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Abstract—Distributed stream monitoring has numerous poten-
tial applications in future smart cities. Communication efficiency
and data privacy are two main challenges for distributed stream
monitoring services. In this paper, we propose PriStream, the
first communication-efficient and privacy-preserving distribut-
ed stream monitoring system for thresholded PERCENTILE
aggregates. PriStream allows the monitoring service provider
to evaluate an arbitrary function over a desired percentile of
distributed data reports and monitor when the output exceeds
a predetermined system threshold. Detailed theoretical analysis
and evaluations show that PriStream has high accuracy and
communication efficiency, and differential privacy guarantees
under a strong adversary model.

I. INTRODUCTION

Distributed stream monitoring, which monitors functions

over distributed and continuous data streams in real time, has

great potential in future smart cities driven by the emerging

Internet-of-Things paradigm. For example, with the help of a

distributed mobile health monitoring system, a public health

authority can monitor the health data collected by each users’

mobile and wearable devices to enable various services such as

public health condition monitoring, early detection of disease

outbreaks, and epidemiology research studies. In addition, a

waste management company can achieve cost-efficient trash

collection scheduling by monitoring the sensors installed in

trash containers. As another example, a utility company (e.g.,

electricity, natural gas, or water) can improve the efficiency

and reliability of its utility infrastructure by gathering fine-

grained information from the sensors at consumers’ places.

Communication efficiency is a key challenge for a practical

distributed stream monitoring system. In particular, the system

may contain thousands of distributed sensors, e.g., in future

smart-city applications. In addition, the reporting frequency

should be high enough, e.g., every five minutes, to enable ap-

proximately real-time monitoring and decision making. Since

most monitoring sensors are expected to have tight resource

constraints, significant effort should be made to minimize their

communication overhead for data reporting.

Data privacy is another major challenge for distributed

stream monitoring systems. In particular, many monitoring

systems rely on sensors affiliated with human users, and the

raw sensor data may be sensitive in nature. For example,

the data from a biomedical sensor will disclose the user’s

health conditions, and the data from a utility sensor can enable

the profiling of the corresponding consumer’s life pattern and

routine. Without strong guarantee of their data privacy, users

will be reluctant to join distributed monitoring systems.
There are some attempts to achieve communication-efficient

and/or privacy-preserving distributed stream monitoring with

aggregation thresholds. In such systems, time is divided into

fixed time intervals, and each node records new data generated

in each interval whereby to compute a statistic value. The

goal of the monitoring service provider is to aggregate all

the users’ statistic values in each interval and compares

the aggregation result with some predefined threshold. Such

thresholded monitoring systems have important applications

such as anomaly detection. Previous work sought to trade

aggregation accuracy for communication efficiency by letting

each node independently decide whether its data submission

can contribute to the service provider’s decision making; if

not, the node will not submit his data. The MEAN aggregate

function is addressed in [1]–[3], SUM and COUNT are

considered in [1], [2], and MIN and MAX are addressed in [1].

In addition, the work in [4] incorporates differential privacy

guarantees into the scheme in [3].
In this paper, we study distributed stream monitoring of

thresholded PERCENTILE aggregates with high communica-

tion efficiency and also strong privacy guarantees. In particu-

lar, the monitoring service provider wants to monitor when

f(χr) > τ happens, where χr denotes the rth percentile

among the statistic values from all the distributed nodes, f(·)
denotes an arbitrary single-parameter function chosen by the

service provider (say, a squaring or square root function), and

τ denotes a predefined threshold. The rth percentile of a data

set refers to the value greater than or equal to r% of the data

values. The PERCENTILE aggregate is much more robust than

other statistic metrics such as MEAN, SUM, and MIN/MAX

which can be easily manipulated by the data from a single or

small set of dysfunctional or compromised nodes.
Our system is designed with three objectives. First, it should

be correct in the sense that the monitoring service provider can

decide when f(χr) > τ happens with extremely low false

positives and negatives. Second, it should be communication-
efficient such that each node submits its data only when

necessary. Last, it should be privacy-preserving in keeping

individual users’ data confidential.
This paper makes the following contributions.

• We are the first to motivate and formulate the problem

of communication-efficient and privacy-preserving dis-

tributed stream monitoring for thresholded PERCENTILE



aggregates to the best of our knowledge.

