〉 to Di,1;

• Append 〈u, Vu,2〉 and 〈i, Vi,3〉 to Di,2;

• Append 〈u, Vu,1〉 and 〈k, Vk,1〉 to Di,3.

Finally, Si sends the following message to M.

Si →M : i, t,〈Vi,1, {Di,1, 〈i, Vi,2〉, 〈k, Vk,1〉}Ki,t〉,
〈Vi,2, {Di,2, 〈u, Vu,2〉, 〈i, Vi,3〉}Ki,t〉,
〈Vi,3, {Di,3, 〈u, Vu,1〉, 〈k, Vk,1〉}Ki,t〉.

Note that M cannot figure out the bucket IDs embedded in each
bucket due to the encryption, that is,M does not know which buck-
ets can crosscheck each other.

Upon receiving the query 〈C, t,Qt〉, M should return all the
data buckets with IDs in Qt. The network owner then decrypts the
data buckets in the response to get a set of embedded node/bucket
ID pairs. If any such embedded bucket ID is in Qt with the cor-
responding data bucket not being returned, the network owner de-
cides that M omitted that data bucket and thus considers it mali-
cious. For example, assume that Qt contains Vi,1, Vi,2, and Vk,1

and that M did not return bucket Vk,1 of node Sk. If the network
owner receives either of 〈Vi,1, {Di,1, 〈i, Vi,2〉, 〈k, Vk,1〉}Ki,t〉 and
〈Vi,3, {Di,3, 〈u, Vu,1〉, 〈k, Vk,1, 〉}Ki,t , it can find that it should
also have received bucket Vk,1 of node Sk. The network owner
can then consider M malicious.

4.2.1 Detection probability
To analyze Pdet,S , we first define a verification graph which re-

flects the embedding relationships among all the µ data buckets
generated in cell C during epoch t.

Definition 1. A verification graph is a directed graph G = (V,
E), where V is the set of vertexes with each being a non-empty
bucket ID and E is the set of directed edges. An edge from ver-
tex Vi1,j1 to vertex Vi2,j2 indicates that bucket Vi1,j1 contains 〈i2,
Vi2,j2〉 and thus can verify the existence of bucket Vi2,j2 .

A snapshot of G is given in Fig. 2, which corresponds to the
example related to Si in § 4.2. For instance, the edge

−−−−−→
Vi,1Vk,1

corresponds to the embedding relationship 〈Vi,1, {Di,1, 〈i, Vi,2〉,
〈k, Vk,1〉}Ki,t〉 whereby Vi,1 verifies the existence of Vk,1.

Since each of the µ data buckets satisfies Qt with probability γ
and is omitted with probability δ, the network owner receives on
average (1− δ)µγ buckets. Let Vr and Vd = V\Vr denote the set
of vertexes (buckets) that the network owner receives andM omits,
respectively. The network owner can detect the incompleteness of
the query result as long as there is an edge

−−−−−−−→
Vi1,j1Vi2,j2 ∈ E such

that Vi1,j1 ∈ Vr and Vi2,j2 ∈ Vd. There are total |Vr||Vd| possible
edges between Vr and Vd, where |Vr| = (1 − δ)µγ, |Vd| = δµγ.
Referring to the aforementioned embedding process, we can see
that an edge between any two vertexes in V exists with probability
pbpe. The misbehavior ofM cannot be detected if there is no edge
from Vr to Vd, which occurs with probability (1−pbpe)

|Vr||Vd| =

(1− pbpe)
µ2γ2δ(1−δ). Therefore, we have

Pdet,S = 1− (1− pbpe)
µ2γ2δ(1−δ). (5)

4.2.2 Communication cost
Now we estimate the communication cost T, incurred by the gos-

sip messages and the transmission of embedded node/bucket IDs
to M. To simplify the analysis, we assume the simplest broadcast
technique with which each node receives and transmits a broadcast
message once.

