
JR-SND: Jamming-Resilient Secure Neighbor Discovery in Mobile Ad Hoc Networks

Rui Zhang, Yanchao Zhang
School of Electrical, Computer, and Energy Engineering

Arizona State University
Tempe, AZ, USA

{ruizhang,yczhang}@asu.edu

Xiaoxia Huang
Shenzhen Institutes of Advanced Technology

Chinese Academy of Sciences
Shenzhen, Guangdong, China

xx.huang@sub.siat.ac.cn

Abstract—Secure neighbor discovery is fundamental to mo-
bile ad hoc networks (MANETs) deployed in hostile environ-
ments and refers to the process in which two neighboring nodes
exchange messages to discover and authenticate each other. It is
vulnerable to the jamming attack in which the adversary inten-
tionally sends radio signals to prevent neighboring nodes from
exchanging messages. Anti-jamming communications often rely
on spread-spectrum techniques which depend on a spreading
code common to the communicating parties but unknown to the
jammer. The spread code is, however, impossible to establish
before the communicating parties successfully discover each
other. While several elegant approaches have been recently
proposed to break this circular dependency, the unique features
of neighbor discovery in MANETs make them not directly
applicable. In this paper, we propose JR-SND, a jamming-
resilient secure neighbor discovery scheme for MANETs based
on Direct Sequence Spread Spectrum and random spread-code
pre-distribution. JR-SND enables neighboring nodes to securely
discover each other with overwhelming probability despite the
presence of omnipresent jammers. Detailed theoretical and
simulation results confirm the efficacy and efficiency of JR-
SND.

Keywords-Jamming; secure neighbor discovery; MANET

I. INTRODUCTION

Secure neighbor discovery is fundamental to mobile ad
hoc Networks (MANETs) deployed in hostile environments.
It refers to the process that neighboring nodes exchange
messages to discover and authenticate each other. As the
basis of other network functionalities such as routing, secure
neighbor discovery need be frequently performed due to
node mobility.

The open wireless medium in MANETs renders secure
neighbor discovery particularly vulnerable to the jamming
attack, in which the adversary intentionally transmits noise-
like signals to prevent neighboring nodes from exchanging
messages and thus discovering each other. Traditional anti-
jamming communications often depend on spread-spectrum
techniques [1], which all require that the communicating
parties use a common spread code (unknown to the adver-
sary) to spread the signals such that the transmissions are
unpredictable and thus resilient to jamming.

One may think about two intuitive ways to apply spread-
spectrum techniques for jamming-resilient secure neighbor
discovery in a MANET. One is to let all nodes share a

common spread code. This approach, however, suffers from
the single point of failure: the adversary can know the
spread code after compromising any node. A much safer
alternative is to let each pair of nodes share a unique code
so that the spread codes between non-compromised node
pairs remain secret no matter how many nodes the adversary
has compromised. With this approach, two neighboring
nodes, however, do not know which spread code to use if
jamming takes place before they successfully discover and
authenticate each other. This situation thus leads to a circular
dependency.

There are a few recent attempts such as [2]–[10] to break
the circular dependency between anti-jamming communica-
tions and spread-code establishment. The unique features of
MANET neighbor discovery, however, make these elegant
solutions unsuitable. First, node encounters are unpredictable
in MANETs, so each node must be always prepared to
accept and validate potential neighbor discovery requests.
The existing solutions [2]–[10] all depend on some publicly
known communication strategies such as public spread-code
sets. The adversary can thus use such public knowledge
to inject arbitrary many neighbor discovery requests in the
whole network, leading to a special Denial-of-Service (DoS)
attack in which all nodes are forced to perform endless
verifications of neighbor discovery requests (which often
involve expensive digital signature verifications). Second,
nodes may encounter for only a short while due to high
mobility. This requires neighbor discovery to be done in
a very short time, say a few seconds, while most existing
solutions do not meet this requirement.

The above situation motivates us to design a novel solu-
tion specially tailored for jamming-resilient secure neighbor
discovery in MANETs. Our key observation is that most
MANETs are inherently different from the civilian applica-
tions targeted by [2]–[10]. Specifically, MANETs in hostile
environments such as the battlefield are normally controlled
by the same authority. It is thus feasible to preload every
node with some secret spread codes shared with a few others
for subsequent anti-jamming communications in the field.
Such spread-code pre-distribution is nevertheless infeasible
in civilian networks which lacks a single authority and
features dynamic join and leave of unknowns.

2011 31st International Conference on Distributed Computing Systems

1063-6927/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDCS.2011.53

529

In this paper, we propose a novel Jamming-Resilient
Secure Neighbor Discovery (JR-SND) scheme for single-
authority DSSS-based MANETs. Motivated by random key
pre-distribution schemes for sensor networks such as [11],
JR-SND requires the MANET authority to generate a pool
of spread codes which are kept secret. Prior to network
deployment, every node is loaded with a constant number
of spread codes drawn from the spread-code pool such
that any two nodes have some common codes with certain
probability. During the network operation, the adversary
may compromise some nodes to know the spread codes
they have, but the non-compromised codes will remain
secret. With JR-SND in place, two neighboring nodes can
conduct anti-jamming secure neighbor discovery by DSSS
communications based on their spread codes. They can
directly discover each other if they have at least one common
spread code unknown to omnipresent jammers; otherwise,
they can indirectly discover each other if there is a multi-hop
path connecting them, along which every two neighboring
nodes have successfully discovered each other. Compared to
prior work [2]–[10] in terms of their use in secure neighbor
discovery, JR-SND can greatly mitigate the aforementioned
DoS attack because it can only be launched by the adversary
using limited compromised spread codes which can fortu-
nately be revoked after being identified.

Our main contributions are summarized as follows.

∙ We identify jamming-resilient secure neighbor discov-
ery in MANETs as a related problem that cannot be
properly addressed by existing anti-jamming techniques
such as [2]–[10].

∙ To the best of our knowledge, we are the first to
combine DSSS with key pre-distribution [11] for
anti-jamming communications in MANETs. We also
propose a new random spread-code pre-distribution
scheme to enable the fine control of the damage from
compromised spread codes.

∙ We propose a jamming-resilient secure neighbor dis-
covery scheme based on random spread-code pre-
distribution, which enables any two neighboring nodes
to quickly discover each other with overwhelming
probability under severe jamming attacks. The efficacy
of our scheme is confirmed by thorough theoretical
analysis and simulation results.

II. RELATED WORK

Several schemes have been recently proposed to enable
two nodes to establish a secret spread code (or key) under
the jamming attack. In their seminal work [3], Strasser et al.
proposed using Uncoordinated Frequency Hopping (UFH) to
enable two communication parties without a common secret
to establish a secret key for the use of subsequent more
efficient FHSS communications. This technique was later
improved in [4], [5] to reduce the key-establishment latency
and communication overhead. Under the above techniques,

the adversary can inject arbitrary many message fragments
leading to a DoS attack. In [6], Jin et al. addressed the same
problem by proposing an intractable forward-decoding and
efficient backward-decoding scheme based on DSSS. Their
scheme, however, requires the sender to know the MAC
address of the receiver which is unfortunately unknown in
our scenario before the sender successfully discovers the
receiver.

Anti-jamming broadcast communications have been re-
cently studied in [7]–[10], respectively. Both schemes are
based on DSSS and a publicly known spread-code set and
thus vulnerable to the DoS attack mentioned earlier.

III. BACKGROUND ON DSSS

In a DSSS system, the sender spreads the data signal by
multiplying it by an independent “noise” signal known as
a spread code, which is a pseudorandom sequence of “1”
and “-1” bit values at a frequency much higher than that of
the original signal. The energy of the original signal is thus
spread into a much wider band. The receiver can reconstruct
the original signal by multiplying the received signal by
a synchronized version of the same spread code, which is
known as a de-spreading process.