• We propose a novel technique for distributed stream

monitoring of thresholded PERCENTILE aggregates with

high communication efficiency and differential privacy

guarantees. In our technique, the monitoring service

provider constructs one or several safe (data) ranges based

on the desired function f(·) and threshold τ . Each node

can independently decide whether his statistic value in a

new interval should be submitted based on the safe ranges

and his statistic value in last interval. Powered by the

differential privacy theory [5], our technique also ensures

that each node’s submitted data are not substantially

different if one element of the node’s data stream changes.

Differential privacy guarantees can effectively prevent the

monitoring service provider or any other internal/external

adversary with arbitrary background knowledge from i-

dentifying the actual content of any particular data stream

to breach the privacy of the corresponding node (user).

• We thoroughly evaluate the accuracy, communication

efficiency, and privacy guarantees of our system through

theoretical analysis and detailed simulation studies. Our

results show that PriStream significantly reduces com-

munication overhead and maintains differential privacy

simultaneously.

The rest of this paper is organized as follows. Section II

briefs the related work. Section III introduces the system

and adversary models. Section IV outlines the background

on differential privacy. Section V details our system design

and analyzes its performance. Section VI evaluates our system

through detailed MATLAB simulations based on both real-

world and synthetic datasets. Section VII concludes this paper.

II. RELATED WORK

A large chunk of work [1]–[4], [6]–[9] studies

communication-efficient monitoring of distributed streams. A

wide range of aggregate functions sought by the monitoring

service provider have been covered, including SUM and

COUNT [1], [2], inner products [6], and entropy [7], as

well as MEAN and MIN/MAX in [1]. The work [8] aims to

achieve efficient detection of distributed constraint violations.

In addition, a novel geometric approach is proposed in [3] for

monitoring threshold functions over distributed data streams.

In this approach, a global monitoring task is decomposed into

a set of geometric constraints applied locally in each node for

deciding whether to submit the data. This geometric approach

has been adopted by others for achieving various distributed

stream monitoring goals [9]–[11]. Although elegant, these

schemes cannot be applied to enable communication-efficient

distributed stream monitoring of thresholded PERCENTILE

aggregates.

Significant efforts have been made on privacy-preserving

aggregation for distributed time-series data and/or providing

differential privacy for individual data streams [12]–[22]. The

PASTE algorithm in [12] targets historical time-series data

and requires the pre-processing of all possible query results,

so it cannot be applied for distributed real-time monitoring

tasks. In addition, the algorithm in [13] enables an untrusted

aggregator to compute the sum of distributed time-series data

with differential privacy guarantees to all the data sources. This

algorithm cannot be directly applied to distributed stream mon-

itoring of thresholded PERCENTILE aggregates. Moreover,

the framework in [4] enables monitoring arbitrary threshold

functions over the MEAN aggregate of the statistics from

distributed data-stream sources in a differentially privacy-

preserving fashion. In addition, references [17]–[22] further

offer fault tolerance against sensor failure. All these work

focuses on additive aggregation and thus cannot be applied to

our problem. In contrast, our PriStream system is the first work

targeting differentially privacy-preserving distributed stream

monitoring of thresholded PERCENTILE aggregates.

Privacy-preserving data aggregation is also studied in mo-

bile sensing and wireless sensor networks [23], [24], [27]–

[30]. The work [23], [24], [29] addresses privacy-preserving

data aggregation by data slicing and mixing, but these schemes

involve cooperation among peer nodes and does not apply

to our scenario where sensor nodes work independently. Li

et al. studied privacy-preserving MIN [28] and SUM [31]

aggregations in mobile sensing systems, and these schemes

cannot be applied to thresholded PERCENTILE aggregations.

In addition, no differential privacy is guaranteed in [23], [28]–

[30].

III. SYSTEM AND ADVERSARY MODELS

A. System Model

We use a widely adopted model [1]–[4], [38]–[40] which

consists of a service provider and k nodes denoted by

n1, n2, · · · , nk. Affiliated with a human user or organization,

each node ni continuously performs the predetermined sensing

task and can directly communicate with the service provider

to submit data or receive instructions. In addition, unlike

[25], [26], PriStream does not require communications or

collaborations among the nodes.

