
LR-Seluge: Loss-Resilient and Secure Code Dissemination in Wireless Sensor
Networks

Rui Zhang and Yanchao Zhang
School of Electrical, Computer, and Energy Engineering

Arizona State University
Tempe, AZ 85287

{ruizhang,yczhang}@asu.edu

Abstract—Code dissemination in wireless sensor networks
refers to the process of disseminating a new code image via
wireless links to all sensor nodes after they are deployed. It
is desirable and often necessary due to the need for, e.g.,
removing program bugs and adding new functionalities in
a multi-task sensor network. A sound code dissemination
scheme need be both loss-resilient and attack-resilient, which
are crucial for sensor networks deployed in lossy and hostile
environments. To the best of our knowledge, no existing scheme
simultaneously satisfies both requirements. This paper fills this
gap with the design and evaluation of LR-Seluge, a novel loss-
resilient and secure code dissemination scheme. The efficacy
and efficiency of LR-Seluge are confirmed by both theoretical
analysis and extensive simulation results. In particular, LR-
Seluge can reduce up to 40% communication overhead in lossy
environments with the same level of attack resilience in contrast
to existing schemes.

Keywords-Secure; loss-resilient; code dissemination; sensor
networks;

I. INTRODUCTION

Code dissemination [1] or over-the-air reprogramming
[2] in wireless sensor networks refers to the process of
disseminating a new code image via wireless links to all
sensor nodes after they are deployed. It is desirable and
often necessary due to the need for, e.g., removing program
bugs and adding new functionalities in a multi-task sensor
network [3].

A sound code dissemination scheme faces two critical
challenges. First, wireless channels are lossy in nature,
especially for sensor networks deployed in remote and harsh
environments. Packets may get lost during transmission due
to many reasons such as RF interference and environmental
factors [4]. This calls for loss-resilient code dissemination
schemes like [2], [5], [6] that can withstand high packet
losses. Second, sensor networks in hostile environments
such as the battlefield may be attacked. In particular, the
adversary may exploit the code dissemination mechanism
to launch various attacks. For example, the adversary may
inject bogus code images to take over the control of the
whole sensor network or launch the Denial-of-Service (DoS)
attack by transmitting many bogus image packets to deplete
the limited energy and/or buffer of sensor nodes. This

situation necessitates secure code dissemination schemes
such as Seluge [7] which provides code-image integrity and
DoS attack resilience through immediate and efficient packet
authentication.

To the best of our knowledge, no existing code dissemi-
nation scheme satisfies loss resilience and attack resilience
at the same time. On the one hand, all existing secure code
dissemination schemes such as [7]–[12] are secure versions
of Deluge [1], the de facto non-secure code dissemination
scheme. Deluge [1] relies on Automatic Repeat Request
(ARQ) protocols for reliable broadcast transmissions, in
which each local broadcast receiver uses NACKs to request
retransmission of lost packets. ARQ protocols, however,
are generally not suitable for broadcasting in highly lossy
networks due to too many retransmissions and the accompa-
nying high latency [4]. On the other hand, most loss-resilient
code dissemination schemes employ rateless erasure codes
such as Fountain codes [6] and random linear codes [2] at
the sender side to cope with packet losses. The common
idea is to encode the code image into an unlimited number
of packets such that each local receiver can recover the
code image after receiving sufficiently many packets. It is
unfortunately infeasible to use the similar methods as in
Seluge [7] to realize immediate and efficient authentication
of potentially unlimited erasure-coded packets. There is a
clear gap between these two lines of research.

In this paper, we fill the this gap by LR-Seluge, a novel
loss-resilient and secure code dissemination scheme for
sensor networks deployed in hostile and lossy environments.
As the first of its kind, LR-Seluge is aimed to strike a
good balance between loss resilience and immediate packet
authentication by using a limited number of predetermined
redundant packets. More specifically, we encode the code
image using a fixed-rate erasure code and carefully create
chaining relationships between original and encoded packets
using lightweight cryptographic hash functions. This design
allows sensor nodes not only to recover the original code
image from a subset of the encoded packets but also to effi-
ciently authenticate any encoded packet upon its arrival, thus
simultaneously achieving sufficiently high loss resilience and
attack resilience.

2011 31st International Conference on Distributed Computing Systems

1063-6927/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDCS.2011.51

497

Our main contributions are summarized as follows.

∙ We notice the lack of a sound code dissemination
scheme for sensor networks in lossy and hostile en-
vironments with satisfactory loss resilience and attack
resilience and fill this void by proposing LR-Seluge.

∙ We theoretically analyze and compare the performance
of LR-Seluge with and Seluge [7], a representative
secure code dissemination scheme that ensures code-
image integrity and provides very strong resilience
to DoS attacks. We further confirm the efficacy and
efficiency of LR-Seluge by extensive simulation results.
Our results reveal that LR-Seluge can save up to
40% in communication overhead and 40% in code-
dissemination latency with the same level of attack
resilience in comparison with Seluge.

II. BACKGROUND

This section introduces the background knowledge neces-
sary for understanding the design of LR-Seluge.

A. Deluge

Deluge [1] is the de facto code dissemination paradigm
for sensor network, which is also one of the standard
components of the TinyOS distribution [13].

Deluge employs a page-by-page dissemination strategy,
in which a large code image is divided into smaller fixed-
size pages, and each page is further divided into same-size
packets. A sensor node requests for a new page only after
completely receiving all the packets of the previous page.
During the code dissemination process, each node works
in one of the following three states: maintenance, in which
node periodically advertises the version of its code image
and the number of pages it has for that version, receiving,
in which the node actively requests the remaining packets to
complete the current page using Selective NACK (SNACK
for short) requests, and transmitting, in which the node
broadcasts all the requested packets of the current page and
continuously serves any subsequent request.

Deluge employs various suppression techniques to maxi-
mize the effect of overhearing and reduce packet collisions.
For example, a node suppresses its own request (or data)
packet if overhearing request (or data) packets for a page
with the same or smaller indices. For lack of space, we
refer readers to [1] for the details about these suppression
techniques.

B. Seluge

Seluge [7] is an exemplary secure code dissemination
scheme, which ensures code-image integrity and DoS at-
tack resilience by enabling efficient and immediate packet
authentication.