To transmit a message, the sender first transforms the
message into a non-return-to-zero (NRZ) sequence by re-
placing each bit “0” with “-1” and then multiplies each
bit of the message by a spread code to get the spread
message also known as the chip sequence. For example, if
the message to be transmitted is “10”, and the spread code
is “+1-1-1+1”, the resulting chip sequence is “+1-1-1+1-
1+1+1-1”. The chip sequence is then converted into the RF
signal through the D/A converter and the PSK modulator
and finally transmitted.

On the receiver side, similar operations are performed in
a reverse order. The receiver first samples and demodulates
the received signal and then performs A/D conversion to
obtain the chip sequence. The receiver then computes the
correlation between the obtained chip sequence and the
shared spread code, where the correlation between two NRZ
sequences (𝑢1, ⋅ ⋅ ⋅ , 𝑢𝑁) and (𝑣1, ⋅ ⋅ ⋅ , 𝑣𝑁) is defined as
1
𝑁

∑𝑁
𝑖=1 𝑢𝑖𝑣𝑖. In practice, a correlation higher (lower) than

a predefined threshold 𝜏 (−𝜏) indicates a bit 1 (−1). For
example, if pseudorandom sequences of 𝑁 = 512 bits are
used as spread codes, 𝜏 can be set 0.15 to ensure correct
de-spreading [7].

IV. NETWORK AND ADVERSARY MODELS

A. Network Model

We consider a MANET consisting of 𝑛 nodes deployed
in some hostile environment such as the battle field. For
simplicity, we assume that each MANET node has two
DSSS antennas with a transmission speed of 𝑅 b/s for anti-
jamming communications, one for receiving and the other
for transmitting. The extension of JR-SND to an arbitrary

530

number of antennas is left as future work. Due to node
mobility, every node need periodically perform neighbor
discovery to discover others within its transmission range.
We assume that each node can monitor the transmission
activities associated with a few spread codes in real time,
each shared with one unique neighbor. This assumption
has been made in existing CDMA transmitter-based MAC
protocols [12] and can be easily realized by hardware. This
implies that an incoming message spread using the code
under realtime monitoring can be de-spread with negligible
delay. However, if a node has many spread codes, it may
not be able to simultaneously monitor all of them and
have to buffer the incoming signals for off-line de-spreading
processing in case that these signals can be de-spread using
some spread codes that are not currently being monitored.
In addition, if a node does not detect any transmission
with any code under realtime monitoring for a threshold
amount of time, it will stop monitoring that code under the
assumption that the corresponding neighbor has moved out
of its transmission range.

As in [7], we choose pseudorandom codes for DSSS com-
munications and assume that the concurrent transmissions
spread with different pseudorandom codes interfere with
each other with negligible probability, which holds if the
length of spread codes is sufficiently large, e.g., 𝑁 = 512.

To prevent the adversary from impersonating legitimate
nodes, neighbor discovery must be conducted in a secure
fashion such that two nodes accept each other as mutual
neighbors after authenticating each other’s credentials issued
by the MANET authority. Throughout the paper, by saying
two nodes successfully discover each other, we mean that
they physically detect each other’s existence and also achieve
mutual authentication. There are many mutual authentication
methods that suffice our purpose and often involve a three-
way handshake between two parties. To ease our presenta-
tion, we assume an approach as in [13] based on Identity-
Based Cryptography [14], in which each node 𝐴 has an ID
𝐼𝐷𝐴 as its public key and an ID-based private key 𝐾−1

𝐴

obtained from the authority before network deployment.
Note that, however, JR-SND can also rest on many other
mutual authentication schemes.

B. Adversary Model

We assume an omnipresent adversary or jammer 𝒥 aiming
to jam neighbor discovery and thus prevent neighboring
nodes from discovering each other anywhere in the network.
𝒥 is assumed to be computationally bounded, which means
that if 𝒥 does not know the spread code being used, it is
infeasible for him to recover it by exhaustive search within
the network lifetime. This assumption is common in DSSS
systems [6], [7] and holds if the spread code is sufficiently
long, e.g., 𝑁 = 512. JR-SND relies on a large set of random
spread codes chosen by the MANET authority, which are
initially all kept secret from 𝒥 . As time goes by, 𝒥 may

compromise some MANET nodes and acquire the secret
codes held by them. Compared to unattended sensor nodes
in sensor networks, MANET nodes are more powerful and
often carried and used by humans such as soldiers so that
they can be under good self and mutual monitoring. It is
reasonable to assume that 𝒥 can only compromise a small
fraction (say, up to 5%) of MANET nodes. JR-SND does
not work well if this assumption does not hold.

To jam an ongoing DSSS transmission spread with any
spread code, 𝒥 need transmit using the same code and
also synchronize with the target transmission. As in [7],
we assume that 𝒥 can always recover chip synchronization
without de-spreading a message, which can be realized by
energy detectors or modulation-specific characteristics. In
other words, 𝒥 only need determine which spread code
to use to jam the transmission. We focus on two types of
jammers in this paper.

∙ Random jammer: whenever 𝒥 detects an ongoing trans-
mission, 𝒥 jams it with a random chosen compromised
spread code.

∙ Reactive jammer: whenever 𝒥 detects an ongoing
transmission, 𝒥 first tries to identify which spread code
is being used. If the code is successfully identified, it
then uses it to jam the rest of the message.

Random jamming places no additional requirements on 𝒥 ’s
computation capability, while reactive jamming requires 𝒥
to identify the correct spread code being used before the end
of the targeted message transmission.

Besides the jamming attack, the adversary may also
exploit the operations of JR-SND to launch the DoS attack
by injecting arbitrary fake neighbor-discovery requests to
occupy legitimate nodes with endless verifications of these
fake requests. JR-SND is highly resilient to this DoS attack,
as will be manifested later.

To simplify the analysis, we assume that 𝒥 consists of
multiple jamming devices with similar transmitters to those
of legitimate nodes. We further assume that 𝒥 can transmit
at most 𝑧 signals in parallel to attempt jamming any tar-
geted neighbor-discovery message, where 𝑧 ≪ 𝑁 . Without
this limitation on 𝒥 ’s capability, 𝒥 can jam any targeted
transmission without knowing the spread code by simply
transmitting noise signals using 𝑧 transmitters concurrently
[6], in which case there is no workable solution.

V. THE JR-SND DESIGN

In this section, we present the design of JR-SND. We first
introduce a random spread-code pre-distribution scheme as a
nontrivial adaption of existing key pre-distribution schemes
[11]. We then present a direct neighbor-discovery protocol
(D-NDP) and a multi-hop neighbor-discovery protocol (M-
NDP). The following terms will be used throughout.

∙ Physical neighbors: Two nodes are called physical
neighbors if they are in each other’s transmission range.

531

∙ Logical neighbors: Two nodes are called logical neigh-
bors if they have discovered each other after executing
JR-SND.

A. Random Spread-Code Pre-Distribution

Before network deployment, the MANET authority gen-
erates a pool of 𝑠 ≪ 2𝑁 random spread codes, denoted by
ℂ = {C𝑖}𝑠𝑖=1. Only the authority has the full knowledge of
ℂ. The authority then uses the following method to distribute
𝑚 spread codes to each node such that any C𝑖 ∈ ℂ is shared
by no more than 𝑙 nodes, where the choice of 𝑙 will be
discussed later.