We make the following assumptions for distributed stream

monitoring of thresholded PERCENTILE aggregates. Time

is divided into equal-length intervals, denoted by tl for l ∈
[1,∞), and each node may generate new data items in each

interval. Let Si = {di,1, di,2, · · · } denote the data set of node

ni from the beginning, where di,l for l ∈ [1,∞) refers to

the lth data item in the data domain D. In addition, we use

Si(tl) ⊆ Si to denote the data items node ni generated in inter-

val tl. In interval tl, each node ni can compute a statistic value

decided by the service provider as vi(tl) = g(Si(tl)) ∈ R,

where g(·) is a publicly known function that generates statistic

value based on the input data set. For example, g(·) can be

the mean, average, count, or any other function.

The service provider aims to monitor whether the global

condition f(χr(tl)) > τ holds in each interval j. Here

f(·) : R → R refers to an arbitrary single-parameter function

chosen by the service provider; τ ∈ R is the predetermined

monitoring threshold; and χr(tl) denotes the rth percentile of

the statistic values from k sensor nodes. There is no universal

definition for the rth percentile, and we adopt the nearest rank
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method for its simplicity. In particular, we first sort the k data

values in the ascending order. χr,j is the smallest value in the

list such that r percent of the data values is no larger than

that value. More specifically, χr(tl) is the value at position

�rk/100� of the ordered list. Whenever the global condition

is satisfied, the service provider takes corresponding actions

such as broadcasting public safety alarms.

B. Adversary Model

The adversary can be internal to PriStream. An internal

attacker can be the PriStream service provider, which is

assumed to be honest-but-curious in the sense that it faithfully

performs the system operations but is interested in the raw data

of distributed nodes. This assumption is commonly adopted

for system operators in the literature. An internal attacker can

also be any distributed PriStream node which is curious about

other nodes’ raw data. In addition, the PriStream node can

be honest by submitting real sensing data or malicious by

reporting fake data. We assume that malicious PriStream nodes

are the minority so that PriStream is always functional.

We also consider external attackers interested in the raw

data of PriStream nodes to breach their privacy. An external

attacker may compromise some PriStream nodes to be come

internal attackers, but we assume that compromised nodes if

any are the minority.

There can be collusion among internal attackers alone,

external attackers alone, or internal and external attackers. We

make a reasonable assumption that the number of attackers

involved in a collusion is much smaller than the number of

PriStream nodes which can be in thousands or more.

IV. PRELIMINARIES ON DIFFERENTIAL PRIVACY

Differential privacy [5] is a recently proposed privacy model

which guarantees strong privacy. It originally comes from the

database discipline and has been applied in many other related

areas [4], [36], [37]. In what follows, we first introduce the

definition of ε-differential privacy and its properties. Then we

outline two schemes to achieve ε-differential privacy.

Definition 1: (Adjacent Streams [32]). Two streams Si and

S′
i of ni are defined as adjacent streams iff there exist d, d′ ∈

D such that replacing d in Si with d′ will result in S′
i.

Definition 2: (ε-Differential Privacy [5]). A randomized

algorithm Alg provides ε-differential privacy iff for any adja-

cent streams Si and S′
i and any set O of possible outputs,

Pr[Alg(Si) ∈ O] ≤ Pr[Alg(S′
i) ∈ O]× eε, (1)

where the probability is taken over the randomness of Alg.

The above definition means that a differentially private algo-

rithm Alg will generate the same output over two streams with

only one different element with almost the same probability.

In general, ε is positive, and the smaller ε is, the stronger the

differential privacy.

Definition 3: (�ρ-Sensitivity [33]). The �ρ-sensitivity of a

function g : Si → R is defined as

Δρ(g) = max
Si≈S′

i

||g(Si)− g(S′
i)||ρ, (2)

where Si and S′
i are two adjacent streams of node ni which

only differ in one element.

Composition properties. Differential privacy maintains a

sequential composition property. In particular, a sequence of

computations that each provides differential privacy indepen-

dently also guarantee differential privacy, and the privacy cost

of each computation is accumulated. For example, a sequential

differentially private computation conducted by algorithms

Alg1,Alg2, . . . ,Algn, each with a privacy cost ε1, ε2, . . . , εn,

respectively, can be processed as long as its privacy cost ε is

greater or equal to
∑n

i=1 εi.
Laplace [33] and exponential [34] mechanisms are com-

monly employed to achieve ε-differential privacy.

