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Abstract—Twitter is an extremely popular social networking
platform. Most Twitter users do not disclose their locations due to
privacy concerns. Although inferring the location of an individual
Twitter user has been extensively studied, it is still missing to
effectively find the majority of the users in a specific geographical
area without scanning the whole Twittersphere, and obtaining
these users will result in both positive and negative significance.
In this paper, we propose LocInfer, a novel and lightweight
system to tackle this problem. LocInfer explores the fact that
user communications in Twitter exhibit strong geographic locality,
which we validate through large-scale datasets. Based on the
experiments from four representative metropolitan areas in U.S.,
LocInfer can discover on average 86.6% of the users with 73.2%
accuracy in each area by only checking a small set of candidate
users. We also present a countermeasure to the users highly
sensitive to location privacy and show its efficacy by simulations.

I. INTRODUCTION

Twitter is an extremely popular social networking tool for
communicating through short messages called tweets. As of
July 2014, Twitter has 255 million monthly active users and
500 million daily tweets. Due to such massive user bases and
popular usage, Twitter has been increasingly used in social
communications, information campaigns, public relations, po-
litical campaigns, pandemic and crisis situations, marketing,
and many other public/private contexts.

User privacy is arguably a major concern about Twitter.
Specifically, user profiles and tweets may contain sensitive
information about life, work, health, hobbies, political opinions,
etc. Twitter currently offers little protection for user profiles and
tweets which are virtually visible to anyone with or without
an account.1 Consequently, many users employ pseudonyms
instead of real names in their profiles. In addition, Twit-
ter users often hide their home locations (location for short
thereafter), which are permanent and static city-level regions
(e.g., Philadelphia) where most of their daily activities occur.
Specifically, they may either not indicate their locations or
report very general locations (e.g., state-level) in their profiles;
they may not indicate their locations in their tweets either. For
example, less than 34% of Twitter users explicitly specify their
locations in their profiles [1], only 16% of Twitter users indicate
city-level locations, and only 0.5% of tweets have a geo-tag [2].

1Although Twitter allows a user to make his information visible to approved
followers only, this privacy enhancement is rarely used in practice.

There have been some efforts to infer a Twitter user’s hidden
location. Content-based methods [2]–[6] try to infer hidden
locations from geographic hints such as city landmarks in
tweets. For example, a user who frequently mentions “Golden
Bridge” in his tweets may imply his location in the Bay Area.
In contrast, network-based methods [7]–[11] leverage the fact
that geographically-close people tend to form a connection or
community in Online Social Networks (OSNs) [12], so a user’s
location can be inferred from his online neighbors (or neigh-
bors’ neighbors, etc). Based on different estimation techniques,
all these efforts [2]–[11] seek to address the same question: how
can we infer a Twitter user’s hidden location from his location-
related tweets and/or OSN neighbors’ locations?

This paper targets a different and more challenging problem:
is it feasible to efficiently discover the majority of Twitter users
in any city-level metropolitan area (A) without collaborating
with Twitter? Since only 16% of Twitter users register city-
level locations [2], it is infeasible to tackle our problem by
directly checking users’ tweets and profiles. In addition, directly
applying any prior solution [2]–[11] would inevitably involve
checking every (255 million) Twitter user’s tweets, followers,
and/or followees, thus leading to a prohibitive cost.

An affirmative answer to our target problem above would
have significant positive and negative impacts. On the positive
side, finding the majority of the users in a specific area can
not only benefit many applications such as local event detec-
tion and recommendation, business marketing, and emergency-
alert dissemination, but also offer a feasible way to sample
Twitter to facilitate the research concerning geographically
related information. On the negative side, if an attacker can
infer the majority of the Twitter users in a specific area,
he could easily combine the location information with user
tweets to better profile Twitter users who may or may not use
pseudonyms, thus breaching their privacy and subjecting them
to many identity-based attacks. Moreover, the Twitter users with
exposed locations are vulnerable to large-scale location-based
or geo-targeted spam campaigns [13].

In this paper, we propose LocInfer, a novel and lightweight
solution to the above problem for the first time in literature.
The design of LocInfer is driven by two conjectures. First, a
small but nontrivial fraction of users (15.9% on average in our
datasets) have specified a credible location in the target area A
in their personal profiles, each of which is referred to as a seed



user hereafter. Second, user communications in Twitter exhibit
strong geographic locality in that the users in the same area tend
to interact more often than with those from outside. We confirm
these two conjectures in our technical report [14] through large-
scale datasets involving four representative metropolitan areas
in U.S. Built upon these conjectures, LocInfer iteratively checks
the immediate neighbors of the seed set, and the users who have
tight connections with the seeds become new seeds and are
added to the seed set. The final seed set contains the majority
of Twitter users in A with overwhelming probability. LocInfer
is highly efficient because only limited candidate users need to
be checked in contrast to almost all the Twitter users when the
existing methods [2]–[11] are applied to our problem.

Our contributions can be summarized as follows.
• We motivate and formulate the problem of large-scale

location inference, which is challenging given that only
a small fraction of Twitter users have specified a credible
city-level location in their personal profiles.