The distribution process consists of 𝑚 rounds, during each
of which each node is assigned one spread code. Specifically,
let us temporarily assume that 𝑛 = 𝑙𝑤 for some integer 𝑤
and then 𝑠 = 𝑤𝑚. In each round 𝑖 ∈ [1,𝑚], the authority
randomly partitions the 𝑛 nodes into 𝑤 subsets of equal
cardinality 𝑙 and assigns C𝑤(𝑖−1)+𝑗 to all the nodes in the
𝑗th subset. It is easy to see that after 𝑚 rounds, every node
is preloaded with 𝑚 spread codes, and every code is exactly
shared by 𝑙 nodes. We will denote by ℂ𝐴 the set of spread
codes of node 𝐴.

Now we consider the case where 𝑛 cannot be divided
by 𝑙, i.e., 𝑛 = 𝑙𝑤 − 𝑙′ for some 0 < 𝑙′ < 𝑙. In this case,
the authority can introduce 𝑙′ virtual nodes during spread-
code pre-distribution. This will only result in some codes
being shared by less than 𝑙 nodes and thus will not affect
the performance very much.

Our scheme permits new nodes to join the network later.
In particular, the authority can assign the spread codes of
a virtual node to a unique new node. If there are more
than 𝑙′ new nodes, the authority can conduct the previous
distribution process for each additional 𝑤 new nodes with
existing 𝑠 codes, which will result in every code being shared
by one more node. We do not expect too many new nodes
in the target scenario, so the number of nodes sharing any
code will be only slightly larger than 𝑙.

B. D-NDP: Direct Neighbor Discovery Protocol

We now introduce D-NDP by which two physical neigh-
bors with common spread codes can directly discover each
other.

During the network operation, each node periodically
initiates neighbor discovery in a randomized manner. Specif-
ically, in every interval of length 𝑇 , each node initiates the
D-NDP process once at a random time point. Below we use
nodes 𝐴 and 𝐵 as an example to illustrate the process. We
assume that they share at least one secret spread code, say
C𝑖 ∈ ℂ𝐴 ∩ ℂ𝐵 .

Assume that 𝐴 initiates the D-NDP process prior to 𝐵.
Starting from a random time point, 𝐴 repeatedly broadcasts
a HELLO message for 𝑟 rounds, where 𝑟 is a system pa-
rameter. In each round, the HELLO message is broadcasted
𝑚 times, and each time a distinct code in ℂ𝐴 is used for

spreading. For example, The HELLO message spread with
C𝑖 is

𝐴 → ∗ : {HELLO, 𝐼𝐷𝐴}C𝑖
,

where HELLO is an message type identifier of 𝑙𝑡 bits, 𝐼𝐷𝐴

is 𝐴’s ID, and {}∗ denotes the message spread with the
spread code at the subscript. Each message in D-NDP is
encoded with an error-correcting code (ECC) such as [15] to
increase the transmission reliability. In particular, assuming
that each node ID is of 𝑙𝑖𝑑 bits, the original message is thus
of 𝑙𝑡 + 𝑙𝑖𝑑 bits. Node 𝐴 then applies ECC to generate an
encoded message of 𝑙ℎ = (1+𝜇)(𝑙𝑡+ 𝑙𝑖𝑑) bits, where 𝜇 > 0
is a system parameter. This ECC method can tolerate up to a
fraction of 𝜇/(1+𝜇) bit errors or losses, which means that 𝒥
must use the correct spread code C𝑖 to jam at least 𝜇(𝑙𝑡+𝑙𝑖𝑑)
bits to prevent 𝐵 from decoding {HELLO, 𝐼𝐷𝐴}C𝑖

.
It takes roughly time 𝑡ℎ = 𝑙ℎ𝑁/𝑅 to broadcast one

HELLO message spread with one spread code and 𝑚𝑡ℎ
to finish one round, where 𝑅 is the chip rate. There are
𝑟 copies of the HELLO message spread with the same
code. It is possible that 𝐵 may miss the head of one
{HELLO, 𝐼𝐷𝐴}C𝑖

copy due to improper synchronization or
other reasons. However, as long as 𝐵 buffers the incoming
signals for a duration of at least 𝑡𝑏 = (𝑚 + 1)𝑡ℎ, it can
certainly buffer a complete {HELLO, 𝐼𝐷𝐴}C𝑖

.
To synchronize with and de-spread any incoming mes-

sage, node 𝐵 buffers the received signal and tries to identify
any message in the buffer using a sliding window algorithm
similar to the one used in [7]. Specifically, assume that 𝐵
has buffered 𝑓 chips of the incoming signal, denoted by
(𝑝1, ⋅ ⋅ ⋅ , 𝑝𝑓), in which the first complete {HELLO, 𝐼𝐷𝐴}C𝑖

may start at any chip position. To locate it, 𝐵 computes the
correlation between (𝑝𝑖, ⋅ ⋅ ⋅ , 𝑝𝑖+𝑁−1) and each spread code
in ℂ𝐵 , for all 1 ≤ 𝑖 ≤ 𝑓 .1 The correlation between the
sequence (𝑝𝑖, ⋅ ⋅ ⋅ , 𝑝𝑖+𝑁−1) and code C𝑖 higher (or lower)
than the predefined threshold 𝜏 (or −𝜏) for the smallest 𝑖
indicates a bit “1” or “-1” spread with C𝑖 starting at chip po-
sition 𝑝𝑖 and thus the beginning of {HELLO, 𝐼𝐷𝐴}C𝑖

. Node
𝐵 then uses C𝑖 to de-spread the rest of the message, i.e.,
compute the correlation between (𝑝𝑖+𝑗𝑁 , ⋅ ⋅ ⋅ , 𝑝𝑖+(𝑗+1)𝑁−1)
and C𝑖 to de-spread the (𝑗 + 1)th bit, for all 1 ≤ 𝑗 < 𝑙ℎ.

Now we discuss the choice of 𝑟. The challenge here is
that we cannot simply assume that each node can monitor the
transmission activities associated with arbitrary many spread
codes in real time, which otherwise requires very complex
and expensive hardware [12]. Therefore, we must take into
account nodes’ computation capability. Assume that it takes
time 𝜌𝑁 to compute the correlation between two chip se-
quences of 𝑁 bits, where 𝜌 is a constant determined by each
node’s computation capability. For example, if each receiver
can compute 4.7×108 correlations of two binary sequences
of 256 bits as assumed in [7]. We thus have 𝜌 ≈ 8.3×10−12

1In fact, 𝐵 only need process the first 𝑓 −𝑁𝑙ℎ + 1 chip positions. We
make the approximation to simplify the expression.

532

s/bit in such cases and anticipate an even higher 𝜌 in practice.
Since node 𝐵 buffers totally 𝑓 = 𝑅𝑡𝑏 incoming chips each
time, it takes up to 𝑡𝑝 = 𝜌𝑁𝑚𝑅𝑡𝑏 to scan all the chip
positions, each requiring computing 𝑚 correlations. Note
that there may be multiple or no valid HELLO messages
in the buffer. The former and latter cases correspond to
multiple or no nodes initiating neighbor discovery with
𝐵, respectively. Therefore, even after recovering one valid
HELLO message from the buffer, 𝐵 still need process the
rest of it. Let 𝜆 = 𝑡𝑝/𝑡𝑏 = 𝜌𝑁𝑚𝑅 be the ratio between
processing time and buffering duration. For example, if
𝑁 = 512, 𝑚 = 1000, and 𝑅 = 22 Mbps, we have
𝜆 ≈ 94 in the above example, which indicates the significant
gap between the receiving and processing capabilities. To
accommodate this gap, each node independently maintains a
simple buffering and processing schedule as follows. During
each duration [𝑖𝑡𝑝, (𝑖+ 1)𝑡𝑝], for all 𝑖 ≥ 1,2 it processes the
signal buffered during [𝑖𝑡𝑝− 𝑡𝑏, 𝑖𝑡𝑝] and immediately deletes
processed chips; it also buffers the signal arriving during
[(𝑖+1)𝑡𝑝−𝑡𝑏, (𝑖+1)𝑡𝑝]. It can be easily shown that the buffer
will not overflow with this schedule. Under this schedule, it
suffices to let 𝐴 broadcast the HELLO message for a total
duration of 𝑟𝑚𝑡ℎ = (𝜆+ 1)𝑡𝑏 = (𝜆+ 1)(𝑚+ 1)𝑡ℎ to ensure
that node 𝐵 buffers a complete {HELLO, 𝐼𝐷𝐴}C𝑖

, so we
have 𝑟 = ⌈(𝜆 + 1)(𝑚 + 1)/𝑚⌉.