Definition 4: (Laplace Mechanism [33]). This mechanism

is designed for real-valued outputs, and it directly adds noise

drawn from a Laplace distribution to each original output

value to achieve ε-differential privacy. More specifically, given

a function g : S → R, the Laplace mechanism is defined

as g′(S) = g(S) + Laplace(Δ1(g)/ε), where Laplace(λ) for

any λ denotes a Laplace distribution with probability density

function Pr(x|λ) = 1
2λe

−|x|
λ .

Definition 5: (Exponential Mechanism [34]) This mech-

anism applies when target outputs are not real values or

cannot be added with noises. An example is to sample one

of several options while considering the desirability of each

option. In particular, given a utility function h : (D×O) → R
which assigns a score to each output r ∈ R, the exponential

mechanism M which chooses an output r ∈ R based on a

stream Si of node ni is defined as

M(Si, h) =

{
r with probability ∝ exp

(εh(Si, r)

2Δ1(h)

)}
. (3)

V. PRISTREAM DESIGN

In this section, we elaborate on the design of PriStream.

A. Overview

The most intuitive method for monitoring whether global

condition f(χr(tl)) > τ holds in every interval is to let each

node ni report its statistic value vi(tl) = g(Si(tl)) to the

service provider, which can in turn decide χr(tl) and test

whether the global condition holds.

The above method has two obvious limitations. First, letting

every node report its statistic value in every interval incurs

significant communication overhead, especially if the reporting

frequency need be sufficiently high (say, every five minutes)

for real-time decision making. Since most sensor nodes in

future smart cities are expected to have limited energy, their

batteries will be quickly drained out and very difficult to

replenish. Second, the service provider can learn the original

data of all the nodes and thus violate the privacy of the

corresponding users.

To address the first limitation, we propose a novel rang-

ing technique to enable communication-efficient distributed

monitoring. Specifically, we observe that testing whether the

global condition f(χr(tl)) > τ holds does not require the

service provider to know the actual value of χr(tl). Instead, it

3



suffices to know whether χr(tl) falls into the range where

f(χr(tl)) > τ holds. Recall that R is the domain of the

statistic value at each node. It follows that χr(tl) ∈ R for

every interval as well. Given function f(·) chosen by the

service provider, we can divide R into a safe area R+(tl)
and a unsafe area R−(tl), such that R = R+(tl)

⋃R−(tl),
R+(tl)

⋂R−(tl) = ∅, and f(χr(tl)) > τ if and only if

χr(tl) ∈ R−(tl). The global monitoring task can then be

converted into testing whether χr(tl) ∈ R−(tl), which can

be accomplished without knowing the actual value of χr(tl)
in every interval.

More specifically, for a given function f(·), the safe

range R+(tl) and the unsafe range R−(tl) may each com-

prise multiple disjoint ranges. Without loss of generality,

assume that R+(tl) and R−(tl) together comprise θ dis-

joint ranges R1(tl), . . . , Rθ(tl), where
⋃θ

i=1 Ri(tl) = R,

Ri(tl)
⋂
Rj(tl) = ∅ for all i �= j, and each Rj(tl) is either an

open or closed range with left and right boundaries lj(tl) and

rj(tl), respectively. Let kj(tl) be the number of nodes with

statistic values in Rj in interval tl for all j ∈ [1, θ]. It follows

that k =
∑θ

j=1 kj(tl) for every interval tl = 1, 2, . . . . In every

interval tl, each node ni reports to the service provider the

index of range that its statistic value vi(tl) falls into, which

allows the service provider to compute k1(tl), . . . , kθ(tl), and

further determine which range χr(tl) falls into and whether

f(χr(tl)) > τ holds.

To tackle the second limitation, PriStream adopts the

Laplace and the exponential mechanisms to provide differ-

ential privacy to participating nodes. Consider node ni with

statistic value vi(tl) ∈ Rx(tl) in interval tl as an example. To

ensure differential privacy, node ni reports a perturbed interval

index x′ generated via a combination of the Laplace and the

exponential mechanisms.

B. Detailed PriStream Operations

We now illustrate the detailed PriStream operations, which

comprise initialization and communication-efficient phases.