• We design LocInfer, a novel and lightweight solution that
can uncover the majority of the Twitter users in a specific
metropolitan area.

• We conduct extensive experiments to evaluate LocInfer
using four large-scale datasets. Our results show that
LocInfer can successfully discover on average 86.6% of
the users with 73.2% accuracy.

• We propose a countermeasure against LocInfer for the
Twitter users worrying about their location privacy and
evaluate its effectiveness via simluations.

The rest of this paper is organized as follows. Section II
defines the problem. Section III details the LocInfer design.
Section IV evaluates LocInfer and our countermeasure. Sec-
tion V surveys the related work. Section VI concludes this paper
and presents some future work.

II. PROBLEM STATEMENT, TERMS AND NOTATION

We use a directed and weighted multigraph2 to model the
diverse communications between Twitter users. In Twitter,
people can follow others without mutual consent; they can
mention others in their own tweets; they can also reply to
or retweet others’ tweets. We classify these communications
into two categories: following and interacting (retweeting,
replying, and mentioning), denoted by symbols F and I,
respectively. Such diverse communications are modeled as a
directed and weighted multigraph G = 〈V,E〉, where each
vertex v ∈ V represents a user. We refer to a directed edge for
the following type as a following edge and a directed edge for
the interacting type as an interacting edge. A following edge
eFij ∈ E is formed when user i followed j; we call user i a
follower of j and j a followee of i. In contrast, an interacting
edge eIij ∈ E is formed when user i mentioned, replied to,
or retweeted j at least once; we call user i a responder of
j and j an initiator of i. To model the interaction strength,
we define w(eIij), the weight of edge eIij , as the total number

2In a multigraph, two vertices may be connected by more than one edge.

of retweets, replies, and mentions from user i to j. For
consistency, we also define the weight of any following edge
as one. We use NFI (u), NFO (u), NII (u), NIO(u) to represent
u’s one-hop followers, followees, responders, and initiators,
respectively. We also define the one-hop neighbors of u as
N(u) = NFI (u) ∪NFO (u) ∪NII (u) ∪NIO(u).

Large-Scale Location Inference. Given a Twitter multigraph
G = 〈V,E〉 and a target metropolitan area A, we aim to obtain
a target user list U which contains the majority of Twitter
users in A without collaborating with Twitter.

Design goals. LocInfer is designed with the following goals.
• High coverage. The target user list U should cover the

majority of Twitter users in A. If we denote the actual
Twitter users in A by U∗, the coverage can be computed
as |U ∩ U∗|/|U∗|.

• High accuracy3. The target users in U should be indeed lo-
cated in A. The accuracy can be computed as |U∩U∗|/|U |.

• Efficiency. LocInfer should only involve checking Twitter
users proportional in quantity to the population in A in
contrast to existing methods [2]–[11] which all need to
check all the Twitter users. This efficiency requirement is
particularly important because without Twitter’s collabora-
tion, the only free way to obtain the users’ information is
via third-party APIs, which is time-consuming as Twitter
has strict rate limits on APIs invoking [15]. For example,
an authenticated user can only invoke the get-followers
API 15 times per 15 minutes. Hence if we invoke this
API once for each of the 255 million Twitter users, it will
spend a single authenticated user about 485 years to obtain
all the Twitter users’ followers.

III. LOCINFER

As stated before, our goal is to uncover the majority of
Twitter users in an area A. A naive solution is to use existing
location inference methods [2]–[11] for estimating the location
of every Twitter user and then select the ones in A. However,
these methods are impratical for our problem. In particular,
they would require crawling the followers, the followees, and
many tweets for all the 255 million active Twitter users. Since
Twitter has strict rate limits on data crawling [15], the crawling
process for these methods will be time-consuming. In addition,
the network-based methods [7]–[11] need to store and process
the edges of the whole Twitter graph, thus leading to prohibitive
storage and processing costs.

Now we present LocInfer, an efficient and effective system
to identify the majority of users in A. LocInfer is built upon
two conjectures which have been experimentally validated and
presented in our technical report [14]. First, we can find a
nontrivial number (15.9% from our datasets) of users who
have explicitly indicated a location in A through their personal

3Note that coverage and accuracy correspond to the widely-used recall and
precision, respectively. In this paper we use the coverage and accuracy to make
the meaning more straightforward in the context of user uncovering in an area.



profiles. These users are referred to as seed users (or seeds) in
A and denoted by S. Second, user communications in Twitter
exhibit strong geographic locality in the sense that users in the
same area tend to have more intensive communications with
each other in Twitter than with those from outside. Based on
these two conjectures, LocInfer first builds a seed set S (step
1 in Section III-A) and then checks the one-hop neighbors of
the seed set S, which constitute a candidate set denoted by C
(step 2 in Section III-B). Because of nontrivial seed set S and
the strong geographic locality, C will cover the majority of the
users in A, but also include many users outside. Hence LocInfer
chooses the candidate users who have tight connections with
S as new seeds and add them to S, and this process continues
until some termination conditions are met (step 3 in Section
III-C). The final seed set S contains the majority of Twitter
users in A with overwhelming probability.