Recall that each bucket ID is of dlog ωed bits. Since each node
on average produces µ/N buckets, µpb/N bucket IDs will be in-
serted into a gossip message. Assuming that each node ID is of lid
bits, a gossip message is of lid + µpbdlog ωed/N bits. Since each
of the N gossip messages will be transmitted and received N times,
the associated communication cost is N2(lid + µpbdlog ωed/N).
According to the probabilistic gossiping and embedding process,
each of the µ bucket IDs will have on average approximately µpbpe

copies at different nodes. Assuming that the average number of
hops from a sensor node to M is Lavg , then the communication
cost associated with transmitting the embedded node/bucket IDs to
M is µ2pbpeLavg(lid + dlog ωed). Therefore, we have

TS = N(Nlid + µpbdlog ωed) + µ2pbpeLavg(lid + dlog ωed).
(6)

Apparently, the communication cost of spatial crosscheck is of
order O(d), which is significantly better than that of the encoding
technique, O(ωdd). This is achieved at a slight decrease in the
detection probability, which will be shown in § 5.

4.3 Probabilistic Temporal Crosscheck
In this section, we propose a probabilistic temporal crosscheck

technique as a complement to spatial crosscheck. The key idea
is to embed some relationship between data buckets generated in
consecutive epoches. If M did not correctly respond to query
〈C, t,Qt〉, but it answers query 〈C, t,Qt+1〉, it is possible that the
network owner can catch M with very high probability. For the
sake of clarity, we present the temporal crosscheck technique here
and defer its integration with spatial crosscheck to § 4.5.

To enable temporal crosscheck, we request that node Si, ∀i ∈
[1, N ], maintain a fixed-length buffer of Ldlog ωed bits, where
L ≤ µ/N . The buffer can thus hold Li ≤ L bucket IDs, de-
noted by {Bi,j}Li

j=1 and generated by Si in the last epoch. At the
end of epoch t, Si appends with probability pt each element in
{Bi,j}Li

j=1 to each of the buckets {Vi,j}Yi
j=1 it generated in epoch

t. Node Si also updates the buffer with Li = min{L, Yi} bucket
IDs randomly chosen from {Vi,j}Yi

j=1.
As an example, assume that Li = 3 and that Si generated data

blocks {Di,j}3j=1 in buckets {Vi,j}3j=1 (i.e., Yi = 3), respectively,



and makes the following decisions at the end of epoch t.

• Append Bi,1 and Bi,2 to Di,1;

• Append Bi,3 to Di,2;

• Append Bi,2 to Di,3.

Finally, Si submits to M the following message.

Si →M : i, t,〈Vi,1, {Di,1, 〈Bi,1, Bi,2〉}K1,t〉,
〈Vi,2, {Di,2, 〈Bi,3〉}K1,t〉,
〈Vi,3, {Di,3, 〈Bi,2〉}K1,t〉.

Note that M cannot figure out which data buckets contain any
given Bi,j due to the encryption.

Temporal crosscheck relies on queries for consecutive epoches.
Consider two queries 〈C, t,Qt−1〉 and 〈C, t,Qt〉. The network
owner can verify the completeness of the query result for Qt−1

based on the query result for Qt. If the decrypted result for Qt

contains any Bi,j inQt−1 for which the data bucket was not found
in the query result for Qt−1, the network owner considers M ma-
licious. For example, assume that Bi,1 was omitted in response to
query Qt−1 and undetected, but 〈Vi,1, {Di,1, 〈Bi,1, Bi,2〉}K1,t〉
is returned in response to query Qt. After doing the decryption,
the network owner can find that Bi,1 satisfies Qt−1, but the corre-
sponding data bucket was not received; M can thus be detected.

4.3.1 Detection probability
Recall that there are on average totally µ data buckets generated

during epoch t−1. For simplicity, we assume that Yi = µ/N ≥ L
so that the buffer at each node is full of bucket IDs with each sat-
isfying a query with probability γ. Since M omits each qualified
bucket with probability δ, there are totally Lγδ bucket IDs in the
buffer of each node, say Si, whose data buckets are omitted in the
response to Qt−1. If receiving a query 〈C, t,Qt〉, M will return
µγ(1− δ)/N buckets of Si to the network owner. If none of them
contains any omitted bucket ID in the buffer of epoch t − 1, M
cannot be detected as having omitted Si’s bucket in the response to
queryQt−1, which occurs with probability (1− pt)

Lµγ2δ(1−δ)/N .
Since there are N nodes, the network owner cannot detect the in-
completeness of the result for query Qt−1 with probability (1 −
pt)

Lµγ2δ(1−δ). Also note that M cannot be detected either if the
network does not issue a queryQt, which is assumed to occur with
probability 1− pq . It follows that

Pdet,T = 1− (1− pq)− pq(1− pt)
Lµγ2δ(1−δ)

= pq(1− (1− pt)
Lµγ2δ(1−δ)).