1) Initialization Phase: The service provider starts the

initialization phase at the end of interval tl, where tl refers

to either the first interval t1 or any subsequent interval (i.e.,

l ≥ 2) for which the global monitoring condition has been

changed in the preceding interval tl−1. The purpose is to

assign the range parameters to all nodes and collect each

node’s range index.

Operation Details
At the end of interval tl, the service provider issues a

system-wide query, which specifies the desired statistic metric

generation function g(·), the precomputed disjoint ranges

{Rj(tl)}θj=1 with corresponding left and right boundaries

{〈lj(tl), rj(tl)〉}θj=1, the differential-privacy parameter ε.

Upon receiving the query, each node ni for ∀i ∈ [1, k] with

its data vector Si(tl) does the following in sequel.

1. Compute the desired statistic value vi(tl) = g(Si(tl)).
2. Find the real range index x ∈ [1, θ] such that vi(tl) ∈

Rx(tl).

Algorithm 1: Generating Perturbed Range Index

input : {(li(tl), ri(tl))}θi=1, ε, vi(tl),Δ1(g)
output: Ii(tl)

1 Generate noise αi ∼ Laplace
(

Δ1(g)
ε

)
;

2 for j = 1, . . . , θ do
3 Calculate cj(tl) =

lj(tl)+rj(tl)
2 ;

4 Generate a perturbed range [lj(tl)− αi, rj(tl) + αi];
5 if vi(tl) < cj(tl) then
6 μj(tl) = ε · |cj(tl)−lj(tl)+αi|−|cj(tl)−vi(tl)|

2Δ1(g)
;

7 else
8 μj(tl) = ε · |rj(tl)−cj(tl)+αi|−|cj(tl)−vi(tl)|

2Δ1(g)
;

9 for j = 1, . . . , θ do
10 Calculate the probability that vi(tl) locates in range j

as P̂j(tl) =
exp(μj(tl))∑θ

j=1 exp(μj(tl))
;

11 Generate ui(tl) ∼ U [0, 1] ;

12 P̂0 ← 0 ;

13 for j = 1, . . . , θ do
14 if

∑j−1
j′=0 P̂j′(tl) ≤ ui(tl) <

∑j
j′=0 P̂j′(tl) then

15 return Ii(tl) = j;

3. Compute a perturbed range index Ii(tl) from x accord-

ing to Alg. 1.

4. Send Ii(tl) to the service provider.

After receiving all the perturbed range indexes, the service

provider processes them as follows.

1. Count the number of perturbed range indexes being j as

kj(tl) for every j ∈ [1, θ].
2. Calculate the percentile value Pj(tl) at the range

Rj(tl)’s left boundary lj(tl) as
∑θ

i=j ki(tl)/k for every

j ∈ [1, θ].
3. Determine the range Rx(tl) in which χr(tl) falls into

by finding x such that Px > r/100 > Px+1.

4. Check whether Rx(tl) is a safe range. If not, take the

predetermined action such as issuing a public safety

alarm. Otherwise, keep silent. For both cases, proceed

to communication-efficient phases.

2) Communication-Efficient Phase: In every interval tl′

(l′ > l), each node ni computes a perturbed range index Ii(t
′
l)

according to Alg. 1 and reports Ii(t
′
l) to the service provider

only if Ii(t
′
l) �= Ii(tl′−1).

The detailed operations at each node ni in communication-

efficient phase are as follows.

1. Find the range Rx(tl′) where vi(tl′) falls into.

2. Generate a perturbed range index Ii(tl′) from the orig-

inal range index x according to Alg. 1.

3. If Ii(tl′) �= Ii(tl′−1), send Ii(tl′) to the service provider

and keep silent otherwise.

Upon receiving all the perturbed range indexes, the service

provider processes them as follows.
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1. For every node ni that did not send Ii(tl′), set Ii(tl′) =
Ii(tl′−1).

2. Count the number of nodes with Ii(tl′) = j for every

j ∈ [1, θ].
3. Calculate the percentile value Pj(tl′) at the range

Rj(tl′)’s left boundary lj(tl′) as
∑θ

i=j kj(tl′)/k for

every j ∈ [1, θ].
4. Determine the range Rx(tl′) in which χr(tl′) falls into

by finding x such that Px(tl′) > r/100 > Px+1(tl′).
5. Check whether Rx(tl′) is a safe range. If not, take the

predetermined action such as issuing a public safety

alarm and keep silent otherwise.