We notice that many community structures (e.g., a group
of people in different locations with common interests or
past experience like classmates and colleagues) rather than the
geographic community may also yield strong inter-connections.
Hence LocInfer may include some users outside A in the
candidate set C. However, the impact of such outside users
is minimal because LocInfer only selects the users in the target
area A as the seeds S and only chooses the target users who
have strong communications with S later.

A. Step 1: Finding Seed Users

The first step in LocInfer is to extract the seed set S who
are most certainly in A. To that end, we check the self-reported
locations in Twitter users’ profiles, a methodology that has
been used to obtain the ground truth in [2]–[11]. Specifically,
we use the Twitter geo-search API designed to return the
recent or popular tweets in a specified geo-circle defined by
latitude, longitude, and radius [15]. For any interested area A,
we convert it into a geo-circle for the geo-search API, and we
do not differentiate A and its corresponding geo-circle hereafter.
The geo-search API returns the tweets from three types of users.
• Geo-tagged users: The users who recently published some

tweets with a geo-tag in A.
• Geo-profiled users: The users whose personal profiles

containing a location in A.
• Retweeting users: The users who recently retweeted some

geo-tagged or geo-profiled users’ tweets in A.
Among them, we only use the geo-profiled users to construct S,
because retweeting users are likely not in A, and geo-tagged
users may have just traveled to some places within the geo-
circle instead of living there. Moreover, since the result of each
geo-search API invoking corresponds to a random sampling of
the active Twitter users, we keep invoking the geo-search API
until no significantly more geo-profiled users can be discovered.

The self-reported locations have been found reliable [11],
but the results from the geo-search API are still noisy for two
reasons. First, the location descriptions in many users’ profiles
are ambiguous and arbitrary. For example, people living in
Los Angeles may specify their locations as “South California”,

or “Los Angeles”, or “LA”, or just “CA.” Second, the geo-
search API often needs to covert a location description into a
longitude-latitude pair for comparison with the specified geo-
circle. Such conversions are often problematic and thus lead to
wrong results. For example, when we searched the users in San
Francisco Bay Area, the geo-search API returned some users in
other places or even nonsense descriptions such as “somewhere
you’re not” and “wherever you not.”

We thus refine the geo-profiled users as follows. For each
user, we further verify whether his/her location description
contains a city name in A. For this purpose, we first obtain
the list of city names in A from the latest U.S. gazetteer data
[16] and then compare the location description with it. If there
is an intersection, the user is considered a seed user in A.

Some people might specify the fake home locations in their
profiles, and it is infeasible to completely pinpoint and exclude
such users. Fortunately, such self-reported locations have been
verified to be very reliable [11] and have been used as the
ground truth in [2]–[11]. Meanwhile, we may accidentally
exclude some users indeed in A, which is quite acceptable given
our focus on obtaining a reliable seed set in this step. We admit
that more advanced methods can be used for the seed searching
and refinement, which are left for the future work.

B. Step 2: Finding Candidate Users

Based on the nontrivial number of seed users, the second step
then is to construct a candidate-user set C from the one-hop
neighbors of S that potentially covers the majority of Twitter
users in A but is also much smaller than the set of all Twitter
users. Below we first discuss how we decide the candidate users
in C and then theoretically analyze the coverage of C.

1) Choosing C: We first build the candidate set C from
the one-hop neighbors of S. The underlying intuition is based
on the two conjectures validated in our technical report [14].
Specifically, The second conjecture indicates that the users in
the same geographic area tend to communicate more densely
among themselves than to those from outside. On the one hand,
if a user has very limited communications to all the seed users
in S which occupies about 15.9% of the total users in A, with
high probability he/she is not in A; on the other hand, a user
that is indeed in A is very likely to have direct communication
with some seeds. We therefore choose to build the candidate
set C from the one-hop neighbors of S, denoted as N(S).

Two details need further consideration. As defined in Sec-
tion II, each Twitter user has four kinds of neighbors in G =
〈V,E〉: followers, followees, initiators, and responders. Which
neighbors should we choose for each seed user? We found
that many Twitter users may follow a large number of other
users, but they tend to subsequently interact with relatively
few followees. Since people usually interact with the ones who
they follow or follow them and C should cover as many users
as possible in A, we consider all the followers and followees
of each seed user in this step. Moreover, since each user in
Twitter can follow arbitrary users without prior consent, the
unidirectional following relationship is not a reliable indicator



of geographic closeness. To deal with this issue, we propose to
only select the candidate users to be the followers and followees
of each seed user in S with each having at least t followees
and t followers in S, where t is a system threshold.

More formally speaking, for each user u ∈ NFO (S)∪NFI (S),
we compute nFi (u) = |NFI (u)∩S| and nFo (u) = |NFO (u)∩S|.
If both nFi (u) and nFo (u) are no less than t, user u is added
to the candidate set C and ignored otherwise.

Alg. 1 implements the overall process. Specifically, we first
create a followee counter and a follower counter for each user
in NFO (S)∪NFI (S). Then we traverse the followee and follower
list of each seed and increase the corresponding followee and
follower counters. If both the followee and follower counters
exceed t, we choose the user u as a candidate.