(7)

4.3.2 Communication cost
The communication cost T of temporal crosscheck is incurred by

transmitting the embedded bucket IDs from the buffer at each of the
N nodes. Each node has on average µ/N buckets for submission
to M, into each of which Lpt bucket IDs from the buffer will be
inserted. Assuming that the average number of hops from each
node to M is Lavg , we thus have

TT = Lµptdlog ωedLavg, (8)

which is of order O(d).

4.4 Impact of Compromised Sensor Nodes
We have temporarily ignore the impact of compromised sensor

nodes to ease the presentation. In practice, however, the adversary
may additionally compromise some sensor nodes among {Si}N

i=1

to help M escape detection. Compromised sensor nodes will fully
collaborate with M, e.g., by revealing their epoch keys. As men-
tioned in § 3, M cannot recover the past epoch keys of compro-
mised sensor nodes, so it cannot read or fabricate the data gener-
ated in the past epoches. This means that our schemes can pro-
vide forward-secure data confidentiality and authentication. In this
section, we discuss the impact of compromised sensor nodes on
query-result completeness verification and present some defenses.
Case 1: Return wrong data.

Compromised sensor nodes may return wrong data to the net-
work owner through M. For example, they can submit arbitrary
data to M which is both encrypted and authenticated. Conse-
quently, the network owner cannot immediately identify that they
were actually forged by compromised sensor nodes. It is out of the
scope of this paper to differentiate such wrong data from true data.
Case 2: Disobey the verification operations.

Both the encoding technique and spatial/temporal crosscheck rely
on sensor nodes to provide some verification information for query-
result completeness verification. Compromised sensor nodes can
cooperate with M to misbehave as follows.

• For the encoding technique, M can use the known epoch
keys to derive all the encoding numbers for the compromised
nodes and omit arbitrary qualifying buckets from them in the
query result without being detected.

• For spatial crosscheck, compromised sensor nodes can nei-
ther broadcast their own bucket IDs nor insert any received
bucket ID into their own data buckets during the gossip phase.

• For temporal crosscheck, compromised sensor nodes can sim-
ply choose not to embed any bucket ID in the buffer into their
newly generated data buckets.

We note that the above misbehavior will not affect the operations
of non-compromised sensor nodes; therefore, the detection perfor-
mance of the proposed techniques will not be affected much as long
as non-compromised sensor nodes are always the majority. In par-
ticular, assume that a fraction pc ¿ 0.5 of sensor nodes {Si}N

i=1

are compromised. It amounts to considering a cell with entirely
N ′ = (1− pc)N non-compromised nodes which together produce
on average µ′ = µ(1−pc) buckets in each epoch. All the previous
descriptions and analysis of the detection probability and the com-
munication cost still hold after replacing N and µ with N ′ and µ′,
respectively.
Case 3: Omit data only from non-compromised sensor nodes.
M may also defeat spatial and temporal crosscheck by return-

ing data only from compromised sensor nodes. Since the buck-
ets of compromised sensor nodes do not include the bucket IDs of
non-compromised ones, the network owner cannot detect that M
omitted the data of non-compromised sensor nodes.

We further propose a random probing scheme as a defense, in
which the network owner probes some random nodes of which no
data were returned in the query result. To enable this, node Si, ∀i ∈
[1, N ], maintains a buffer of τLRdlog ωed bits, where τ and LR

are two system parameters. Each buffer can hold up to τLR bucket
IDs. At the end of each epoch t, Si replaces min{LR, Yi} oldest
bucket IDs in the buffer with min{LR, Yi} ones randomly chosen
from {Vi,j}Yi

j=1 generated in epoch t.
As an example, consider a random probing for query Qt that

was issued in epoch t′. After receiving the result for Qt, the net-
work owner identifies the set St of nodes whose data are included
in the query result. Then the network owner randomly picks λ′ =
min{λ, N − |St|} nodes from {Si}N

i=1 \ St whose data are not
included in the query result, where λ is a system parameter. Let



Λ denote the IDs of the nodes to be probed. The network owner
sends 〈C, t, Λ〉 to M which in turn sends a probe message 〈i, t〉 to
Si, ∀i ∈ Λ. On receiving the probe, Si returns 〈i, {t,Bi,t}Ki,t′ 〉
via M to the network owner, where Bi,t denote all the bucket IDs
of epoch t stored in its buffer and Ki,t′ is the epoch key of the
current epoch t′. After receiving all the λ′ responses, the network
owner decrypts them using the corresponding epoch keys. If any re-
ceived bucket ID is in Qt, the network owner knows that M omit-
ted the corresponding data bucket and thus considersMmalicious.