6. Continue with the communication-efficient phase or

start another initialization phase by broadcasting a new

system-wide query in the next interval.

C. Performance Analysis

1) Correctness: The correctness of PriStream is affected by

both the correctness of our proposed communication-efficient

scheme and the accuracy guarantee after adopting mechanisms

for differential privacy provision.

We first consider the correctness of our proposed scheme

while ignoring the provision of differential privacy.

Theorem 1: Let kj(tl) be the number of nodes with statistic

value in range Rj(tl) for all j ∈ [1, θ] and χr(tl) be the

rth percentile of a set of statistic values {vi(tl)}ki=1. The

global condition f(χr(tl)) > τ holds at time interval tl
for some predefined threshold τ if there exists an unsafe

range Rj(tl) such that Pj(tl) > r/100 > Pj+1(tl), where

Px(tl) =
∑θ

i=x ki(tl)/k for all x ∈ [1, θ].

Proof: Recall that Pj(tl) =
∑θ

i=j ki(tl)/k for all j ∈
[1, θ], where kj(tl) is the number of nodes with statistic

values in Rj(tl). Since Pj(tl) > r/100 > Pj+1(tl), we

have that
∑θ

i=j ki(tl)/k > r/100 >
∑θ

i=j+1 ki(tl)/k. It

follows that χr(tl) is between the
∑θ

i=j+1 ki(tl)th and the∑θ
i=j ki(tl)th largest numbers among {vi(tl)}ki=1. We there-

fore have χr(tl) ∈ Rj(tl). Since Rj(tl) is an unsafe region,

by definition, we have f(χr(tl)) > τ .

Next, we consider the accuracy of PriStream after each node

perturbs its range index using Alg. 1. Specifically, the accuracy

of PriStream depends on how accurate the service provider

can learn the number of values in each range in each interval,

which in turn depends on how accurate Alg. 1 perturbs a range

index. The following theorem guarantees that the perturbed

range index output by Alg. 1 would not be very different from

the range index before perturbation.

Theorem 2: If node ni’s statistic value vi(tl) is outside of

range Rj(tl) and the distance between vi(tl) and the closer

boundary of Rj(tl) is at least
2Δ1(g)

ε log 1−δ
δ1.5(θ−1) , then Alg. 1

will output a perturbed range index Ii(tl) = j with probability

at most 2δ.

Proof: In time interval tl, the error introduced in either

initialization or communication-efficient phase comes from the

perturbation of the range with Laplace noise αi and the expo-

nential mechanism. For the range perturbation operation, since

αi is sampled from a Laplace distribution Laplace
(

Δ1(g)
ε

)
with the cumulative distribution function

F (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2
exp

(
xε

Δ1(g)

)
, if x < 0,

1− 1

2
exp

(
−xε

Δ1(g)

)
, if x ≥ 0.

(4)

Assume that |αi| is at most ψ with probability 1 − δ, where

ψ > 0. We have

1− 2 · 1
2
exp

(
− ψε

Δ1(g)

)
= 1− δ.

Solving the above equation, we have ψ = Δ1(g)
ε log 1

δ . There-

fore, we know that

Pr

[
|αi| ≤ Δ1(g)

ε
log

1

δ

]
≥ 1− δ. (5)

In addition, assume that with probability 1− δ, the statistic

value vi(tl) at a node ni exceeds a range boundary by ϕ. We

further have

1−
exp(− εϕ

2Δ1(g)
)

(θ − 1) exp(0) + exp(− εϕ
2Δ1(g)

)
= 1− δ.