Seluge integrates three different techniques to realize
efficient and immediate packet authentication. First, Seluge

chains the packets of two adjacent pages with a crypto-
graphic hash function. For example, the hash image of the
𝑗th packet of page 𝑖 is embedded into the 𝑗th packet of
page 𝑖 − 1. Since Seluge adopts the same page-by-page
dissemination strategy from Deluge, any packet of page 𝑖 can
be authenticated upon arrival because all the packets of page
𝑖 − 1 must have been received. Second, to authenticate the
first page, Seluge introduces a special hash page formed by
concatenating all the hash images of packets of the first page.
A Merkle hash tree is built on top of the hash page, and the
base station digitally signs the root of the Merkle hash tree to
ensure its integrity. In this way, each packet of the hash page
can be authenticated by computing the hash images along
the path to the tree root. Finally, to prevent the adversary
from transmitting a large number of signature packets to
force sensor nodes to perform computationally expensive
signature verifications, Seluge let the base station attach
a weak authenticator to the signature packet, which is a
message specific puzzle [14]. Only if the weak authenticator
is valid do sensor nodes verify the signature. Seluge does
not work well in lossy environments due to its dependence
on Deluge, as to be shown later.

C. Erasure Code

A 𝑘-𝑛-𝑘′ erasure code transforms 𝑘 packets into 𝑛 ≥ 𝑘
encoded packets of the same length such that the original
𝑘 packets can be recovered from any 𝑘′ encoded packets.
Typical erasure codes include Reed-Solomon codes, Tornado
codes, Raptor codes, Online codes, and LT codes, for which
a good survey can be found in [15].

III. NETWORK/ADVERSARY MODELS AND DESIGN

GOALS

A. Network Model

As in Seluge [7], we consider a WSN consisting of a base
station and many sensor nodes densely deployed in hostile
environments such as the battlefield. The base station has
a new code image ℳ to be disseminated to all the sensor
nodes via wireless links. We assume that the base station has
abundant resources in computation and communication and
is safeguarded from attacks. We also assume that the base
station has a public/private key pair. In contrast, sensor nodes
are more constrained in storage, energy, computation, and
communication capabilities. We, however, adopt the same
assumption in [7] that a sensor node can verify a few digital
signatures, e.g., one signature verification per code image. It
is worth noting that technical advances have rendered it quite
feasible to execute once-daunting public-key operations on
sensor nodes. For example, it takes 1.12s for a Tmote Sky
mote to verify an ECDSA signature [16]. Such public-key
operations will be minimized in LR-Seluge, as to be shown
later. Moreover, we assume lossy and unreliable wireless
channels such that packets may get lost due to many reasons

498

such as environmental factors and accidental or malicious
RF interference [4].

B. Adversary Model

We also adopt the adversary model from [7]. In particular,
we consider a computationally bounded adversary consisting
of both external and internal attackers. External attackers
do not belong to the target WSN, but they are capable of
overhearing packet transmissions, injecting bogus packets,
and replaying intercepted packets. Internal attackers are
compromised yet undetected sensor nodes which are fully
controlled by the adversary. We, however, follow the con-
ventional assumption that non-compromised sensor nodes
are always the majority.

Despite the many attacks the adversary can launch, this
paper has the same target as Seluge [7] and focuses on
defeating the following two attacks on code dissemination.

∙ The adversary may inject forged code images to take
control of the sensor network.

∙ The adversary may send many fake packets or replay
intercepted packets to force sensor nodes into wasteful
packet processing so as to quickly deplete their limited
energy and/or memory buffer.

C. Design Objectives

In view of the two attacks outlined above, LR-Seluge is
designed with the following goals in mind.

∙ Code-image integrity: Every sensor node is guaranteed
to receive an authentic code image unless the node is
isolated from the rest of the network.

∙ DoS attack resilience: Any forged packets should be
immediately detected upon their arrivals, and packet
authentication should be efficient.

∙ Loss resilience: LR-Seluge should enable more ef-
ficient code dissemination in the presence of severe
packet losses than prior work such as Seluge [7].

IV. LR-SELUGE DESIGN

A. Overview of LR-Seluge

LR-Seluge is largely inspired by two observations. First,
loss-resilient broadcasting can be achieved by using erasure
codes at the sender side, i.e., introducing redundant packets,
as demonstrated in [2], [4]–[6]. Second, immediate and effi-
cient packet authentication can be realized if all the packets
to be transmitted are predetermined. Consider Seluge [7] as
an example, in which all the image packets are preprocessed
to create some chaining relationships with cryptographic
hash functions to enable immediate and efficient packet
authentication. Such preprocessing can be done only if all
the packets can be determined prior to transmission.

The key idea of LR-Seluge is to introduce a limited
number of predetermined redundant packets to increase loss
resilience and also achieve immediate packet authentica-
tion by carefully creating chaining relationships between

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3

e3,1 e3,2 e3,3 e3,4 e3,5 e3,6

f

f

m1,1 m1,2 m1,3

e2,1 e2,2 e2,3 e2,4 e2,5 e2,6

e1,1 e1,2 e1,3 e1,4 e1,5 e1,6

f

Figure 1. An example of code-image preprocessing for pages ℳ1 to
ℳ𝑔 , where 𝑔 = 3, 𝑘 = 3, 𝑛 = 6.

encoded packets and original packets. More specifically, LR-
Seluge differs from existing loss-resilient code dissemination
schemes [2], [4]–[6] in that it uses a fixed-rate erasure code
instead of rateless ones to encode the image packets. To
enable immediate packet authentication, LR-Seluge creates
some chaining relationships between the original packets
of one page and the encoded packets of the next page. In
this way, once a node receives sufficient encoded packets
to recover one page, it also recovers all the hash images of
the next page at the same time. This design differs from
Seluge [7] in that there is no one-to-one correspondence
between the packets of adjacent pages. Furthermore, LR-
Seluge employs a simple but effective scheduling algorithm
that allows each sender to transmit much fewer packets
to ensure that every one-hop neighbor receives sufficient
encoded packets to recover a code page.

In what follows, we detail the operations of LR-Seluge,
including initialization, code-image preprocessing, efficient
loss-resilient code dissemination, and authenticated packet
transmission.

B. Initialization

Before the network deployment, the network owner
preloads each sensor node with the following information.

∙ The same instance of a 𝑘-𝑛-𝑘′ erasure code 𝑓(⋅);
∙ The same instance of a 𝑘0-𝑛0-𝑘′0 erasure code 𝑓0(⋅);
∙ The public key of the base station;
∙ A public cryptographic hash function 𝐻(⋅).

With 𝑓(⋅) or 𝑓0(⋅), every node can generate the same 𝑛 or
𝑛0 encoded packets from the same 𝑘 or 𝑘0 input packets.

C. Code-Image Preprocessing

Assume that the base station has a code image ℳ for
dissemination to all sensor nodes. As in [1], [10], the base
station partitions the original image ℳ into 𝑔 pages of fixed
size, denoted by {ℳ𝑖}𝑔𝑖=1. Each page ℳ𝑖 is then further
divided into 𝑘 original blocks of equal length, i.e., ℳ𝑖 =
{m𝑖,𝑗}𝑘𝑗=1, ∀𝑖 ∈ [1, 𝑔]. We will use the terms “Page 𝑖” and
“Page ℳ𝑖” interchangeably hereafter. Starting from page
ℳ𝑔 , the base station constructs the packets for each page
in the reverse order as the pages are transmitted. An example
is given in Fig. 1, where 𝑔 = 3, 𝑘 = 3, 𝑛 = 6.