τ determines the maximum number of epoches that a bucket ID
can stay in the buffer. Here, we have implicitly assumed that the
network owner will not delay the queries for epoch t for more than
τ epoches (i.e., t′ − t ≤ τ ). This is believed to be a valid as-
sumption because the longer the query delay, the less useful the
data might be. If this assumption does not hold (i.e., t′ > t + τ ),
the random probing technique does not work because all the bucket
IDs of epoch t no longer exist. Therefore, there is a tradeoff be-
tween the effectiveness of random probing and the storage cost of
sensor nodes. Below we analyze the detection probability and the
communication cost of random probing.

4.4.1 Detection probability
For simplicity, we assume that λ′ = λ and that Yi = µ/N ≥

LR, ∀i ∈ [1, N ]. Then the network owner will receive on average
LR bucket IDs in each of the λ probe responses. M cannot be
detected if none of the λLR bucket IDs is in Qt, which occurs
with probability (1 − γ)λLR . Therefore, M can be detected with
probability

Pdet,R = 1− (1− γ)λLR . (9)

4.4.2 Communication cost
The communication cost of random probing is incurred by trans-

mitting probe messages and responses between sensor nodes and
M. Assume that a probe message only contains the probed’s ID
and that the average distance between sensor nodes andM is Lavg

hops. Also let lep denote the length of epoch IDs. We then have

TR = λ(lid + lep + lid + lep + LRdlog ωed)Lavg

= λ(2lid + 2lep + LRdlog ωed)Lavg,
(10)

which is of order O(d).

4.5 Hybrid Crosscheck
It is natural to build a hybrid scheme on spatial crosscheck, tem-

poral crosscheck, and random probing. Given that the above three
techniques fail with probabilities Pdet,S = (1− pbpe)

µ2γ2δ(1−δ),
Pdet,T = (1−pq)+pq(1−pt)

Lµγ2δ(1−δ), Pdet,R = (1−γ)λLR ,
respectively, M can thus be detected by the hybrid scheme with
probability

Pdet,H = 1− Pdet,S · Pdet,T · Pdet,R . (11)

The communication cost of the hybrid scheme is simply given
by TH = TS + TT + TR, where TS , TT and TR are given in
Eqs. (6), (8), and (10), respectively.

5. PERFORMANCE EVALUATION
In this section, we compare the detection probability Pdet and

the communication cost T of the proposed schemes using numeri-
cal results. We also did some simulations in which random network
topologies were generated many times, and the simulation results
are very close to the numerical results presented here and omitted
due to space constraints. A high-level summary is given in Table 2.

Table 1: Default Evaluation Parameters
Para. Val. Para. Val. Para. Val.

N 400 d 2 ω 16

µ 1000 γ 0.1 δ 0.1

pb 0.01 pe 0.1 pq 0.9

pt 0.5 pc 0 L 2

LR 2 λ 5 lid 10 bits
le 5 bits lep 24 bits Lavg 8 hops
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Figure 3: Impact of d, the number of data dimensions.

5.1 Numeric Results
We assume a cell consisting of 400 sensor nodes and a master

node, and the average distance between a sensor node and the mas-
ter node is 8 hops according to [25]. We also assume error-free
and collision-free packet transmissions. Table 1 summarizes other
default evaluation parameters unless specified otherwise.

5.1.1 Impact of d

Fig. 3 shows the impact of d, the number of dimensions or que-
riable attributes. We can see that the Pdets of the five schemes are
all independent of d. Under the default evaluation parameters, the
encoding scheme has the highest detection probability Pdet,E = 1.
Although the other schemes have smaller Pdets, they can still en-
able quick detection ofM. For example, since the detection proba-
bility of spatial crosscheck is Pdet,S ≈ 0.6, the network owner can
detect M after receiving d1/Pdet,Se = 2 incomplete responses.
The slight sacrifice in Pdet leads to significant savings in the com-
munication cost T, which is shown in Fig. 3(b) in log 10 scale. Not
surprisingly, the T of the encoding scheme increases exponentially
with d, while the T of each other scheme grows linearly with and
is relatively insensitive to d.