Solving the above equation, we obtain

ϕ =
2Δ1(g)

ε
log

1− δ

δ(θ − 1)
,

and

Pr

[
ϕ ≥ 2Δ1(g)

ε
log

1− δ

δ(θ − 1)

]
≥ 1− δ. (6)

Considering the above two factors simultaneously, if

the distance between vi(tl) and Rj(tl) is larger than
2Δ1(g)

ε log 1−δ
δ1.5(θ−1) , Alg. 1 will output a perturbed range index

Ii(tl) = j with probability at most 2δ, which can also be

written as

Pr

[
ϕ ≤ 2Δ1(g)

ε
log

1− δ

δ1.5(θ − 1)

]
≤ 2δ. (7)

Theorem 3: If node ni’s statistic value vi(tl) is inside

the range Rj and the distance between vi(tl) and the closer

boundary of Rj is more than
2Δ1(g)

ε log 1−δ
δ1.5(θ−1) , then Alg. 1

will output a perturbed range index Ii(tl) = j with probability

at least (1− 2δ).
The proof of Theorem 3 is similar to that of Theorem 2.
2) Communication Overhead: The following theorem gives

the communication overhead incurred by PriStream.

Theorem 4: Given a PriStream execution process with a
initialization and b communication-efficient phases, PriStream

incurs the communication overhead of a(|M| + �k) +
�
∑b

l=1 λl, where |M| is the communication overhead in-

curred by broadcasting system information, � = �log2(θ −
1)�+1 is the size of a range index, k is the number of nodes, λl
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is the number of nodes that submit range index to the service

provider in lth communication-efficient phase, and l ∈ [1, b].

Proof: We analyze the communication overhead incurred

in initialization and communication-efficient phases separately.

In the initialization phase, the service provider need send a

message M containing the desired statistic metric generation

function g(·), the precomputed range parameters {Rj(tl)}θj=1,

the differential-privacy parameter ε for differential-privacy

mechanism. We denote the communication overhead incurred

by transmitting M by |M|. In addition, each node sends a

�-bit range index to the service provider, totaling to �k bits.

In every communication-efficient phase, the node whose

perturbed range index is different from that in last interval

sends a �-bit range index to the service provider, which incurs

total communication overhead of λl� bits, where λl ∈ [1, k]
is the number of nodes that submit range index to the service

provider in lth communication-efficient phase, where l ∈ [1, b].

In summary, the overall communication overhead incurred

by a PriStream execution process with a initialization and b
communication-efficient phases is given by a(|M| + �k) +
�
∑b

l=1 λl.

3) Privacy Analysis: The privacy of our proposed scheme

is guaranteed by the following theorem.

Theorem 5: PriStream consisting of a initialization

and b communication-efficient phases maintains 2(a + b)ε-
differential privacy.

Proof: We follow the proof technique in [32] to prove that

PriStream guarantees ε-differential privacy for each participat-

ing node in each phase. We consider all the noise components

added in our scheme to obtain privacy guarantees for a multi-

round process. For each node ni, given two adjacent data

streams Si(tl) and S′
i(tl) that differ in only one element, we

consider the scheme execution process as a sequential process

consisting of a initialization and b communication-efficient

phases.

In what follows, we analyze each phase of the PriStream

execution in detail to show how different operations on Si(tl)
and S′

i(tl) will lead to the same output. For convenience, we

use E and E′ to denote the PriStream execution process over

two adjacent data streams Si(tl) and S′
i(tl), respectively.

Initialization phase. Assume that each node ni generates its

statistic value as vi(tl) = g(Si(tl)) and v′i(tl) = g(S′
i(tl))

in two executions E and E′, respectively. For execution E,

each node ni generates Laplace noise αi from a Laplace

distribution. For execution E′, the Laplace noise generated

by node ni is αi. In the initialization phase, the execution E
outputs range index j with probability P̂j(tl), which is given

by

P̂j(tl) =
exp(μj(tl))∑θ
j=1 exp(μj(tl))

, (8)

where

μj(tl) = ε · h

2Δ1(g)
, (9)

h =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|cj(tl)− lj(tl) + αi| − |cj(tl)− vi(tl)|,
∀ vi(tl) < cj(tl), 1 ≤ j ≤ θ,

|rj(tl)− cj(tl) + αi| − |cj(tl)− vi(tl)|,
∀ vi(tl) ≥ cj(tl), 1 ≤ j ≤ θ,

(10)

cj(tl) =
lj(tl)+rj(tl)

2 , lj(tl) and rj(tl) are the left and right

boundaries of the jth range in which vi(tl) actually locates

in time interval tl, respectively. The �1-sensitivity of utility

function h is Δ1(g).