After de-spreading {HELLO, 𝐼𝐷𝐴}C𝑖
, node 𝐵 knows

that 𝐴 is in its transmission range and C𝑖 ∈ ℂ𝐴 ∩ ℂ𝐵 .
It then repeatedly sends an ECC-coded CONFIRM message
spread with C𝑖,

𝐵 → 𝐴 : {CONFIRM, 𝐼𝐷𝐵}C𝑖
.

Node 𝐵 then starts to monitor C𝑖 in real time. Similar to
𝐴 transmitting HELLO message, node 𝐵 keeps transmitting
the CONFIRM message for 𝑡𝑝 = 𝜌𝑁𝑚𝑅𝑡𝑏 or until receiving
a response from 𝐴 which can be de-spread with C𝑖 in
real time. If 𝐵 does not receive a response before its timer
expires, it stops monitoring C𝑖 in real time and considers 𝐴
having moved away.

Node 𝐴 uses the same approach to de-spread 𝐵’s CON-
FIRM message and knows that 𝐵 shares C𝑖 with it. Because
C𝑖 may also be known by up to 𝑙 − 2 other nodes, 𝐴
and 𝐵 cannot authenticate each other. To conduct mutual
authentication with 𝐵, node 𝐴 computes a shared key 𝐾𝐴𝐵

using its ID-based private key 𝐾−1
𝐴 and 𝐼𝐷𝐵 by the same

method in [13]. It then sends to 𝐵 the following ECC-coded
message spread with C𝑖,

𝐴 → 𝐵 : {𝐼𝐷𝐴, 𝑛𝐴, 𝑓𝐾𝐴𝐵
(𝐼𝐷𝐴∣𝑛𝐴)}C𝑖

,

where 𝑛𝐴 is a random nonce to defend against message
replay attacks, 𝑓∗(⋅) denotes a message authentication code
(MAC) with the key at the subscript, and ∣ denotes concate-
nation.

2Assume each neighbor discovery process happens after 𝑡𝑝.

Since 𝐵 is currently monitoring C𝑖, it can de-spread
the above response in real time after negligible delay.
Node 𝐵 proceeds to compute a shared key 𝐾𝐵𝐴 based
on its ID-based private key 𝐾−1

𝐵 and 𝐼𝐷𝐴, which is
equal to 𝐾𝐴𝐵 according to [13]. Then 𝐵 uses 𝐾𝐵𝐴 to
compute 𝑓𝐾𝐵𝐴

(𝐼𝐷𝐴∣𝑛𝐴) and compares it with the received
𝑓𝐾𝐴𝐵

(𝐼𝐷𝐴∣𝑛𝐴). If they are equal, 𝐵 knows that 𝐴 has com-
puted the same key, which means that 𝐴 is an authenticated
logical neighbor with a valid ID-based public/private key
pair issued by the MANET authority. It is worth noting that
no nodes other than 𝐴 and 𝐵 could compute the shared
key 𝐾𝐴𝐵 [13]. Node 𝐵 proceeds to transmit the following
ECC-coded response

𝐵 → 𝐴 : {𝐼𝐷𝐵 , 𝑛𝐵 , 𝑓𝐾𝐵𝐴
(𝐼𝐷𝐵 ∣𝑛𝐵)}C𝑖

,

where 𝑛𝐵 is the random nonce chosen by 𝐵. Node 𝐵 then
computes a session spread code as C𝐵𝐴 = ℎ𝐾𝐵𝐴

(𝑛𝐵 ⊗
𝑛𝐴) and starts monitoring C𝐵𝐴 in real time, where ℎ∗(⋅)
is a cryptographic hash function of 𝑁 bits keyed with the
subscript and ⊗ denotes bitwise XOR operation.

After de-spreading the above response, node 𝐴 verifies
𝑓𝐾𝐵𝐴

(𝐼𝐷𝐵 ∣𝑛𝐵) using 𝐾𝐴𝐵 similar to what 𝐵 does. If the
verification is successful, 𝐴 accepts 𝐵 as a logical neighbor
and also computes C𝐴𝐵 = ℎ𝐾𝐴𝐵

(𝑛𝐴⊗𝑛𝐵) which is equal
to C𝐵𝐴. Finally, 𝐴 starts to monitor C𝐴𝐵 in real time.

In the cases that 𝐵 shares 𝑥 ≥ 2 spread codes with
𝐴 whereby to de-spread multiple copies of the HELLO
message, D-NDP employs a redundancy design that lets
𝐵 use all the 𝑥 shared codes to sequentially spread the
same CONFIRM message. The last two messages both are
also spread by 𝐴 and 𝐵 with all the 𝑥 codes sequentially.
In other words, we can consider the execution between 𝐴
and 𝐵 as 𝑥 separate sub-sessions involving the same four
messages and establishing the same session spread code.
This redundancy design can greatly enhance the jamming
resilience of neighbor discovery which fails only if all
the 𝑥 sub-sessions fail. Consider the following example.
Assume that among 𝑥 ≥ 2 shared codes, 𝑥 − 1 of them
are compromised. The D-NDP execution will succeed under
blind reactive jamming since 𝐵 can only receive the HELLO
message spread with the non-compromised code whereby to
spread the subsequent messages. However, a more intelligent
attack is that 𝒥 does not jam the HELLO message but only
targets at the later three transmissions. Assuming 𝐵 receives
𝑥 copies of the HELLO messages and randomly chooses one
code from total 𝑥 codes to spread the CONFIRM message,
it is very likely that a compromised code will be selected.
In such cases, 𝒥 may jam the later message transmission,
leading to a D-NDP failure. Under our design, this intelligent
attack can no longer succeed.

C. M-NDP: Multi-Hop Neighbor Discovery Protocol

Two physical neighbors may fail to directly discover each
other via D-NDP either because they have no common

533

A B

C

D

E

F

G

H

M-NDP request

M-NDP response

Transmission range of A

Figure 1. Illustration of M-NDP.

spread codes or because 𝒥 has compromised their common
spread codes whereby to successfully jam the D-NDP mes-
sage transmissions. Now we introduce M-NDP that allows
two physical neighbors to indirectly discover each other as
long as there is a jamming-resilient path connecting them,
along which every two adjacent nodes have discovered each
other via D-NDP or M-NDP.

We illustrate the M-NDP operations with the scenario in
Fig. 1 as an example, where both solid and dashed line
segments represent jamming-resilient paths, and 𝐴 and 𝐵
cannot directly discover each other via D-NDP.