499

1) Page 𝑔: For page ℳ𝑔 , the base station applies 𝑓 on
{m𝑔,𝑗}𝑘𝑗=1 to generate 𝑛 encoded blocks as

𝑓(m𝑔,1, ⋅ ⋅ ⋅ ,m𝑔,𝑘) = (e𝑔,1, ⋅ ⋅ ⋅ , e𝑔,𝑛) . (1)

The 𝑛 packets of page ℳ𝑔 are then constructed as 𝑃𝑔,𝑗 :=
⟨𝜈, 𝑔, 𝑗, e𝑔,𝑗⟩, ∀𝑗 ∈ [1, 𝑛], where 𝜈 and 𝑔 denote the code
version and the page number, respectively.

2) Pages 𝑔 − 1 to 1: After constructing {𝑃𝑔,𝑗}𝑛𝑗=1, the
base station proceeds to construct {𝑃𝑔−1,𝑗}𝑛𝑗=1 for page
ℳ𝑔−1. The basic idea is to append the hash images of
{𝑃𝑔,𝑗}𝑛𝑗=1 to the original 𝑘 blocks of page ℳ𝑔−1 and then
apply 𝑓 to generate the 𝑛 packets of ℳ𝑔−1. In particular, the
base station computes ℎ𝑔,𝑗 = 𝐻(𝑃𝑔,𝑗), ∀𝑗 ∈ [1, 𝑛], and then
splits ℎ𝑔,1∣∣ ⋅ ⋅ ⋅ ∣∣ℎ𝑔,𝑛 into 𝑘 slices of equal length, denoted
by {h𝑔,𝑗}𝑘𝑗=1. The 𝑛 encoded blocks of page ℳ𝑔−1 are then
generated as

𝑓(m′
𝑔−1,𝑗 , ⋅ ⋅ ⋅ ,m′

𝑔−1,𝑘) = (e𝑔−1,1, ⋅ ⋅ ⋅ , e𝑔−1,𝑛) , (2)

where m′
𝑔−1,𝑗 := m𝑔−1,𝑗 ∣∣h𝑙,𝑗 . The 𝑛 packets of page

ℳ𝑔−1 to be transmitted are finally generated as 𝑃𝑔−1,𝑗 :=
⟨𝜈, 𝑔 − 1, 𝑗, e𝑔−1,𝑗⟩, ∀𝑗 ∈ [1, 𝑛].

By repeating the above process, the base station can also
iteratively construct the packets for pages 𝑔 − 2 to 1, i.e.,
{𝑃𝑖,𝑗}𝑛𝑗=1, ∀𝑖 ∈ [1, 𝑔 − 2].

3) Page 0 and signature packet: We use a similar ap-
proach as in Seluge [7] to authenticate page ℳ1 by purpose-
fully introducing a hash page ℳ0 as the concatenation of the
𝑛 hash images of page ℳ1, i.e., ℳ0 := ℎ1,1∣∣ ⋅ ⋅ ⋅ ∣∣ℎ1,𝑛. In
general, ℳ0 is much shorter than other pages but still cannot
fit into one packet. Therefore, the base station first splits ℳ0

into 𝑘0 blocks of equal length, denoted by {m0,𝑖}𝑘0
𝑖=1, and

then applies the erasure code 𝑓0 to generate 𝑛0 encoded
blocks as follows,

𝑓0(m0,1, ⋅ ⋅ ⋅ ,m0,𝑘0
) = (e0,1, ⋅ ⋅ ⋅ , e0,𝑛0

) , (3)

where 𝑛0 = 2𝑑 for some integer 𝑑.
The base station then builds a Merkle hash tree [17] of

depth 𝑑 on top of {e0,𝑗}𝑛0
𝑗=1, as illustrated in Fig. 2. In

particular, the base station computes v𝑗 = 𝐻(e0,𝑗), 𝑗 ∈
[1, 𝑛0], and builds a binary tree by computing each internal
node as the hash of its adjacent children nodes. For example,
v3−4 = 𝐻(v3∣∣v4) and v1−4 = 𝐻(v1−2∣∣v3−4) in Fig. 2.

Given the Merkle hash tree, the base station constructs
one packet for each e0,𝑗 , which consists of e0,𝑗 itself and
its authentication information, i.e., all the siblings of the
nodes in the path from v0,𝑗 to the root of the Merkle hash
tree. For example, 𝑃0,2 := ⟨𝜈, 0, 2, e0,2,v1,v3−4,v5−8⟩ in
Fig. 2.

The whole code image is authenticated by the base station
signing the root of the Merkle hash tree using its private key.
To mitigate the possible DoS attack in which the adversary
injects many signature packets to deceive sensor nodes
into continuous relatively expensive signature verifications, a

Signature

h1,6

m0,1

v1

||...||h1,1

m0,2 m0,3

e0,1 e0,2 e0,3 e0,4

v2 v3 v4

v1-2 v3-4

v1-4

h1,24||...||h1,19
...

v5

e0,5 e0,6 e0,7 e0,8

v6 v7 v8

v5-6 v7-8

v5-8

m0,4

v1-8

f0

Figure 2. An example of construction Merkle hash tree over page ℳ0,
where 𝑛 = 24, 𝑘0 = 4, 𝑛0 = 8.

weak authenticator like a message specific puzzle in Seluge
[7] can be attached to the signature packet as a defense.

D. Efficient Loss-Resilient Code Dissemination

This subsection details the code dissemination process of
LR-Seluge which efficiently copes with packet losses. To
ease the illustration, we defer the illustration of LR-Seluge’s
packet authentication mechanisms to Section IV-E. As in
Deluge and Seluge, every node in LR-Seluge works in one
of three states at any time: MAINTAIN, RX and TX. LR-
Seluge differs from Deluge and Seluge mainly in the TX
state due to the use of erasure codes. For self-containment,
below we briefly discuss the operations in the MAINTAIN
and RX states and then detail the operations in the TX state.

1) MAINTAIN: Every node in the MAINTAIN state mon-
itors all its one-hop neighbors to ensure that they all possess
the same number of pages of the latest code image. For this
purpose, every node periodically broadcasts advertisements,
each consisting of the sender ID, the code version number,
and the largest page number in possession (which implies all
previous pages are also in possession). Here a page is said
to be possessed if the sender has received at least 𝑘′ or 𝑘′0
out of 𝑛 of 𝑛0 encoded packets of the page and successfully
decoded it.