Algorithm 1: Obtain the candidate set C by only checking
the followee and follower lists of the seed set S.

input : S,NFO (S), NFI (S), t
output: the candidate set C
C ← ∅; co[u]← 0, ∀u ∈ NFO (S); ci[v]← 0, ∀v ∈ NFI (S);
for u ∈ S do

co[v] + +,∀v ∈ NFO (u); ci[v] + +,∀v ∈ NFI (u);
end
for u ∈ NFO (S) do

if co[u] ≥ t and u ∈ NFI (S) and ci[u] ≥ t then
C ← C + {u};

end
end
return C.

2) Coverage of C: The number of candidate users (i.e., |C|)
is determined by both the number of seed users (i.e., |S|) and
the system parameter t. A natural question is whether C can
cover the majority of users in target area A. It is important
because the new seeds (or equivalently the target users) will be
found only from C.

To analyze the coverage of C, we first define the following
terms and notation. We call users i and j mutual followers if
they follow each other. Let GA = 〈VA, EA〉 be a subgraph of
the Twitter multigraph G = 〈V,E〉, where VA ⊆ V is the set of
the Twitter users in the target area A, and EA ⊆ E is the set of
the directed following edges among the users in VA. Consider a
seed set S ⊆ VA with s = |S| = α|VA| users, where α ∈ (0, 1].
Let N t(S) denote the set of the followers and followees of S,
each having at least t followers and t followees in S, where
t is the system threshold stated before. The coverage ratio of
C is defined as r(t) = |Nt(S)∪S|

|VA| . We then have the following
theoretical results about the coverage of C given |S| and t.

Theorem 1. Assume that each user in VA has on average dm
mutual followers in VA. When |VA| is large enough, the expected
coverage ratio is r(t) ≥ 1 − e−αdm(1 − α)

∑t−1
i=0

(
s
i

)
( p
1−p )i,

where p = dm/(|VA| − 1) .

Proof. We first construct an undirected graph G′ = 〈VA, E′〉,
where an edge e′ij ∈ E′ is formed if and only if users i and
j are mutual followers. Let N

′t(S) be the set of neighbors of

S in G′, each having at least t neighbors in S. We proceed to
define the coverage of S in G′ as r′(t) = |N ′t(S) ∪ S|/|VA|.

We now compute r′(t). Since each user has on average dm
edges in E′, the probability of one user connecting to any other
user is p = dm

|VA|−1 . Moreover, since there are s = α|VA| seed
users, the probability of any non-seed node u connecting to
less than t seed users in G′ is given by

ρ =

t−1∑
i=0

(
s

i

)
pi(1− p)s−i = (1− p)s

t−1∑
i=0

(
s

i

)
(

p

1− p
)i . (1)

When the number of users in VA is large, we have

lim|VA|→+∞(1− p)s = lim|VA|→+∞(1− dm/|VA|)α|VA|

= e−αdm .

Since there are |VA| − s non-seed users, the expected number
of non-seed users connecting to t or more seeds in S can be
computed as (|VA| − s)(1 − ρ) = |VA|(1 − α)(1 − ρ). When
|VA| is large, we have

r′(t) = |N
′t(S) ∪ S|/|VA|

= 1− (1− α)ρ

≈ 1− (1− α)e−αdm
t−1∑
i=0

(
s

i

)
(

p

1− p
)i.

Since each edge in E′ corresponds to two directed edges in
E, all the users in N

′t(S) must belong to N t(S). On the other
hand, a user in N t(S) may not appear in N

′t(S). For example,
consider a user who has exactly t followers and t followees in
S in graph G, where none of his followers and followees are the
same. Then this user is an isolated vertex in G′ and is certainly
in N t(S) but not N

′t(S). We thus have N
′t(S) ⊆ N t(S) and

r′(t) ≤ r(t), and the theorem is proved.

Corollary 1. r(t = 1) ≥ 1− e−αdm(1− α).

Corollary 2. r(t = 2) ≥ 1− e−αdm(1− α)(1 + αdm).

Since |VA| is often large in practice, Theorem 1 indicates
that the coverage ratio r(t) approaches 1 when αdm is large
enough. Moreover, the choice of t involves a tradeoff between
the crawling cost and the coverage. Specifically, the larger the t,
the fewer the candidates in C, the smaller the crawling cost, the
more likely to miss some users in A (i.e., the lower coverage),
and vice versa. The size of S also affects the choice of t. On the
one hand, if S constitutes a relatively large portion of the users
in A (say, α = 30%), it may be safe to use larger t because
many users in A are more likely to have more followees and
followers in S. On the other hand, if S constitutes a relatively
small portion of the users in A (say, α = 10%), it may be safe
to use smaller t to avoid excluding too many users in A.