As in D-NDP, all nodes need to periodically initiate the M-
NDP process at some random time point of its own choice.
Assume that 𝐴 initiates the M-NDP process prior to 𝐵. Let
ℒ𝐴 denote the set of logical neighbors of 𝐴, where ℒ𝐴 =
(𝐶,𝐷,𝐸, 𝐹) in Fig. 1. Node 𝐴 unicasts an M-NDP request
to each node in ℒ𝐴. For example, the request sent to 𝐶 is

𝐴 → 𝐶 : {𝐼𝐷𝐴,ℒ𝐴, 𝑛𝐴, 𝜈,SIG𝐾−1
𝐴

}C𝐴𝐶
,

where 𝑛𝐴 is a random nonce, 𝜈 ≥ 1 is a parameter chosen
by 𝐴 determining the maximum number of hops the request
can traverse, SIG∗ denotes a digital signature operation on
the prior data with the private key at the subscript, and C𝐴𝐶

is the session spread code shared between 𝐴 and 𝐶.
After receiving the M-NDP request, 𝐶 first verifies the

signature SIG𝐾−1
𝐴

using 𝐼𝐷𝐴 as the public key [13]. If the
signature verification succeeds, 𝐶 compares ℒ𝐴 with its own
logical neighbor list ℒ𝐶 . Then for each node in ℒ𝐶 − ℒ𝐴,
say 𝐵, node 𝐶 unicasts a modified request

𝐶 → 𝐵 : {𝐼𝐷𝐴,ℒ𝐴, 𝑛𝐴, 𝜈,SIG𝐾−1
𝐴
, 𝐼𝐷𝐶 ,ℒ𝐶 ,SIG𝐾−1

𝐶
}C𝐶𝐵

.

Upon receiving this new request from 𝐶, node 𝐵 first
verifies the signatures SIG𝐾−1

𝐶
and SIG𝐾−1

𝐴
using 𝐼𝐷𝐶

and 𝐼𝐷𝐴 as the public keys, respectively. If both verifica-
tions succeed, 𝐵 further checks whether 𝐶 ∈ ℒ𝐴 ∩ ℒ𝐵 ,
i.e., whether 𝐶 is indeed the common neighbor of 𝐴 and
𝐵. If not, 𝐵 discards the message; otherwise, 𝐵 returns the
following M-NDP response to 𝐶,

𝐵 → 𝐶 : {𝐼𝐷𝐴, 𝐼𝐷𝐶 , 𝐼𝐷𝐵 ,ℒ𝐵 , 𝑛𝐵 , 𝜈,SIG𝐾−1
𝐵

}C𝐵𝐶
,

where 𝜈 is copied from the M-NDP request. As in D-NDP,
𝐵 also computes a shared key 𝐾𝐵𝐴 based on its private
key 𝐾−1

𝐵 and 𝐼𝐷𝐴, by which 𝐵 further derives the session
spread code C𝐵𝐴 = ℎ𝐾𝐵𝐴

(𝑛𝐵 ⊗ 𝑛𝐴). Node 𝐵 proceeds

to repeatedly send a HELLO message {HELLO, 𝐼𝐷𝐵}C𝐵𝐴

for a duration of 𝜏ℎ, where 𝜏ℎ is the longest transmission
delay for the M-NDP response to traverse 𝜈 hops. In
addition, 𝐵 checks whether the number of hops that the
M-NDP request has traversed is equal to 𝜈; if not, 𝐵 further
forwards a modified M-NDP request to all the nodes in
ℒ𝐵 − ℒ𝐴 ∪ ℒ𝐶 , i.e., adding its node ID, logical neighbor
list and signature.

In general, when receiving an M-NDP request, every
node does the following: verify the ID-based signatures
of the sender and all previous nodes; check each node’s
logical neighbor list to see whether there is a legitimate
path between the source and itself; derive the secret key and
session spread code uniquely shared with the source and
start sending the HELLO message spread with the derived
session code; send a modified M-NDP request by adding its
own ID and logical neighbor list to the nodes not appearing
in the logical neighbor lists of the received request, if the
number of hops that the request has traversed is less than 𝜈.
The request is dropped if either of the first two steps fails.

On receiving the M-NDP response, 𝐶 verifies SIG𝐾−1
𝐵

using 𝐼𝐷𝐵 as the public key. If the signature is correct, 𝐶
forwards a modified M-NDP response to 𝐴 as

{𝐼𝐷𝐴, 𝐼𝐷𝐶 , 𝐼𝐷𝐵 ,ℒ𝐵 , 𝑛𝐵 , 𝜈,SIG𝐾−1
𝐵
,ℒ𝐶 ,SIG𝐾−1

𝐶
}C𝐶𝐴

.

In general, the M-NDP response is processed by each
intermediate node in a similar way as M-NDP request does,
i.e., each node verifies the previous signatures and add its
own ID, logical neighbor list and signature.

Upon receiving the response, node 𝐴 first verifies
SIG𝐾−1

𝐶
and SIG𝐾−1

𝐵
using 𝐼𝐷𝐶 and 𝐼𝐷𝐵 as the public

keys, respectively. If both signatures are correct, 𝐴 further
checks whether 𝐶 ∈ ℒ𝐵 , i.e., whether there is a legitimate
path between the destination and itself. If so, 𝐴 uses its
private key 𝐾−1

𝐴 and 𝐼𝐷𝐵 to compute the shared key
𝐾𝐴𝐵 = 𝐾𝐵𝐴 whereby to derive the session spread code
C𝐴𝐵 = ℎ𝐾𝐴𝐵

(𝑛𝐴 ⊗ 𝑛𝐵) which is equal to C𝐵𝐴. It then
starts to monitor C𝐴𝐵 in real time.

If 𝐴 and 𝐵 are indeed physical neighbors, then 𝐴 can
receive the HELLO message from 𝐵 spread with C𝐵𝐴. If so,
𝐴 accepts 𝐵 as its authenticated logical neighbor and returns
a CONFIRM message spread with C𝐴𝐵 . Once receiving the
CONFIRM message, node 𝐵 accepts 𝐴 as its authenticated
logical neighbor.

Different from D-NDP, M-NDP may incur false positives,
which means that some nodes that are not physical neighbors
may falsely discover each other, e.g., 𝐴 may discover nodes
𝐺 and 𝐻 in Fig. 1. The number of false positives is upper-
bounded by the number of 𝜈-hop physical neighbors. To
eliminate such false positives, each node can include its
position in its M-NDP request and only reply to an M-
NDP request if the source location is within its transmission
range. This method requires each node to have localization
capability such as GPS receivers.

534

D. Resilience to Denial of Service Attacks

As mentioned earlier, existing anti-jamming solutions
such as [2]–[10] all depend on some publicly known commu-
nication strategies such as public spread-code sets. If they
were adopted for secure neighbor discovery in MANETs,
𝒥 would be able to use such public knowledge to keep
injecting fake neighbor-discovery requests, thus leading to a
special Denial-of-Service (DoS) attack in which all nodes are
forced to perform endless verifications of neighbor-discovery
requests.

In contrast, JR-SND constrains the impact of this DoS
attack to the number of secret spread codes compromised by
𝒥 . Compromised spread codes can also be revoked in many
ways so that non-compromised nodes will not use them for
spreading/de-spreading messages. For example, a simple yet
effective method is to let each node 𝐴 maintain a counter
for each secret code C𝑥 it has. Whenever 𝐴 receives an
invalid neighbor-discovery request spread with C𝑥 (e.g., the
signature is incorrect), it increases the corresponding counter
by one. Once the counter for C𝑥 exceeds some predefined
threshold 𝛾, which indicates that C𝑥 is compromised with
high probability, 𝐴 locally revokes C𝑥 by removing it
from its spread-code set. Consequently, subsequent messages
spread with C𝑥 will not be received by node 𝐴. Recall our
random spread-code pre-distribution method for D-NDP and
M-NDP in which each code is shared by at most 𝑙 nodes.
With our defense in place, 𝒥 can use a compromised code
to launch the DoS attack on other 𝑙 − 1 non-compromised
nodes with the same code for at most (𝑙−1)𝛾 times instead
of arbitrary many.