If a node detects that any neighboring node has either a
newer code image or more pages of the same code image,
it requests the missing pages from that neighbor with an
SNACK request. For example, assume that node 𝑣 overhears
an advertisement from node 𝑢 indicating that node 𝑢 has
more pages, node 𝑣 switches to the RX state and begins
requesting the missing pages from node 𝑢 which will switch
to the TX state upon an SNACK request from node 𝑣. In
addition, to enable fast code propagation while limiting the
number of advertisement packets, every node adjusts the
advertisement frequency using Trickle [18], a protocol for
maintaining code updates in WSNs.

2) RX: A node in the RX state keeps sending SNACK
requests to corresponding neighboring nodes which possess
a missing page until receiving enough packets to decode the

500

(a) Node 𝑢’s tracking table at some time 𝑇

Node 𝑃𝑖,1 𝑃𝑖,2 𝑃𝑖,3 𝑃𝑖,4 d
𝑣1 0 1 0 1 1
𝑣2 1 1 0 1 2
𝑣3 1 1 1 1 3

Pop. 2 3 1 3

(b) After transmitting packet 𝑃𝑖,2

Node 𝑃𝑖,1 𝑃𝑖,2 𝑃𝑖,3 𝑃𝑖,4 d
𝑣2 1 0 0 1 1
𝑣3 1 0 1 1 2

Pop. 2 0 1 2

(c) After transmitting packet 𝑃𝑖,4

Node 𝑃𝑖,1 𝑃𝑖,2 𝑃𝑖,3 𝑃𝑖,4 d
𝑣3 1 0 1 0 1

Pop. 1 0 1 0

Table I
AN EXAMPLE OF NODE OPERATION IN TX STATE, WHERE 𝑘 = 𝑘0 = 3, 𝑛 = 4.

missing page. A SNACK request includes a bit-vector of
𝑛 bits with every bit indicating whether the corresponding
packet is desired. For every received packet, the requesting
node first authenticates it using the methods in Section IV-E
and stores only the packet passing the authentication. Once
𝑘′ or 𝑘′0 out of 𝑛 or 𝑛0 authenticated packets are received,
the requesting node can erasure-decode the missing page and
then returns to the MAINTAIN state.

3) TX: A node, say 𝑢, switches to the TX state after re-
ceiving an SNACK request for a page it has. The operations
of LR-Seluge in the TX state differs from Deluge and Seluge
mainly in the following two aspects.

First, to serve an SNACK request, a node need erasure-
encode the requested page with the hash images of the next
page’s packets. Consider node 𝑢 as an example. Assume
that 𝑢 has received at least 𝑘′ authenticated packets of
page ℳ𝑖 and erasure-decoded them to recover ℳ𝑖 and the
appended hash images of page ℳ𝑖+1’s encoded packets,
i.e., ℎ𝑖+1,1∣∣ ⋅ ⋅ ⋅ ∣∣ℎ𝑖+1,𝑛. Suppose that 𝑢 receives an SNACK
request from node 𝑣 requesting ℳ𝑖. As the base station
does in Section IV-C, node 𝑢 applies the same erasure
code 𝑓 to ℳ𝑖 appended by ℎ𝑖+1,1∣∣ ⋅ ⋅ ⋅ ∣∣ℎ𝑖+1,𝑛 and obtains
the 𝑛 encoded packets. Node 𝑢 can then broadcast the
encoded packets corresponding to the bit vector in the
SNACK request. Since node 𝑣 has received page ℳ𝑖−1

and thus the hash images of ℳ𝑖’s 𝑛 encoded packets, it
can immediately authenticate the packets from 𝑢 using the
method in Section IV-E.

Second, a suitable scheduling algorithm is needed for
nodes in the TX state to reduce the number of transmissions
for reducing communication overhead. In particular, differ-
ent packets of the same page may be needed by different
neighbors of the node having that page due to random packet
losses. It is thus desirable for the sender to transmit the
smallest subset of the 𝑛 encoded packets to simultaneously
satisfy the requests from all its neighbors. This scheduling
requirement is not found in existing code dissemination
schemes. In particular, a node in Deluge and Seluge simply
transmits packets corresponding to the union of bit vectors
in SNACK packets, and a node in the schemes [2], [5],
[6] based on rateless erasure codes always transmits a fresh
encoded packet for an SNACK request.

We propose an effective greedy round-robin scheduling
algorithm for nodes in the TX state. The basic idea is for a
node to transmit the packet desired by the highest number of
neighbors in a round-robin fashion. More specifically, every

node in the TX state, say node 𝑢, maintains a so-called
tracking table with every table entry corresponding to one
neighbor from which an SNACK was received. The tracking
entry for a node, say 𝑣, consists of the following fields.

∙ The node ID 𝑣;
∙ A bit vector of length 𝑛 indicating which packets have

been received by 𝑣 from 𝑢’s current point of view;
∙ The distance of node 𝑣, denoted by d𝑣 and referring

to the number of additional packets 𝑣 needs to recover
the requested page.

Initially, the tracking table is empty. Upon receiving an
SNACK request from a node, say 𝑣, node 𝑢 first checks if
there is an entry for node 𝑣. If not, node 𝑢 creates an entry
for node 𝑣, copies the bit vector from the SNACK request,
and sets the distance d𝑣 as the additional number of packets
needed by 𝑣. For example, if all bits in the bit vector of the
SNACK request are ones, then d𝑣 = 𝑘′. In general, since
node 𝑣 needs at most 𝑘′ packets for decoding the requested
page, we have d𝑣 = 𝑞 + 𝑘′ − 𝑛, where 𝑞 is the number of
ones in the bit vector. If there is an entry for node 𝑣, node
𝑢 updates the entry according to the SNACK request.

To illustrate the scheduling algorithm, assume that node 𝑢
is handling the SNACK requests from its neighbors for page
ℳ𝑖 which is erasure-encoded into packets {𝑃𝑖,𝑗}𝑛𝑗=1. We
also define the popularity of a packet as the number of nodes
requesting it. Also assume that there are 𝑧 entries in node
𝑢’s tracking table. The 𝑧 bit vectors form a 𝑧×𝑛 bitmap, in
which the total number of ones in the 𝑗th column indicates
the popularity of packet 𝑃𝑖,𝑗 . The first packet, say 𝑃𝑖,𝑥, sent
by 𝑢 is the packet with the highest popularity and also the
lowest packet index in case that there are multiple packets
of the highest popularity. After sending 𝑃𝑖,𝑥, node 𝑢 updates
the tracking table by setting all the bits in the 𝑥th column to
zero and decreasing the distances of the nodes needing 𝑃𝑖,𝑥

by one. Note that if 𝑃𝑖,𝑥 failed to reach some nodes, these
nodes may request it again in a later SNACK packet. If some
nodes’ distances reach zero, their entries are deleted. The
next packet is selected as the one with the highest popularity
and the index equal to min{𝑥+1, ⋅ ⋅ ⋅ , 𝑛, 𝑛+1, ⋅ ⋅ ⋅ , 𝑛+𝑥−
1} mod 𝑛, i.e., the first packet to the right of 𝑃𝑖,𝑥 with the
highest popularity. This process continues until 𝑢’s tracking
table is empty.