Here we illustrate how many seeds are needed to achieve
a nearly 100% coverage. Assume that each user in A has on
average 15 mutual followers (i.e., dm = 15). According to
Corollaries 1 and 2, when t = 1, 20% of the users as seeds can
cover 96.02% of the target users in A, and when t = 2, 20%
and 30% of the users as seeds can cover 84.07% and 95.72%



of the users in A, respectively. Similarly, if dm = 30, only 10%
and 15% of the users as seeds can cover 95.52% and 95.99%
of the users for t = 1 and t = 2, respectively. These results
indicate that when each user has sufficient mutual followers in
A, the followers and followees of a small number of seeds can
cover the majority of the target users in A.

C. Step 3: Finding Target Users U

Although the candidate set C covers nearly all the users
in A for proper t, it may contain many users not in A who
nevertheless have at least t followees and also t followers in
the seed set S. For example, social butterflies [17] or social
capitalists [18] have been reported to automatically follow back
whoever follows them, and users may also follow each other
due to reciprocity [17], [18]. We thus design the next step to
identify the target user set U in A from C using both the
following and interacting connections among the users.

Our key observation as stated is that each target user is very
likely to demonstrate significant locality with the seed user set
S. In other words, we expect that the target users form a strong
local community with the seed users. From the initial seed
set S, we iteratively check the candidate users in C, and the
candidate who has the highest locality value with the seeds
becomes a new seed and is added to S. The process iterates
until certain conditions are met.

How should we compute the locality of Twitter users with
diverse communications? According to the different types of
communications in the Twitter network, we first define three
types of locality for any candidate user u ∈ C: follower locality
lfollower(u), followee locality lfollowee(u), and initiator locality
linitiator(u), which are computed as

lfollower(u) =
|NFI (u) ∩ S|
|NFI (u)|

, lfollowee(u) =
|NFO (u) ∩ S|
|NFO (u)|

,

and linitiator(u) =
w(NIO(u) ∩ S)

w(NIO(u))
,

(2)

where NFI (u), NFO (u), and NIO(u) are u’s followers, followees,
and initiators, respectively, and w(·) denotes the total weight
of the corresponding interacting edges. One may think about
also defining responder locality as lresponder(U). It is, however,
infeasible to discover all the users who have retweeted, replied
to, or mentioned a particular user without crawling all Twitter
users. So we choose not to use it.

We also consider two methods to integrate the three types
of locality. First, we choose the maximum one among them as
u’s locality, i.e.,

l(u) = max{lfollower(u), lfollowee(u), linitiator(u)} . (3)

Second, we model u’s locality by the weighted combination as

l(u) = ε1lfollower(u) + ε2lfollowee(u) + ε3linitiator(u) , (4)

where 0 ≤ ε1, ε2, ε3 ≤ 1 and ε1 +ε2 +ε3 = 1. In this paper, we
choose each of them to be 1/3 for simplicity and leave other
possible assignments as the future work.

Finally, we iteratively find the target users based on one of
their five types of locality with regard to the seed set S. In each
iteration, we compute the locality for each candidate u ∈ C
according to Eq. (2), Eq. (3), or Eq. (4). The candidate with
the highest locality is removed from C and added to S as a
new seed, as this user contributes most to the tightness of the
community around S. In addition, the follower, followee, and/or
initiator locality values of the remaining candidates in C need
be updated in every iteration. Here we just use the followee
locality to illustrate the updating operation. Let l(m)

followee(u)
denote the followee locality for candidate u in iteration m ≥ 0,
where l(0)(u) can be computed by using the initial seeds in S.
Assuming that u∗ has been chosen as a new seed in iteration
m, we update the followee locality for candidate u as

l(m+1)(u) =

{
l(m)(u) + 1/|NFO (u)| if u∗ ∈ NFO (u),
l(m)(u) o.w.

(5)
Follower and initiator locality can be updated similarly, and we
may need to update the overall locality according to Eq. (3) or
Eq. (4). The iteration terminates when the seed set S contains a
desired number of users in A, denoted by τA. Then the sought
target users correspond to all the users in A. The complete
process is summarized in Alg. 2, which is implemented using
a max-priority queue [19].

Algorithm 2: Identify target users in A from C.
input : S,C, τA
output: U , i.e., the users in A

1 U ← S;
2 Compute l(u), ∀u ∈ C, according to Eq. (2), (3) or (4);
3 Q← ∅;
4 for u ∈ C do
5 INSERT(Q, u);

6 while |U | < τA do
7 u∗ ← EXTRAC–MAX(Q);
8 U ← U + {u∗}, S ← S + {u∗};
9 for u ∈ NFI (u∗) do

10 INCREASE–KEY(Q, u, l(u) + 1/|NFO (u)|);

11 return U .

The termination threshold τA can be chosen in two ways.
First, we can set τA as the estimated number of Twitter users
in A, e.g., about 15.1% of the population in A if A is in
U.S. [20]. Second, τA can be chosen according to the level of
confidence we desire. In particular, our algorithm essentially
ranks all the candidate users according to our confidence about
their locations in A. The later a candidate user is added to U ,
the lower confidence we have that he is indeed in A. Therefore,
if we want to obtain a set of target users in A with high
confidence, a small τA should be used; if we want to cover
more users in A, a larger τA is suitable.