VI. PERFORMANCE EVALUATION

A. Performance Analysis

1) Analysis of the code pre-distribution scheme: We first
analyze the proposed spread code pre-distribution scheme.
For simplicity, we assume that 𝑛 can be divided by 𝑙. It
can be easily seen that any two nodes are assigned the
same spread code at each round with probability 𝑙−1

𝑛−1 . Since
the operations in each round are independent from those of
others, the probability that any two nodes share 𝑥 spread
codes after 𝑚 rounds is given by

Pr[𝑥] =

(
𝑚

𝑥

)
(
𝑙 − 1

𝑛− 1
)𝑥(

𝑛− 𝑙

𝑛− 1
)𝑚−𝑥 . (1)

Now we analyze the resilience of the scheme to node com-
promise attacks. Assume that 𝒥 has compromised 𝑞 nodes.
Every spread code in ℂ is compromised with probability

𝛼 = 1 −
(
𝑛−𝑙
𝑞

)
(
𝑛
𝑞

) . (2)

The expected number of compromised spread codes is thus
𝑠𝛼. The impact of node compromise attacks on neighbor
discovery will be shown in Section VI-B.

2) Analysis of D-NDP: We have the following theorem
regarding P̂D, the probability that two physical neighbors
can discover each other via D-NDP.

THEOREM 1: Assuming that the adversary has compro-
mised 𝑞 nodes, two physical neighbors can discover each
other via D-NDP with probability P̂− ≤ P̂D ≤ P̂+, where
P̂− = 1 − ∑𝑚

𝑥=0 Pr[𝑥]𝛼𝑥, P̂+ = 1 − ∑𝑚
𝑥=0 Pr[𝑥]𝛼𝑥(𝛽 +

𝛽′ − 𝛽𝛽′)𝑥, Pr[𝑥] is given in Eq. (1), 𝛼 = 1 − (
𝑛−𝑙
𝑞

)
/
(
𝑛
𝑞

)
as given in Eq. (2), 𝑐 = 𝑠𝛼, 𝛽 = min{ 𝑧(1+𝜇)

𝑐𝜇 , 1}, and

𝛽′ = min(3𝑧(1+𝜇)
𝑐𝜇 , 1).

Proof: Assuming that 𝒥 has compromised 𝑞 nodes,
the expected number of compromised spread codes is thus
𝑐 = 𝑠𝛼 = 𝑠(1 − (

𝑛−𝑙
𝑞

)
/
(
𝑛
𝑞

)
) as analyzed in Section VI-A1.

If the spread-code length 𝑁 is sufficiently long and the
spread-code pool size 𝑠 ≪ 2𝑁 , the probability that 𝒥
successfully jams a targeted transmission with a randomly
guessed code of 𝑁 bits is comparatively negligible to that
of 𝒥 using compromised codes. We thus assume that 𝒥 will
only attempt jamming using compromised codes.

We consider random and reactive jamming in this paper,
as stated in Section IV-B. For any ongoing message trans-
mission, random jamming can succeed if the spread code in
use is compromised and also happens to be chosen by 𝒥 to
jam at least 𝜇/(1 + 𝜇) of the message. In contrast, reactive
jamming can succeed if the spreading code being used is
compromised and can be identified by 𝒥 before 1/(1+𝜇) of
the message is transmitted. Apparently, reactive jamming has
higher requirement on 𝒥 ’s capability than random jamming
but is also more effective. Consequently, the neighbor-
discovery probabilities under random and reactive jamming
can be considered as the upper bound (denoted by P̂+) and
the lower bound (denoted by P̂−), respectively.

We first consider random jamming. Assume that nodes
𝐴 and 𝐵 share 𝑥 spreading codes. Denote by P̂+(𝑥) the
probability that two nodes can successfully discover each
other given that they share 𝑥 spreading codes. Obviously
we have P̂+(0) = 0.

Now let us consider the case of 𝑥 = 1. Assume that
the shared spreading code is compromised, which happens
with probability 𝛼 = 1 − (

𝑛−𝑙
𝑞

)
/
(
𝑛
𝑞

)
as given in Eq. (2).

Recall that 𝒥 can emit at most 𝑧 jamming signals on a
targeted transmission. Since 𝒥 must use a code for at least
𝜇/(1 + 𝜇) of the message transmission time, it can try at
most 𝑧(1 + 𝜇)/𝜇 distinct codes randomly chosen from the
𝑐 compromised codes during the message transmission. To
make the analysis tractable, we make the most pessimistic
assumption that 𝒥 can distinguish the four D-NDP messages
and apply different jamming strategies to them. The first
HELLO message can be jammed if 𝒥 selects the correct
code, which happens with probability 𝛽 = min{ 𝑧(1+𝜇)

𝜇𝑐 , 1}.
In contrast, the last three messages are not independent from
each other, and each is spread with the same single code. The
probability of at least one of the last three messages being

535

jammed is 𝛽′ = min{ 3𝑧(1+𝜇)
𝜇𝑐 , 1}. So we have P̂+(1) =

1 − 𝛼 + 𝛼(1 − 𝛽)(1 − 𝛽′) = 1 − 𝛼(𝛽 + 𝛽′ − 𝛽𝛽′).
Now we consider 𝑥 ≥ 2. The D-NDP execution fails

if all the 𝑥 codes are compromised, which happens with
probability 𝛼𝑥, and also all the 𝑥 compromised codes are
selected by 𝒥 to jam all the 𝑥 D-NDP sub-sessions, which
happens with probability (𝛽 + 𝛽′ − 𝛽𝛽′)𝑥. Therefore, for
𝑥 ≥ 2, we have P̂+(𝑥) = 1−𝛼𝑥+𝛼𝑥(1−(𝛽+𝛽′−𝛽𝛽′)𝑥) =
1 − 𝛼𝑥(𝛽 + 𝛽′ − 𝛽𝛽′)𝑥.

Summarizing the above cases, we have P̂+ =∑𝑚
𝑥=0 P̂+(𝑥)Pr[𝑥] = 1 −∑𝑚

𝑥=0 Pr[𝑥]𝛼𝑥(𝛽 + 𝛽′ − 𝛽𝛽′)𝑥.
Now we consider reactive jamming under which any

message spread with a compromised spread code can be
jammed. Two nodes can discover each other if they share
at least one non-compromised spread code. We thus can
compute P̂− = 1 − ∑𝑚

𝑥=0 Pr[𝑥]𝛼𝑥. The actual jamming
performance of 𝒥 is between random and reactive jamming,
i.e., P̂− ≤ P̂D ≤ P̂+.

The following theorem is about the average neighbor-
discovery latency T̄ of D-NDP.

THEOREM 2: Two physical neighbors can discover each
other via D-NDP with an average latency

T̄D ≈ 𝜌𝑚(3𝑚 + 4)𝑁2𝑙ℎ
2

+
2𝑁𝑙𝑓
𝑅

+ 2𝑡𝑘𝑒𝑦 , (3)

where 𝑙ℎ = (1 + 𝜇)(𝑙𝑡 + 𝑙𝑖𝑑), 𝑙𝑓 = (1 + 𝜇)(𝑙𝑖𝑑 + 𝑙𝑛 + 𝑙𝑚𝑎𝑐),
𝑙𝑛 and 𝑙𝑚𝑎𝑐 are the lengths of nonce and MAC, respectively,
and 𝑡𝑘𝑒𝑦 is the time needed to compute an ID-based shared
key.

Proof: Without loss of generality, we assume that 𝐴
initiates neighbor discovery with 𝐵. To ease the analysis,
we also assume that whenever 𝐴 or 𝐵 starts to transmit
a message, the other is processing the previously buffered
signal and not buffering the incoming signal since 𝜆 ≫ 1 in
practice.