Table I gives an example where 𝑘 = 𝑘′ = 3, 𝑛 = 4.
Assume that at some point, node 𝑢’s tracking table has three
entries for nodes 𝑣1, 𝑣2 and 𝑣3, as shown in Table (a).
The popularity of packets 𝑃𝑖,1 to 𝑃𝑖,4 are 2, 3, 1, and 3,

501

respectively. Node 𝑢 will first transmit 𝑃𝑖,2 and then updates
the tracking table to Table (b). Note that node 𝑣1 has been
removed from the tracking table because its distance reaches
zero. Subsequently, node 𝑢 chooses 𝑃𝑖,4 to transmit because
it is the first packet of the highest popularity on 𝑃𝑖,2’s right
side. After 𝑃𝑖,4 is transmitted, the tracking table is updated
again to Table (c). Finally, packet 𝑃𝑖,1 is transmitted, after
which the tracking table becomes empty.

E. Authenticated Code Dissemination

This subsection details how LR-Seluge realizes authenti-
cated code dissemination. LR-Seluge adopts the page-by-
page dissemination approach from Deluge and Seluge in
which a node can only request a new page if all previous
pages have been completely received and recovered. This
page-by-page strategy together with LR-Seluge’s packet
construction enables immediate packet authentication to
ensure code-image integrity and also prevents the DoS attack
that targets exhausting the receivers’ energy or buffers.

In particular, the base station initiates the dissemination
process by broadcasting the signature packet. On receiving
the signature packet, every sensor node, say 𝑢, verifies the
signature to authenticate the root of the Merkle hash tree,
e.g., v1−8 in Fig. 2. If the verification succeeds, node 𝑢
begins to send SNACK packets requesting the packets of
page ℳ0. Every packet in page ℳ0 can be immediately
authenticated upon its arrival. For example, for packet 𝑃0,1

in Fig. 2, node 𝑢 can verify its authenticity by checking if
the following equation holds,

v1−8 = 𝐻(𝐻(𝐻(𝐻(e0,1)∣∣v2)∣∣v3−4)∣∣v5−8) .

If so, it stores the packet and otherwise drops it.
Once node 𝑢 has collected 𝑘′0 authenticated packets of

page ℳ0, say {𝑃0,𝑗𝑥}𝑘
′
0

𝑥=1, it can erasure-decode ℳ0 as

𝑓−1
0 (e0,𝑗1 , ⋅ ⋅ ⋅ , e0,𝑗𝑘′

0

) = (m0,1, ⋅ ⋅ ⋅ ,m0,𝑘0
) . (4)

Recall that ℳ0 contains all the hash images of the packets of
page ℳ1. Therefore, node 𝑢 can subsequently authenticate
all the packets of page ℳ1 upon their arrivals by a simple
hash verification. Similarly, once at least 𝑘′ authenticated
packets of ℳ1 have been collected, node 𝑢 can decode
ℳ1 to get all the hash images of the packets of page ℳ2

whereby to immediately authenticate all the packets of page
ℳ3. In short, the page-by-page strategy guarantees that
whenever node 𝑢 requests a new page from a neighboring
node, all the information needed for authenticating the new
page is available at that time. Therefore, any data packet can
be immediately authenticated upon their arrivals.

In addition, LR-Seluge adopts the same mechanisms in
Seluge, i.e., cluster key and message specific puzzle, to
authenticate advertisement and SNACK packets and to ef-
fectively filter out forged signatures of the root of the Merkle
hash tree, respectively. Therefore, LR-Seluge inherits the

same level of resilience to DoS attacks that exploit Deluge’s
epidemic propagation and suppression mechanisms.

It is worth noticing that LR-Seluge and all existing
secure code dissemination schemes [7]–[12] are vulnerable
to a special kind of denial of receipt attack in which a
compromised sensor node denies it has received any data
packets but keeps sending SNACK packets to a victim node
in order to deplete its energy. In particular, a victim node
need transmit 𝑘′ data packets on receiving a SNACK packet
with all bits set to one. It is fundamentally difficult to verify
whether a particular packet has been received by certain
nodes in lossy environment.

To mitigate the impact of this attack, a possible solution
is to replace cluster key by a local authentication scheme
like LEAP [19] to simultaneously authenticate and identify
the source of any SNACK packet. In addition, each node
in TX state maintains a counter for the number of SNACK
packets from each neighbor. For any page, if the number of
data packets requested by a neighboring node, say 𝑣, exceeds
some certain threshold, the node that serving the page, say
𝑢, can simply ignore future SNACK packets from 𝑣, under
the assumption that either 𝑣 is launching the denial of receipt
attack or the channel between 𝑢 and 𝑣 is too bad so that 𝑣
should request data packets from its other neighbors. Due
to the space limitation, we leave the detailed investigation
as our future work.

V. PERFORMANCE ANALYSIS

Section IV-E discusses how LR-Seluge realizes code-
image integrity and DoS resilience. In this section, we
analyze the communication and computation overhead of
LR-Seluge.

A. Communication Overhead

The communication costs of Seluge and LR-Seluge both
comprise the transmissions of data, advertisement, and
SNACK packets, among which data-packet transmissions
account for the most. To enable theoretical tractability,
we here analyze the number of data-packet transmissions
under Seluge and LR-Seluge, respectively, under a one-
hop scenario. This is a meaningful simplification, as the
performance of Seluge and LR-Seluge largely depends on
hop-by-hop local broadcasting. The impact of advertisement
and SNACK packets and also the communication costs
of Seluge and LR-Seluge in multi-hop scenarios will be
demonstrated using simulations in Section VI.

We consider a one-hop scenario consisting of 𝑁 receivers
and a local sender at the center. Our main goal is to
demonstrate the impact of employing erasure codes in lossy
environments. So we adopt a similar model as in [20] in
which every packet to node 𝑖 gets lost with probability 𝑝𝑖
and packet losses at different nodes are uncorrelated.