We now analyze the complexity of Alg. 2. In Lines 4-5,
we build a max-priority queue Q based on each candidate’s
locality value, of which the complexity is O(|C| log |C|). The
loop beginning from Line 6 is used to find the target user one



at a time. In each iteration, we extract the maximum value from
the priority queue Q in Line 7, set it as a new seed in Line
8, and update the locality value of all its followers in Lines
9-10. The complexity of Line 6-10 is O(τAd log(|C|)), where
d is the average degree in A. Hence the overall complexity of
Alg. 2 is O((|C|+ τAd) log(|C|)).

One may wonder why we do not add more candidates to
C once a candidate is added as a new seed to S. We have
shown in Section III-B2 that the candidate users discovered
through the initial seed set S cover the majority of users in
A with overwhelming probability. It is thus unlikely that we
can identify more candidate users from newly identified seeds,
which has been validated by our simulations in Section IV-C.
We thus choose not to add more candidates in each iteration.

D. Cost Analysis

We now analyze the cost of LocInfer, which consists of the
crawling cost and computation cost, and briefly compare it with
the existing methods.

We first analyze the crawling cost of LocInfer, which is
important given the tight rate limitations Twitter enforces on
data crawling. First, Step 1 in LocInfer involves invoking
the Twitter geo-search API continuously to obtain the initial
seed set S and needs to crawl some geo-tagged users’ tweets.
Second, Step 2 requires crawling the followees and followers
of each seed user in S. Finally, Step 3 needs to crawl the
followees, followers, and initiators of each candidate user in
C. Recall that d denotes the average number of followers and
followees each seed user has. Our datasets in Section IV-A
show that d is approximately 600. It has also been reported
that 15.1% U.S. people use Twitter [20] and that 15.9% of
Twitter users report city-level locations and become seeds in
LocInfer. In LocInfer, a user is chosen as a candidate if he
has t followers and t followees in S. So we can expect that the
candidate set size |C| is much smaller than d|S|, i.e., 14.4 times
the population in the target area A. In contrast, all previous
(potential) solutions [2]–[11] involve crawling all the Twitter
users. Thus LocInfer has a much smaller crawling cost, which
makes it very practical.

The computation cost of LocInfer is dominated by the
third step with the complexity of Alg. 2 being O((|C| +
τAd) log(|C|)), where d is the average neighbors of each user
and τA is the number of target users in A.

E. Countermeasure

LocInfer aims to discover the majority of users in any target
area even if many of them do not disclose their locations
explicitly in their personal profiles. We propose a simple
countermeasure here to alleviate the possible concerns of some
sensitive users about their location privacy. Since LocInfer
discovers a user’s location based on his tight connections with
other users in the same area, the user can effectively hide
his home location by following, retweeting, mentioning, and
replying Twitter users outside his home area on a regular
basis. This strategy is meaningful because people can follow

or interact with others in different areas but with the same
interests. For example, a user in New York City may interact
another in Los Angeles because they were university classmates
in Dallas or knew each other in a concert. The efficacy of this
countermeasure is evaluated in Section IV-E.

IV. PERFORMANCE EVALUATION

In this section, we thoroughly evaluate LocInfer. As stated
before, this paper targets a different problem with existing work
[2]–[11], and hence we will not compare LocInfer with them
head to head but could incorporate with them in future work.

A. Methodology

To evaluate LocInfer, we first need build a testing multigraph
G = 〈V,E〉 formed by both users known to be and not be in
a target area A, where one challenge is that we cannot directly
determine all the Twitter users in A.

To tackle this challenge, we adopt the method used by
existing work [2]–[11]. Specifically, since the self-reported
locations have been found reliable [11], we first used the
step 1 of LocInfer to collect user data in four metropolitan
areas of Tuscon (Arizona), Philadelphia, Chicago, and Los
Angeles. Our data collection ran from January to June 2014.
Table I summarizes the four datasets. As we can see, the four
populations vary from one million in TS to 16 millions in
LA, from the not-so-popular areas (e.g., TS) to popular areas
(e.g., LA). Note that all the metropolitan population information
is from the U.S. Census Bureau website. For each area A in
Table I, we treat all the seed users in S discovered in the first
step as the positive ground truth (i.e., they are indeed in A) and
randomly partition S into a seed subset S of size α|S| and a
testing subset T of size (1− α)|S|.

For the negative ground truth, we check the followers and
followees of S and record the set of users who have specified
a location outside A and randomly choose β fraction of these
users, where β is set as the ratio of seed users over the estimated
number of Twitter users in A, as shown in the fourth column
of Table I. We denote by Θ the resulting user set and let V =
S ∪ Θ. We finally compute edges among all the users in V
according to their followings and interactions by analyzing their
followers, followees, and the latest 600 tweets.

We then apply LocInfer to the testing multigraph G. Specifi-
cally, we first use S as the seed set and apply Alg. 1 to generate
the candidate set C. We then apply Alg. 2 to C to generate the
target user set U by choosing a τA. Following the definitions
in Section II, the coverage can be computed as |U ∩ S|/|S|,
and the accuracy can be computed as |U ∩ S|/|U | (|U | = τA).