We first consider the time need by nodes 𝐴 and 𝐵 to
exchange the first two messages, i.e., identify each other,
denoted by Ti. We define the following timeline. 𝐴 starts
broadcasting the HELLO message at 𝑇1; 𝐵 starts buffering
at 𝑇2 and starts buffer processing at 𝑇3; 𝐵 de-spreads the
HELLO message and starts transmitting the CONFIRM mes-
sage at 𝑇4; 𝐴 starts buffering at 𝑇5, starts buffer processing
at 𝑇6, and de-spreads the CONFIRM message at 𝑇7.

Let 𝑡r𝐵 = 𝑇3 − 𝑇1 be 𝐵’s residual processing time of the
previous buffer, and 𝑡d𝐵 = 𝑇4 − 𝑇3 be the time for 𝐵 to de-
spread the HELLO message with C𝑖. Also let 𝑡r𝐴 = 𝑇6−𝑇4

be 𝐴’s residual processing time of the previous buffer, and
𝑡d𝐴 = 𝑇7−𝑇6 be the time for 𝐴 to de-spread the CONFIRM
message using C𝑖.

Since nodes are not synchronized before discovering
each other, 𝑡r𝐵 and 𝑡r𝐴 are two independent random vari-
ables uniformly distributed in [0, 𝑡𝑝]. Moreover, since 𝐴
transmits the HELLO message spread with its 𝑚 spread
codes sequentially, 𝐵 may find the message spread with

C𝑖 at any buffer place. So 𝑡d𝐵 is also a random variable
uniformly distributed in [0, 𝑡𝑝]. In contrast, 𝐴 can de-spread
{CONFIRM, 𝐼𝐷𝐵}C𝑖

after processing at most the first
𝑁 chip positions, so 𝑡d𝐴 is a random variable uniformly
distributed in [0, 𝜆𝑡ℎ]. Let E[⋅] denote expectation. We have

E[Ti] ≈ E[𝑡r𝐵] + E[𝑡d𝐵] + E[𝑡r𝐴] + E[𝑡d𝐴]

=
𝑡𝑝
2

+
𝑡𝑝
2

+
𝑡𝑝
2

+
𝜆𝑡ℎ
2

=
𝜌𝑚(3𝑚 + 4)𝑁2𝑙ℎ

2
.

(4)

Now we consider the time for 𝐴 and 𝐵 to authenticate
each other, denoted by Ta. The last two messages during
mutual authentication involve negligible de-spreading delay
but are much longer than the first two, so we need to
consider the related transmission delays which are both
𝑁(1 + 𝜇)(𝑙𝑖𝑑 + 𝑙𝑛 + 𝑙𝑚𝑎𝑐)/𝑅. Each node also needs com-
puting the shared key. We then have

E[Ta] =
2𝑁(1 + 𝜇)(𝑙𝑖𝑑 + 𝑙𝑛 + 𝑙𝑚𝑎𝑐)

𝑅
+ 2𝑡𝑘𝑒𝑦 . (5)

Finally, we have T̄D = E[Ti]+E[Ta] as shown in Eq. (3).

3) Analysis of M-NDP: We have the following theorem
regarding the neighbor-discovery probability P̂M of M-NDP.

THEOREM 3: For 𝜈 = 2, two physical neighbors can
discover each other via M-NDP with probability P̂M ≥ 1−
(1 − P̂2

D)𝑔(1−
3
√

3
4𝜋)−1, where 𝑔 denotes the average number

of physical neighbors of MANET nodes.
Proof: Assuming that no nodes have performed M-NDP

yet, any two physical neighbors can discover each other and
establish a session spread code via D-NDP with probability
P̂D. Assume that 𝐴 and 𝐵 are two physical neighbors but
cannot discover each other via D-NDP. They, however, can
discover each other via a 2-hop M-NDP process if they have
at least one common neighbor who has established session
codes via D-NDP with both of them. For each common
physical neighbor, the probability that it can discover both
𝐴 and 𝐵 via D-NDP is P̂2

D.
The expected overlapping area of 𝐴’s and 𝐵’s trans-

mission ranges can be derived as (𝜋 − 3
√
3

4)𝑎2, where 𝑎
is the radius of each node’s transmission range [11]. Let
𝑔 be the average number of physical neighbors that each
node has, and 𝑔 depends on the total number of nodes 𝑛,
node mobility and distribution, and the network shape. The
expected number of common physical neighbors of 𝐴 and
𝐵 is then approximately 𝑔(1 − 3

√
3

4𝜋) − 1, excluding 𝐴 or
𝐵 themselves. Nodes 𝐴 and 𝐵 can perform 2-hop M-NDP
with probability 1− (1− P̂2

D)𝑔(1−
3
√

3
4𝜋)−1. In practice, some

other nodes may have already discovered each other via M-
NDP. Therefore, we have P̂M ≥ 1 − (1 − P̂2

D)𝑔(1−
3
√

3
4𝜋)−1.

536

Table I
DEFAULT EVALUATION PARAMETERS

Para. Val. Para. Val. Para. Val.
𝑛 2000 𝑚 100 𝑙 40

𝑞 20 𝑁 512 𝑅 22Mbps
𝜌 10−11s/bit 𝜇 1 𝜈 2

𝑙𝑡 5 𝑙𝑖𝑑 16 𝑙𝑛 20

𝑙𝑓 160 𝑙𝜈 4 𝑙𝑠𝑖𝑔 672

𝑡𝑘𝑒𝑦 11ms 𝑡𝑠𝑖𝑔 5.7ms 𝑡𝑣𝑒𝑟 35.5ms

(a) P̂ (b) T̄

Figure 2. Impact of 𝑚.

We have not been able to give a closed-form solution to
P̂M for 𝜈 ≥ 3, which instead will be evaluated via simu-
lations later. We also have the following theorem regarding
the average neighbor-discovery latency T̄ of M-NDP without
giving the straightforward proof.

THEOREM 4: Two physical neighbors connected by a 𝜈-
hop jamming-resilient path can discover each other via M-
NDP with an average latency T̄M = T𝜈 + 2𝜈(𝜈 + 1)𝑡𝑣𝑒𝑟 +

2𝜈𝑡𝑠𝑖𝑔 , where T𝜈 = 𝑁
𝑅 (3𝜈(𝜈+1)

2 ((𝑔+1)𝑙𝑖𝑑+2𝑙𝑠𝑖𝑔)+2𝜈(𝑙𝑛+
𝑙𝜈)) .

It follows that JR-SND enables two physical neighbors to
discover each other with probability P̂ = P̂D+(1−P̂D)P̂M.
Moreover, the average neighbor-discovery latency T̄ of the
JR-SND is bounded by the larger one between that of D-
NDP and that of M-NDP, i.e., T̄ = max(T̄D, T̄M).

B. Simulation Results

We simulate 2000 MANET nodes in a 5000×5000 m2

field, each with a transmission range of 300 m. Table I
summarizes most default evaluation parameters unless spec-
ified otherwise, in which the cryptographic parameters are
adopted from [13]. For our purpose, most of the simulation
code is written in C++. Each measurement is the average
over 100 simulation runs, each with a different random
seed. In our simulations, reactive jamming is always more
effective in jamming neighbor discovery than random jam-
ming, which coincides with the intuition. For lack of space,
we only show the results under reactive jamming, which
correspond to the worst-case scenario.

Fig. 2 show the impact of 𝑚. In general, the larger 𝑚, the
higher P̂ for D-NDP, M-NDP, and JR-SND. The T̄ of D-
NDP increases quadratically as 𝑚 increases and exceeds that
of M-NDP when 𝑚 > 60. The T̄ of JR-SND is the larger
one between that of D-NDP and M-NDP. Under default

(a) P̂ vs. 𝑙 (b) P̂ vs. 𝑛

Figure 3. Impact of 𝑙 and 𝑛.