We then have the following theorems regarding the num-
ber of data packet transmissions in Seluge and LR-Seluge,

502

respectively, whose proofs are available in our technical
report [21]. It is worth mentioning that Theorem 2 is
obtained by analyzing a variation of LR-Seluge, called ACK-
based LR-Seluge. In ACK-based LR-Seluge, instead of
using SNACK packets, each receiver returns an ACK packet
only after receiving 𝑘′ packets of the current page. Since
the local sender is not aware of which packets are missing
at each node, it repeatedly transmits the 𝑛 erasure-coded
packets until receiving an ACK from every neighboring
node. ACK-based LR-Seluge is apparently less efficient than
LR-Seluge, as the sender may unnecessarily transmit some
packets which have reached all the receivers. Therefore, its
communication cost is an upper bound of LR-Seluge.

THEOREM 1: With Seluge, the expected number of data-
packet transmissions needed to transmit a page of 𝑘 packets
to all 𝑁 nodes is given by

𝑘
∞∑

𝑡=1

𝑡 ⋅ (
𝑁∏

𝑖=1

(1− 𝑝𝑡𝑖)−
𝑁∏

𝑖=1

(1− 𝑝𝑡−1
𝑖)

)
. (5)

THEOREM 2: With LR-Seluge employing a 𝑘-𝑛-𝑘′ era-
sure code, the expected number of data-packet transmissions
needed for all 𝑁 nodes to receive at least 𝑘′ packets to
recover the original page of 𝑘 packets is bounded by

𝑛

∞∑

𝑟=1

𝑟 ⋅ (Pr(R ≤ 𝑟)− Pr(R ≤ 𝑟 − 1)) , (6)

where Pr(R ≤ 𝑟) =
∏𝑁

𝑖=1

∑𝑛
𝑗=𝑘′

(
𝑛
𝑗

)
(1− 𝑝𝑟𝑖)

𝑗𝑝
𝑟(𝑛−𝑗)
𝑖 .

B. Computation Overhead

The computation overhead of LR-Seluge comes from
packet authentication and page encoding/decoding.

The computation cost incurred by packet authentication
is very similar to that of Seluge. First, authenticating a
signature packet requires one hash function for the weak
authenticator and one signature verification. Second, au-
thenticating a packet of page ℳ0 requires 𝑑 + 1 hash
computations, and total 𝑘′0(𝑑 + 1) hash computations are
needed for page ℳ0. In contrast, authenticating a packet of
page ℳ𝑖, 1 ≤ 𝑖 ≤ 𝑔 requires one hash computation, so total
𝑘′ hash computations are needed for each page ℳ𝑖.

The computation cost incurred by erasure decoding and
encoding depends on the particular erasure code used by LR-
Seluge. Theoretically speaking, LR-Seluge can be integrated
with any erasure code as long as the parameters (𝑘, 𝑛, 𝑘′)
are satisfied. In our evaluation, we adopt a fixed-rate LT
code from SYNAPSE [6], in which each encoded packet is
the XOR of some original packets. Assuming that 𝑘 = 32,
𝑛 = 64, and 𝑘′ = 35, decoding a page of 32 original packets
of 25 bytes requires 5142 XOR operations on average and
takes about 462 ms on a Tmote Sky sensor node [6]. Same
as Seluge [7], LR-Seluge uses data packets with an effective
payload length of 96 bytes. Since the decoding cost of the

LT code is linear to the packet length, decoding a page of 32
original packets of 96 bytes requires approximately 19745
XOR operations and takes about 1.8 seconds. Finally, nodes
in the TX state need erasure-encode the original page to
obtain the other 𝑛−𝑘′ missing packets, which requires 𝑠(𝑛−
𝑘′) ∗ 96 XOR operations on average, where 𝑠 is the average
number of original blocks XORed to generate an encoded
packet. If 𝑠 = 12.06 as in [6], the encoding cost for a page
in LR-Seluge requires approximately 33576 XOR operations
and takes about 3.1 seconds on a Tmote Sky sensor node.
It is also worth noting that in LR-Seluge, only a few nodes
in the TX state need perform encoding.

VI. PERFORMANCE EVALUATION

In this section, we compare LR-Seluge with Seluge using
extensive simulations in TOSSIM [22], a discrete event
simulator distributed with TinyOS 2.1.1.

Unless stated otherwise, the following simulation config-
urations are used. For the 𝑘-𝑛-𝑘′ erasure code 𝑓(⋅), we have
𝑘 = 32, 𝑛 = 64, and 𝑘′ = 35; for the 𝑘0-𝑛0-𝑘′0 erasure code
𝑓0(⋅), we have 𝑘0 = 8, 𝑛0 = 16, and 𝑘′0 = 11. As in Seluge
[7], we set the packet-payload size to 102 bytes and use the
64-bit truncation of SHA-1 as the hash function 𝐻(⋅), and
use a gap of 17 ms between two data-packet transmissions.
The image version number, page number, and packet number
in both Seluge and LR-Seluge packets totally consume 6
bytes, which leaves 96 bytes for the effective packet payload.
In addition, except the packets of Page 0, each packet in
Seluge and LR-Seluge contains one and 𝑛/𝑘 hash values,
respectively. Therefore, the packets of Seluge and LR-Seluge
have 96 − 8 = 88 bytes and 96 − 8 ∗ 𝑛/𝑘 = 80 bytes,
respectively, for code-image slices. In our simulations, each
page consists of 32 packets for both Seluge and LR-Seluge,
and the code image ℳ is of 20 KB. Under Seluge, ℳ leads
to totally 𝑔 = 8 pages, among which the last page comprises
only 9 packets; under LR-Seluge, ℳ leads to totally 𝑔 = 8
pages as well, all of which comprise 32 packets.

In addition, we set the minimum delays between two
advertisement packets and between two SNACK packets to
1 second and 128 ms, respectively, for both Seluge and
LR-Seluge. Moreover, we use the delays of 2.5 and 3.5
seconds to emulate the decoding and encoding of a page,
respectively, which is clearly in favor of Seluge because the
decoding and encoding times are estimated as 1.8 and 3.1
seconds, respectively, in Section V-B.

The performance metrics used in our comparisons include
the total number of data packets, the total number of SNACK
packets, the total number of advertisement packets, and
the overall dissemination latency which is defined as the
time required to finish disseminating a code image to all
the nodes in the network. Since SNACK packets in LR-
Seluge are 𝑛 − 𝑘 bits longer than those in Seluge, we
will also show the total communication cost covering data,
SNACK and advertisement packets in bytes for fairness.

503

(a) 20 receivers (b) 𝑝 = 0.3

Figure 3. One-hop one-page scenario.

Each measurement in the following figures is the average
over 20 simulation runs, each with a different seed.

A. Validation of Analytical Results

To validate the analytical results in Section V-A, we first
simulate the transmission of one page in Seluge and LR-
Seluge in a fully-connected one-hop scenario with one local
sender and a varying number of local receivers. To fully
control and illustrate the impact of packet losses, we use a
similar simulation strategy as in [6], where nodes are placed
close enough to eliminate packet transmission errors caused
by channel impairments, and packet losses are emulated by
each node dropping received data, advertisement, or SNACK
packets with the same probability 𝑝 at the application layer.