Unless stated otherwise, we choose t = 2 when building the
candidate set C with Alg. 1 for LA and t = 1 for all other three
datasets, and set α = 0.159 for the four datasets in Table I. The
testing multigraphs are summarized in Table II.

B. Accuracy

We first evaluate the accuracy of LocInfer. We compute
five locality values for each user, including follower locality,



TABLE I: Seed users in four metropolitan areas in U.S.

Area A Population #Twitter users #seed users #seed users with
(rank in U.S.) (over #Twitter users) ≥ 1 million followers

Tucson (TS) 996,544 (57th) 150,478 28,161 (18.65%) 0
Philadelphia (PI) 6,034,678 (7th) 911,236 144,033 (15.9%) 3

Chicago (CI) 9,522,434 (3rd) 1,437,888 318,632 (22.21%) 11
Los Angeles (LA) 16,400,000 (2nd) 2,476,400 300,148 (12.12%) 174
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Fig. 1: Detailed accuracy illustration.

TABLE II: The testing multigraphs for the evaluation.
(α = 0.159)

A |S| |S| |T | β |Θ|
TS 28,161 4,478 23,683 18.65% 162,446
PI 144,033 22,901 121,132 15.9% 630,321
CI 318,632 50,662 267,970 22.21% 1,529,431
LA 300,148 47,724 252,424 12.12% 710,085
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Fig. 2: The accuracy of LocInfer.

followee locality, initiator locality, and the two locality values
defined in Eq. (3) and Eq. (4), respectively.

Fig. 2 shows the accuracy of LocInfer for the four datasets,
where α = |S|/|S| = 0.159 and τA = |S|. We can see that
the five locality metrics all lead to high accuracy in each area,
and initiator locality has the worst performance among them.
Specifically, the average accuracy of four datasets for each
locality are 73.2%, 72.6%, 62.3%, 72.4%, 71.9%, respectively.
The reason is that initiator locality depends on interacting
edges (corresponding to replies, mentions, and retweets) which
are much sparser than following edges in the directed Twitter
multigraph. Therefore, if many users in A only follow many
people but do not interact with them subsequently, they may
be reachable from seed users through following edges but not
from interacting edges. We will show the coverage for different
locality metrics in the following Section IV-C. Moreover, the
locality defined in Eq. (3) and Eq. (4) have nearly the same
accuracy with both the follower and followee locality. This

is expected because the majority of the seed set’s initiator
neighbors are from their followers or followees.

To shed more light on the accuracy of LocInfer, we set
τA = |C| so that U = C ∪ S when Alg. 2 terminates, i.e.,
every candidate user is eventually added into S. Let U ′ denote
the newly discovered users (may not in A), i.e., U ′ = C. We
partition U ′ into 100 bins of equal size |U ′|/100 according to
the order they are added, where the bins of smaller indexes
contain the users discovered earlier. Let xi denote the number
of positive ground-truth users in the i-th bin. Fig. 1 shows the
accuracy of the i-th bin, which is defined as the ratio of the
number of positive ground-truth users in the i-th bin and the
number of users in each bin and is computed as 100xi/|U ′|.
We can see that the accuracy in each bin decreases as the bin
index increases, which is expected, as the later the users are
added to U ′, the less likely they are indeed located in A.

Fig. 3 shows the impact of α = |S|/|S| on the accuracy of
LocInfer. As expected, the accuracy under all locality metrics
increases as α increases. The reason is that the larger the α,
the more seeds, and the easier the target users in A can be
discovered. The downside is that more seeds lead to a larger
candidate set and thus higher crawling and computational cost,
as Alg. 1 needs to check all the neighbors of the seeds.

Fig. 4 shows the impact of t on the accuracy by varying t
from one to six. Specifically, Fig. 4(a) shows the accuracy for
four areas using the followee locality, while Fig. 4(b) shows the
accuracy for different locality metrics by using the PI dataset.
Both figures show the accuracy decreases as t increases. This
is expected because increasing t will result in the decrease in
candidate set and hence miss more users in the target user list
who have no chance to appear in the candidate set. However,
there is a tradeoff between the accuracy and cost because less
candidates will bring lower crawling and computational cost.

C. Coverage

Fig. 5 shows the coverage of LocInfer when α = 0.159
with the desired number of target users (i.e., τA = |U |),
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Fig. 3: The impact of α.

1 2 3 4 5 6
0.2

0.4

0.6

0.8

1

t

A
c
c
u

ra
c
y

 

 

PI
TS
LA
CI

(a) For different locations.

1 2 3 4 5 6
0.2

0.4

0.6

0.8

1

t

A
c
c
u

ra
c
y

 

 

Followers
Combined 1
Combined 2
Followees
Initiators

(b) For different locality types.