(a) 𝑙 = 40 (b) 𝑙 = 20

Figure 4. Impact of 𝑞.

configuration, i.e., 𝑚 = 100, JR-SND has a latency under
2 seconds, which makes it very suitable for MANETs with
high mobility.

Fig. 3 show the impact of 𝑙 and 𝑛 (the number of nodes).
As shown in Fig. 3(a), P̂ of JR-SND increases as 𝑙 increases
from 5 to 100, after which it decreases slowly. The reason
is that as 𝑙 increases, the probability that two nodes share
at least one codes increases, leading to the increase in P̂.
On the other hand, given a fixed number of compromised
nodes, the probability of any code being compromised also
increases with 𝑙. After 𝑙 exceeds some threshold, the later
effect overwhelms the former, leading to the decrease of P̂
for D-NDP, M-NDP, and JR-SND.

A similar trend for the impact of 𝑛 on P̂ can be observed
from Fig. 3(b). For fixed 𝑙, 𝑚, and 𝑞, the probability 𝛼 of
any code being compromised decreases with 𝑛 increases,
leading to the increase of P̂ for D-NDP and M-NDP when
𝑛 is small. On the other hand, the probability that two nodes
share at least one code decreases with 𝑛. When 𝑛 exceeds
some threshold, the later effect dominates and results in the
decrease of P̂ for D-NDP. Also, a larger 𝑛 increases the
node density, which eventually leads to higher P̂ for M-
NDP. Since the performance of JR-SND depends on the
combination of D-NDP and M-NDP, the overall performance
is always sufficiently good.

Fig. 4 show the impact of 𝑞 (the number of compromised
nodes), where 𝑙 = 40 and 𝑙 = 20, respectively. As 𝑞
increases, P̂ of D-NDP, M-NDP, and JR-SND all decrease,
which is anticipated. For example, when 𝑙 = 40 and 𝑞 = 60,
P̂ of JR-SND drops to approximately 0.5. However, as
argued in Section IV-B, we believe that node compromise

537

(a) P̂D = 0.2 (b) T̄

Figure 5. Impact of 𝜈.

attacks are much more difficult to launch in MANETs than
in unattended sensor networks. In addition, we can greatly
improve the resilience of M-NDP and thus JR-SND to node
compromise attacks by increasing 𝜈, the number of hops an
M-NDP request can traverse.

Fig. 5(a) shows the impact of 𝜈 on P̂𝑀 , the neighbor-
discovery probability of M-NDP, where P̂D = 0.2 which
corresponds to 𝑞 = 100 as shown in Fig. 4(a). D-NDP is
not affected by 𝜈, so P̂D is plotted for reference only. We
can see that the larger 𝜈, the larger P̂M and P̂ with an always
reasonably low latency T̄, and vice versa. In particular,
when 𝜈 ≥ 6, the M-DNP and JR-SND can achieve P̂ over
0.9. In practice, MANET nodes may dynamically adjust 𝜈
to achieve satisfactory neighbor-discovery probabilities. In
addition, Fig. 5(b) shows that the T̄ of M-NDP increases as
𝜈 increases. For example, when 𝜈 = 6, T̄ is about 4 seconds,
which is acceptable in most cases.

We have also studied other potential factors on the per-
formance of JR-SND, which have limited impact and thus
are not shown here due to space constraints.

We summarize the simulation results as follows. D-NDP
can enable two neighbors to directly discover each other
with high probability and low latency. M-NDP is built upon
D-NDP and can improve the neighbor-discovery probability
by letting two neighbors discover each other via a multi-hop
path. It is suitable for MANETs with moderate node density.
By combining D-NDP and M-NDP, two nodes can discover
each other with overwhelming probability and low latenc

VII. CONCLUSION

In this paper, we propose JR-SND, a novel scheme
based on DSSS and spread-code pre-distribution to achieve
jamming-resilient neighbor discovery in MANETs. JR-SND
can enable two neighboring nodes to successfully dis-
cover each other with overwhelming probability despite
omnipresent jammers. The efficacy and efficiency of our
schemes are confirmed by detailed theoretical analysis and
simulation results. As our future work, we intend to further
evaluate JR-SND with experimental results.

ACKNOWLEDGEMENT

This work was supported in part by the US National
Science Foundation under grants CNS-0716302 and CNS-

0844972 (CAREER).

REFERENCES

[1] R. Pickholtz, D. Schilling, and L. Milstein, “Theory of spread-
spectrum communications–a tutorial,” IEEE Transactions on
Communications, vol. 30, no. 5, pp. 855–884, May 1982.

[2] L. Baird, W. Bahn, M. Collins, C. Carlisle, and C. Butler,
“Keyless jam resistance,” in IEEE IWA’07, Montreal, CA,
June 2007, pp. 143–150.

[3] M. Strasser, C. Popper, S. Capkun, and M. Cagalj, “Jamming-
resistant key establishment using uncoordinated frequency
hopping,” in IEEE S&P’08, Oakland, CA, May 2008.

[4] M. Strasser, C. Popper, and S. Capkun, “Efficient uncoor-
dinated fhss anti-jamming communication,” in MobiHoc’09,
Apr. 2009, pp. 207–218.

[5] D. Slater, P. Tague, R. Poovendran, and B. J. Matt, “A
coding-theoretic approach for efficient message verification
over insecure channels,” in WiSec’09, Zurich, Switzerland,
Mar. 2009, pp. 151–160.

[6] T. Jin, G. Noubir, and B. Thapa, “Zero pre-shared secret key
establishment in the presence of jammers,” in MobiHoc’09,
Apr. 2009, pp. 219–228.

[7] C. Popper, M. Strasser, and S. Capkun, “Jamming-resistant
broadcast communication without shared keys.” in USENIX
Security’09, Aug. 2009.

[8] Y. Liu, P. Ning, H. Dai, and A. Liu, “Randomized differential
DSSS: Jamming-resistant wireless broadcast communication,”
in INFOCOM’10, San Diego, CA, Mar. 2010.

[9] A. Liu, P. Ning, H. Dai, and Y. Liu, “USD-FH: Jamming-
resistant wireless communication using frequency hopping
with uncoordinated seed disclosure,” in MASS’10, San Fran-
cisco, CA, Nov. 2010, pp. 41–50.

[10] A. Liu, P. Ning, H. Dai, Y. Liu, and C. Wang, “Defending
DSSS-based broadcast communication against insider jam-
mers via delayed seed-disclosure,” in ACSAC’10, Austin,
Texas, Dec. 2010, pp. 367–376.

[11] H. Chan, A. Perrig, and D. Song, “Random key predistribu-
tion schemes for sensor networks,” in IEEE S&P’03, Oakland,
CA, May 2003, pp. 197–213.

[12] E. Sousa and J. Silvester, “Optimum transmission ranges
in a direct-sequence spread-spectrum multihop packet radio
network,” IEEE J. Select. Areas Commun., vol. 8, no. 5, pp.
762–771, Jun 1990.

[13] Y. Zhang, W. Liu, W. Lou, and Y. Fang, “Securing mobile ad
hoc networks with certificateless public keys,” IEEE Trans-
actions on Dependable and Secure Computing,, vol. 3, no. 4,
pp. 386–399, Oct.-Dec. 2006.

[14] D. Boneh and M. Franklin, “Identity-based encryption from
the weil pairing,” in CRYPTO’01, Santa Barbara, CA, Aug.
2001, pp. 213–229.

[15] I. S. Reed and G. Solomon, “Polynomial codes over certain
finite fields,” Journal of the Society for Industrial and Applied
Mathematics (SIAM), vol. 8, no. 2, pp. 300–304, June 1960.

538