Figs. 3(a) and 3(b) show the analytical results of Seluge
and ACK-based LR-Seluge and the simulation results of
Seluge and LR-Seluge. We can see that the simulation
result of Seluge closely matches the analytical result, and
the number of data packets transmitted in ACK-based LR-
Seluge is always larger than that of LR-Seluge obtained from
simulations, which confirms that the number of data-packet
transmissions in LR-Seluge is upper bounded by that in
ACK-based LR-Seluge. In addition, we can see a significant
increase in the number of data packet transmissions in ACK-
based LR-Seluge when the packet loss rate increases from
0.3 to 0.4. The reason is that when 𝑝 ≤ 0.3 (or 𝑝 ≥ 0.4),
ACK-based LR-Seluge can finish transmitting one page in
one round (or two rounds) with high probability. The figures
also confirm that LR-Seluge incurs much fewer data-packet
transmissions than Seluge in lossy environments and is less
sensitive to the number of receivers as well.

B. The One-Hop Case

For lack of space, hereafter we focus on comparing LR-
Seluge and Seluge with simulations which involve dissemi-
nating a code image ℳ of 20 KB.

1) Impact of the packet-loss rate: Figs. 4(a)∼4(e) show
the impact of the packet-loss rate 𝑝 on LR-Seluge and
Seluge, where there are 𝑁 = 20 local receivers. It is
not surprising to see that the total communication costs
and dissemination latencies of LR-Seluge and Seluge both

increase as 𝑝 increases. In addition, when 𝑝 ≤ 0.01, LR-
Seluge has a slightly larger communication cost than Seluge
for both data and control packets. There are two reasons.
First, LR-Seluge has more data packets than Seluge for the
same code image due to the use of erasure codes. Second,
under LR-Seluge, each node needs 𝑘′ > 𝑘 packets to recover
each page, so more data-packet transmissions are needed to
disseminate one page if there are no or rare packet losses. In
contrast, when 𝑝 > 0.01, LR-Seluge outperforms Seluge in
all the five performance metrics. For example, when 𝑝 = 0.4,
LR-Seluge reduces the total communication cost by 44%
and the dissemination latency by 48% in comparison with
Seluge. These results clearly demonstrate that LR-Seluge is
much more resilient to packet losses than Seluge.

2) Impact of the node density: Figs. 5(a)∼5(e) show the
impact of the number 𝑁 of local receivers on LR-Seluge
and Seluge, where the packet-loss rate 𝑝 = 0.1. We can see
that the communication costs of LR-Seluge and Seluge all
increase as 𝑁 increases. This is understandable because it
always requires more data and control packet transmissions
to disseminate the same code image under packet losses.
However, LR-Seluge is much less sensitive to the increase of
𝑁 , which can be clearly seen in Figs. 5(a)∼5(d). In addition,
the dissemination latency of Seluge increases slightly as 𝑁
increases, while that in LR-Seluge slightly decreases. This
could be explained as follows. In Seluge, as 𝑁 increases,
the numbers of SNACK and data packet transmissions in-
crease significantly, which leads to higher the dissemination
latency. In contrast, the numbers of SNACK and data packet
transmissions increase much slower in LR-Seluge as 𝑁
increases. In addition, the more nodes that demand the
current page, the earlier the first node receives 𝑘′ packets and
thus recovers the current page, and the earlier the SNACK
packet is transmitted to request the next page. This leads to
the decrease in total dissemination latency.

3) Impact of the erasure-coding rate: Figs. 6(a)∼6(e)
show the impact of the erasure-coding rate 𝑛/𝑘 on LR-
Seluge under different packet-loss rates, where 𝑘 is fixed
to 32. We can see that by introducing a limited number
of redundant data packets, the communication cost of LR-
Seluge decreases significantly. For example, when 𝑝 = 0.1
and 𝑛 = 56, the total number of SNACK and data packet
transmissions decrease by 70.5% and 30%, respectively. As
𝑛/𝑘 further increases, the communication cost and dissem-
ination latency increase slowly. The reason is that higher
erasure-coding rates lead to shorter packet space for code-
image slices and thus more packets for the same code image.

C. The Multi-Hop Case

We also simulate LR-Seluge and Seluge in multi-hop net-
works. In particular, we simulate them under two 15×15 grid
sensor networks using the exemplary topologies specified in
15-15-tight-mica2-grid.txt (high node density) and 15-15-
medium-mica2-grid.txt (low node density) and RF noise and

504

(a) data packet (b) SNACK packet (c) advertisement packet (d) total communication cost (e) dissemination latency

Figure 4. Impact of the packet-loss rate, where there are 𝑁 = 20 local receivers.

(a) data packet (b) SNACK packet (c) advertisement packet (d) total communication cost (e) dissemination latency

Figure 5. Impact of the node density, where the packet-loss rate 𝑝 = 0.1.

(a) data packet (b) SNACK packet (c) advertisement packet (d) total communication cost (e) dissemination latency

Figure 6. Impact of the erasure-coding rate.

Table II
PERFORMANCE COMPARISON UNDER NETWORK WITH HIGH DENSITY

LR-Seluge Seluge Ratio
Total # of SNACK packets 1804 3629 49.71%
Total # of data packets 4040 5496 73.50%
Total # of adver. packets 1059 1678 63.11%
Total comm. cost in bytes 6.05× 105 8.78× 105 68.91%
Dissemination latency (s) 93 146 63.70%

Table III
PERFORMANCE COMPARISON UNDER NETWORK WITH MEDIUM

DENSITY

LR-Seluge Seluge Ratio
Total # of SNACK packets 10927 20287 53.86%
Total # of data packets 38197 47373 80.63%
Total # of adver. packets 13088 18812 69.57%
Total comm. cost in bytes 5.55× 106 7.27× 106 76.34%
Dissemination latency (s) 1154 1534 75.23%

interference from the sample noise trace file meyer-heavy.txt
of the TinyOS distribution.

Tables II and III compare the performance of LR-Seluge
and Seluge under these two topologies, respectively. We
can see that LR-Seluge outperforms Seluge for all the
performance metrics by significant margins, which coincides

with the results under the one-hop scenario. We have also
simulated other network topologies generated by the topol-
ogy tool provided by the TinyOS distribution which is based
on theoretical propagation models. In general, the results are
very similar to those shown in Tables II and III and thus are
omitted here due to the space limitation. In addition, we have
simulated the impact of different image sizes in both one-
hop and multihop networks and observed similar advantages
of LR-Seluge over Seluge.

VII. RELATED WORK

In addition to Deluge [1] and Seluge [7], the following
work is most related to our LR-Seluge scheme.