5.1.2 Impact of µ

Fig. 4 shows the the impact of µ, the total number of buckets gen-
erated in cell C per epoch. Since the Pdet of the encoding scheme
is still 1, we do not discuss it any further. The Pdets of spatial and
temporal crosscheck dramatically increase as µ increases from 100
to 1000 and finally converge to Pdet,S ≈ 1 and Pdet,T ≈ pq = 0.9,
respectively. This observation is anticipated for two reasons. First,
the larger µ, the more buckets (i.e., µγδ) dropped by M, and the
more traces left for detection. Second, Pdet,T is upper-bounded by
pq (see Eq. (7)). Fig. 4(b) compares the Ts of the five schemes. The
encoding scheme’s T decreases with µ because the more data buck-
ets generated, the fewer empty buckets and thus the fewer encoding
numbers need be sent. In contrast, the Ts of spatial crosscheck,
temporal crosscheck, and the hybrid scheme all increase with µ.
This is not surprising because the more buckets generated, the more



Table 2: Comparison of Query-Result Completeness Verification Schemes
Scheme Type Pdet T Limitation
Encoding Number Deterministic ≈ 1 O(ωdd) High T with large d

Spatial Crosscheck Probabilistic High when δ ≈ 0.5 O(d) Ineffective when δ → 1

Temporal Crosscheck Probabilistic High when δ ≈ 0.5 and pq ≈ 1 O(d) Ineffective when δ → 1 or pq → 0

Random Probing Probabilistic High but depends on query pattern O(d) Affect by query delay
Hybrid Probabilistic Bounded by the best component O(d) May fail only when all components fail
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Figure 4: Impact of µ, the total number of buckets per epoch.
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Figure 5: Impact of γ and δ.

relationships embedded among them. In practice, however, if we
have some prior knowledge about µ, we can easily tune the related
parameters to reduce T, as Fig. 4(a) shows that it is unnecessary
to have too many embedded spatial and/or temporal relationships.
It is worth noticing that the random probing scheme has a much
smaller T with a moderate Pdec, which seems to outperform all the
other four schemes. However, as we mentioned earlier, its effec-
tiveness is also determined by the network owner’s query pattern
or the additional storage cost of sensor nodes. Therefore, we only
consider it as a complementary scheme.

5.1.3 Impact of γ and δ

Fig. 5(a) shows the impact of γ, the interest ratio or the proba-
bility of a bucket being queried. As we can see, the Pdets of the
four probabilistic schemes increase with γ because the larger γ, the
more buckets received by the network owner, the easier to detect
data incompleteness.

Fig. 5(b) shows the impact of δ, the dropping probability. The
Pdets of spatial and temporal crosscheck are both maximized at
δ = 0.5 and reach zero at δ = 1 due to the term δ(1 − δ) in
Pdet,S and Pdet,T (cf. Eq.(5) and Eq.(7)). This means that the
spatial and temporal crosscheck schemes cannot detect M alone
in all cases. The hybrid scheme overcomes this by integrating the
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Figure 6: Impact of pb and pe.
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Figure 7: Impact of pq and pt.

random probing scheme whose Pdet is independent of δ because
only the sensor nodes whose data do not appear in the response
are probed. In addition, although the Pdet of the hybrid scheme is
bounded by that of the random probing when δ approaches 1, the
network owner can adjust λ to achieve a high Pdet.

5.1.4 Impact of pb and pe

Fig. 6 shows the impact of pb (the probability of a bucket ID
being broadcasted) and pe (the probability of a received bucket ID
being embedded) on the spatial and hybrid schemes. In general, the
larger pb and pe, the higher the Pdets, and the larger the Ts. We can
see in Fig. 6(a) that pb need not be too large; what really matters
is pbpe (cf. Eq. (5)). Fig. 6(b) shows that pb has larger influence
on the Ts of both schemes. Therefore, we can use smaller pb with
larger pe to achieve a desirable Pdet.