Fig. 4: The impact of t.
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Fig. 5: The tradeoff between the coverage and accuracy. The
solid and dash curves are the coverage and accuracy; the

marks �,4, ◦,× represent TS, PI, CI, and LA, respectively.

varying from zero to the whole candidate set size |C|. We
use both the followee and follower locality in this experiment.
As expected, the larger τA, the more users in T contained
in U , the higher coverage, and vice versa. When we set
τA = |C|, the average coverage of these four locations by using
followee, follower, and initiator locality is equal to 86.3%,
86.6%, and 79.7%, respectively. As stated, since the interacting
edges (corresponding to replies, mentions, and retweets) are
much sparser than following edges in the directed Twitter
multigraph, the initiator locality has less coverage than the
followee and follower locality. Moreover, the average coverage
by using the follower or followee locality in Fig. 5 is consistent
with Corollary 1. Specifically, the average number of mutual
followers dm for four datasets is 7.8, 9.0, 11.6, and 11.6,
respectively. According to Corollary 1, when α = 0.159,
r(t = 1) ≥ 82.3% which coincides with our results.

D. Accuracy and Coverage Tradeoff

Fig. 5 also shows the anticipated tradeoff between the
coverage and accuracy. As we can see, the larger τA, the more
the positive ground-truth users will be added to U , resulting
in higher coverage. However, a larger τA will also introduce
negative ground-truth users into U , resulting in lower accuracy.
This tradeoff could guide us to choose the parameter τA. On the
one hand, if one desires higher coverage, a large termination
threshold τA should be used, but it is possible that many users
in U may be not indeed in A. On the other hand, if one wants
to be certain that the users discovered by LocInfer are most
likely in A, a smaller τA should be used at the cost of possibly
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Fig. 6: Countermeasure efficacy.

missing some users indeed in A.

E. Effectiveness of Countermeasure

To evaluate the efficacy of this countermeasure, we let each
user in the testing set T in each area additionally follow or be
followed by a certain number of users from Θ who are not in
A, and we refer to those following edges as camouflage edges.
Fig. 6 shows the accuracy result under this countermeasure. As
we can see, the accuracy of LocInfer decreases as the number
of camouflage edges increases, highlighting the efficacy of the
countermeasure. Besides adding random following edges, a
user can also retweet, mention, and reply to random users on a
regular basis to counteract LocInfer, which is expected to yield
the similar results as these interactions can also decrease the
geographic locality.

V. RELATED WORK

In this section, we briefly present the existing work mostly
related to this paper.

Inferring a Twitter user’s hidden location has been wide-
ly studied in the community, which can be categorized as
contented-based and network-based methods. Content-based
methods [3]–[6] try to infer the user’s location by his tweets.
For example, Cheng et al. [4] proposed a probabilistic frame-
work to estimate a Twitter user’s location based on his tweets,
resulting in placing 51% of Twitter users within 100 miles of
their home locations. Mahmud et al. [6] further improved this
result to 64% for city-level location inference. Hecht et al. [3]
thoroughly studied the location profiles for the Twitter users and
found that 34% of the users either left them empty or just non-
geographic information. They also inferred the user’s country



and state information by checking their tweets. Network-based
methods try to estimate a Twitter user’s locations by his
neighbors [7]–[11]. Jurgens [9] aimed to infer all the users’
location by building a global networks and then propagating
location assignments from several seeds. Yamaguchi et al. [10]
built several distributed landmarks and then inferred a user’s
location based on the connections with them. Compton et
al. [11] inferred the locations of all the users in Twitter by
minimizing their distances with the labelled users. Moreover,
Li et al. [2] combined the content and network information to
obtain the more accurate estimation. All these schemes seek to
address the same question: how can we infer a user’s hidden
location from all his location-related tweets and/or neighbors’
locations? This paper targets a different problem: could we
discover all or the majority of Twitter users in a metropolitan
area? Directly adopting these existing methods to address our
problem would require scanning the whole Twitter network.

This paper is also related to privacy disclosure and protection
in OSNs in general. Li et al. [21] used the neighbors’ locations
to infer the location in the emerging location-based social
networks. Sun et al. [22] protected the location privacy on the
social crowdsourcing networks. Mao et al. [23] used the tweets
to detect the Twitter users’ situational leak such as vacation
status, drunk status, and medical conditions. Dey et al. [24]
leveraged the information from neighbors to estimate the age
of Facebook users. Mislove et al. [25] also used the local
connections around the Facebook users to infer their hidden
attributes such as major, college, and political view. Our paper
is complementary to these work and also highlights that current
OSNs have emerged as an arguable threat to users’ privacy.

VI. CONCLUSION AND FUTURE WORK

This paper presented LocInfer, a novel system that is able to
discover the majority of Twitter users in any geographic area.
Detailed experiments confirmed the high efficacy and efficiency
of LocInfer. We also proposed a countermeasure to hide the
locations of sensitive users from LocInfer and evaluated its
efficacy with experiments driven by real datasets.

There are some open issues to study in our future work.
First, when constructing a reliable seed set S at the first step,
we assumed the credibility of the self-reported locations and
used the heuristic method to refine the seed set. In future, more
advanced methods can be used to refine the seed set, and it is
also interesting to check the impact of the seed set credibility on
the performance. Second, the accuracy can be further improved
by incorporating the existing content-based methods [3]–[6]
and other signals such as timezone and language.
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