Sluice [8] aims at authenticated code dissemination based
on signature and cryptographic hash functions. It creates a
chaining relationship among adjacent pages by embedding
the hash image of each page into the previous page and
signing only the first page. A scheme similar to Sluice is
presented in [9], in which the hash image of each packet is
included in the previous packet. Both schemes, however, are
vulnerable to DoS attacks in which the adversary keeps send-
ing bogus packets that cannot be immediately authenticated,
as pointed out in [7]. A scheme with better DoS resilience

505

is presented in [23] and uses Merkle hash trees to enable
immediate authentication of packets upon their arrivals. In
addition, Tan at al. propose a secure code dissemination
scheme based on multiple hash chains [10] and also a code
dissemination scheme which preserves the confidentiality
of the code image [12]. Most recently, Ugus et al. [11]
present a ROM-friendly secure code dissemination protocol
which significantly reduces the memory requirement. All
these previous schemes rely on Deluge and thus do not work
well in lossy environments

There are also some loss-resilient code dissemination
schemes such as AdapCode [5], Rateless Deluge and ACK-
less Deluge [2], and SYNAPSE [6], which do not take
security into consideration.

VIII. CONCLUSION

This paper presents the design and evaluation of LR-
Seluge, the first loss-resilient and secure code dissemination
scheme for sensor networks. The performance of LR-Seluge
is confirmed by both theoretical analysis and thorough
simulation results. Our future work is to evaluate LR-Seluge
on a real testbed.

ACKNOWLEDGEMENT

This work was supported in part by the US National
Science Foundation under grants CNS-0716302 and CNS-
0844972 (CAREER). We would like to thank Dr. Yee Wei
Law for helpful discussion and sharing the simulation code.

REFERENCES

[1] J. Hui and D. Culler, “The dynamic behavior of a data
dissemination protocol for network programming at scale,”
in SenSys’04, Baltimore, MD, Nov. 2004, pp. 81–94.

[2] A. Hagedorn, D. Starobinski, and A. Trachtenberg, “Rateless
deluge: Over-the-air programming of wireless sensor net-
works using random linear codes,” in IPSN’08, Washington,
DC, Apr. 2008, pp. 457–466.

[3] T. Stathopoulos, J. Heidemann, and D. Estrin, “A remote code
update mechanism for wireless sensor networks,” UCLA, Los
Angeles, CA, Tech. Rep., 2003.

[4] A. Wood and J. Stankovic, “Online coding for reliable data
transfer in lossy wireless sensor networks,” in DCOSS’09,
Marina del Rey, CA, June 2009, pp. 159–172.

[5] I.-H. Hou, Y.-E. Tsai, T. Abdelzaher, and I. Gupta, “Adap-
code: Adaptive network coding for code updates in wireless
sensor networks,” in INFOCOM’08, Phoenix, AZ, Apr. 2008,
pp. 1517–1525.

[6] M. Rossi, G. Zanca, L. Stabellini, R. Crepaldi, A. H. III, and
M. Zorzi, “SYNAPSE: A network reprogramming protocol
for wireless sensor networks using fountain codes,” in IEEE
SECON’08, San Francisco, CA, June 2008, pp. 188–196.

[7] S. Hyun, P. Ning, A. Liu, and W. Du, “Seluge: Secure and
dos-resistant code dissemination in wireless sensor networks,”
in IPSN’08, April 2008, pp. 445–456.

[8] P. Lanigan, R. Gandhi, and P. Narasimhan, “Sluice: Se-
cure dissemination of code updates in sensor networks,” in
ICDCS’06, Washington, DC, July 2006, pp. 53–62.

[9] P. Dutta, J. Hui, D. Chu, and D. Culler, “Securing the deluge
network programming system,” in IPSN’06, Apr. 2006, pp.
326–333.

[10] H. Tan, S. Jha, D. Ostry, J. Zic, and V. Sivaraman, “Secure
multi-hop network programming with multiple one-way key
chains,” in WiSec’08, Mar. 2008, pp. 183–193.

[11] O. Ugus, D. Westhoff, and J.-M. Bohli, “A ROM-friendly
secure code update mechanism for WSNs using a stateful-
verifier 𝜏 -time signature scheme,” in WiSec’09, Zurich,
Switzerland, Mar. 2009, pp. 29–40.

[12] H. Tan, D. Ostry, J. Zic, and S. Jha, “A confidential and DoS-
resistant multi-hop code dissemination protocol for wireless
sensor networks,” in WiSec’09, Zurich, Switzerland, Mar.
2009, pp. 245–252.

[13] “TinyOS: An open-source operating system designed for
wireless embedded sensor networks,” http://www.tinyos.net/.

[14] P. Ning, A. Liu, and W. Du, “Mitigating dos attacks against
broadcast authentication in wireless sensor networks,” ACM
TOSN, vol. 4, no. 1, pp. 1–31, Jan. 2008.

[15] M. Mitzenmacher, “Digital fountains: a survey and look
forward,” in IEEE ITW’04, San Antonio, TX, Oct. 2004.

[16] H. Wang, B. Sheng, C. Tan, and Q. Li, “WM-ECC: an
Elliptic Curve Cryptography Suite on Sensor Motes,” College
of William and Mary, Computer Science, Williamsburg, VA,
Tech. Rep. WM-CS-2007-11, 2007.

[17] R. Merkle, “Protocols for public key cryptosystems,” in IEEE
S&P’80, Oakland, CA,USA, Apr. 1980, pp. 122–134.

[18] P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: a self-
regulating algorithm for code propagation and maintenance in
wireless sensor networks,” in NSDI’04, San Francisco, CA,
Mar. 2004, pp. 15–28.

[19] S. Zhu, S. Setia, and S. Jajodia, “LEAP: Efficient security
mechanisms for large-scale distributed sensor networks,” in
ACM CCS’03, Washington, DC, Oct. 2003, pp. 62–72.

[20] D. Nguyen, T. Tran, T. Nguyen, and B. Bose, “Wireless
broadcast using network coding,” IEEE Transactions on Ve-
hicular Technology,, vol. 58, no. 2, pp. 914–925, Feb. 2009.

[21] R. Zhang and Y. Zhang, “LR-Seluge: Loss-resilient and
secure code dissemination in wireless sensor networks,”
Arizona State University, Tech. Rep., 2011, available at
http://wins.lab.asu.edu/files/LR-Seluge-tech.pdf.

[22] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: accurate
and scalable simulation of entire tinyos applications,” in
SenSys’03, Los Angeles, CA, Nov. 2003, pp. 126–137.

[23] J. Deng, R. Han, and S. Mishra, “Secure code distribution
in dynamically programmable wireless sensor networks,” in
IPSN’06, Nashville, Tennessee, Apr. 2006, pp. 292–300.

506