5.1.5 Impact of pq and pt

Fig. 7 shows the impact of pq (the probability that the network
owner issues a query for a particular epoch) and pt (the probability
that a bucket ID is stored in the buffer for temporal crosscheck) on
temporal crosscheck and the hybrid scheme. In general, the larger
pq and pt, the higher Pdets, the larger Ts. However, as we can
see in Fig. 7(a), since the Pdet of temporal crosscheck is upper-
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Figure 9: Impact of LR and λ.

bounded by pq , the temporal scheme is less effective when pq is
small. In contrast, pq and pt have less impact on the Pdet of the
hybrid scheme whose detection probability is guaranteed by the
other two components. In addition, there is a linear relationship
between pt and the T of temporal crosscheck, as shown in Fig. 7(b).

5.1.6 Impact of L
Fig. 8 shows the impact of L (the buffer length) on the tempo-

ral crosscheck and hybrid schemes, where µ = 4000 and γ =
0.05. As shown in Fig. 8(a), the larger L, the higher the Pdets
of both schemes, and vice versa. When L = 5 or 6, the Pdet of
the temporal scheme approaches its upper bound, pq , as the term
(1 − pt)

Lµγ2δ(1−δ) converges to 0 quickly with the increase of L
(cf. Eq. (7)). This means that L need not be too large. In addition,
the T of the temporal scheme grows linearly with L, as shown in
Fig. 8(b).

5.1.7 Impact of LR and λ

Fig. 9 shows the impact of LR (the buffer length per epoch) and
λ (the number of probed nodes) on the random probing and hybrid
schemes, where µ = 4000 and γ = 0.05. As shown in Fig. 9(a),
the larger LR and λ, the higher Pdets for both schemes, and vice
versa. When λ is close to 30, the Pdets of both schemes approach 1.
Therefore, LR and λ need not be very large, while τ need be large
enough to tolerate possibly large delays between data generation
and corresponding queries (§ 4.4). Fig. 9(b) shows that the T of
random probing is linear to λ, which is only a small portion of the
T of the hybrid scheme.

5.1.8 Impact of N and ω

Fig. 10(a) shows that the T of the encoding technique grows lin-
early with N ≤ 2lid (the number of sensor nodes), while others’
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Figure 11: Impact of pc.

are almost unaffected. Fig. 10(b) shows the impact of ω (the num-
ber of buckets along one dimension), and we have the same obser-
vation as in Fig. 10(a).

5.1.9 Impact of pc

Now we show the impact of pc (the probability that a sensor
node is compromised). As shown in Fig. 11(a), the Pdets of both
spatial and temporal crosscheck decrease with pc, while the rest
schemes remain almost unaffected. The reason is that the fewer
buckets the network owner receives (§ 4.4), the more difficult to
detect the master node’s misbehavior. Fig. 11(b) shows the corre-
sponding Ts of all the schemes which all decrease with pc. This
is intuitive because we only care about the energy consumption of
non-compromised sensor nodes and do not take compromised sen-
sor nodes into account while computing T.

6. DISCUSSION OF FRAMING ATTACK
So far we have assumed that the adversary compromised the

master node M and also some sensor nodes to aid M. Our tech-
niques allow the network owner to detectM with very high proba-
bility if it returned juggled and/or incomplete data. The adversary,
however, may exploit our techniques to frame some legitimate mas-
ter nodes. For example, some nodes in cell C are compromised, but
the master nodeM is non-compromised. The compromised sensor
nodes can misbehave by submitting data toMwhich are encrypted
and authenticated using incorrect epoch keys. They can also send
to M completeness-verification information inconsistent with the
submitted data. For example, for the encoding technique, compro-
mised sensor nodes return incorrect encoding numbers to M; for
spatial and temporal crosscheck, they insert arbitrary bucket IDs
into their data buckets for which the corresponding data buckets
are actually not sent to M; and for random probing, they can re-
turn fake bucket IDs in probe responses. Without precaution, such



misbehavior may mislead the network owner to falsely identify
M as malicious. An effective defense against the framing attack
is to let each sensor node and the master node M digitally sign
each message transmitted and received. In case of dispute, the net-
work owner can detect the compromised parties by analyzing the
involved messages and signatures. Take random probing as an ex-
ample. Assume that the compromised node Si returns bucket ID
Vi,j ∈ Qt in the probe response to the network owner. If Si can
also present the signed proof from M that it has received the cor-
responding data bucket from Si, the network owner considers M
malicious; otherwise, Si is considered malicious. This solution
involves public-key operations which, however, have been shown
to be quite viable in sensor networks [26, 27]. Due to space con-
straints, we leave further investigation on the framing attack and
the identification of compromised sensor nodes as future work.
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