Assume vi(tl) ∈ Rj(tl) in time interval tl, we have

Pr[M(Si(tl), h) = j]

Pr[M(S′
i(tl), h) = j]

=

(
exp(μj(tl))∑θ

x=1 exp(μx(tl))

)
(

exp(μ′
j(tl))

∑θ
x=1 exp(μ′

x(tl))
))

=

(
exp(μj(tl))

exp(μ′
j(tl))

)
·
(∑θ

x=1 exp(μ
′
x(tl))∑θ

x=1 exp(μx(tl))

)

=exp
(
μj(tl)− μ′

j(tl)
) ·
(∑θ

x=1 exp(μ
′
x(tl))∑θ

x=1 exp(μx(tl))

)
(11)

For vi(tl) < cj(tl), we have

μj(tl)− μ′
j(tl) =ε · |cj(tl)− lj(tl) + αi| − |cj(tl)− vi(tl)|

2Δ1(g)

− ε · |cj(tl)− lj(tl) + α′
i| − |cj(tl)− v′i(tl)|

2Δ1(g)

≤ ε

2
· |αi − α′

i|+ |vi(tl)− v′i(tl)|
Δ1(g)

≤ε,
(12)

μ′
j(tl) = ε · |cj(tl)− lj(tl) + α′

i| − |cj(tl)− v′i(tl)|
2Δ1(g)

≤ ε · |cj(tl)− lj(tl) + αi|
2Δ1(g)

− ε · −|cj(tl)− vi(tl)| −Δ1(g)

2Δ1(g)

= ε · |cj(tl)− lj(tl) + αi| − |cj(tl)− vi(tl)|+ 2Δ1(g)

2Δ1(g)

= μj(tl) + ε.
(13)

For vi(tl) ≥ cj(tl), we have

μj(tl)− μ′
j(tl) =ε · |rj(tl)− cj(tl) + αi| − |cj(tl)− vi(tl)|

2Δ1(g)

− ε · |rj(tl)− cj(tl) + α′
i| − |cj(tl)− v′i(tl)|

2Δ1(g)

≤ε · |αi − α′
i|+ |vi(tl)− v′i(tl)|
2Δ1(g)

≤ε,
(14)
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μ′
j(tl) = ε · |rj(tl)− cj(tl) + α′

i| − |cj(tl)− v′i(tl)|
2Δ1(g)

≤ ε

(
· |rj(tl)− cj(tl) + αi|+Δ1(g)

2Δ1(g)

+ ·−|cj(tl)− vi(tl)|+Δ1(g)

2Δ1(g)

)

= ε · |rj(tl)− cj(tl) + αi| − |cj(tl)− vi(tl)|+ 2Δ1(g)

2Δ1(g)

= μj(tl) + ε.
(15)

Therefore, we have

Pr[M(Si(tl), h) = j]

Pr[M(S′
i(tl), h) = j]

≤ exp(ε)

(∑θ
x=1 exp

(
μx(tl) + ε

)
∑θ

x=1 exp(μx(tl))

)

=exp(ε)

(∑θ
x=1 exp(μx(tl)) · exp(ε

)
∑θ

x=1 exp(μx(tl))

)
=exp(2ε),

(16)

which indicates that the initialization phase guarantees 2ε-
differential privacy.

Communication-efficient phase. The operations of each

communication-efficient phase is similar to those of the ini-

tialization phase except for the case in which some nodes do

not need to send the index of the range in which it resides to

the service provider if the statistic value remains in the same

range as that in the previous phase. Therefore, we can similarly

obtain the same result that each communication-efficient phase

guarantees 2ε-differential privacy.

The whole PriStream execution process. As mentioned, the

whole execution process is a sequential process consisting of

a initialization and b communication-efficient phases. Since

the noise added in each phase is drawn independently, the

probability difference of obtaining the same output for the

whole execution process can be considered the multiplication

of the probability difference in each phase. Therefore, for

the whole execution process, the probability of obtaining the

output based on execution E′ differs from that of execution

E by a factor of at most exp(2(a + b)ε), which guarantees

2(a+ b)ε-differential privacy.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of PriStream

via MATLAB simulations based on both real-world and syn-

thetic datasets.

A. Simulation Setup

We adopt the following metrics to evaluate the performance

of PriStream.

• Communication overhead: We quantify the communica-

tion overhead by the number of bits transmitted between

the service provider and nodes during stream monitoring.

TABLE I
DEFAULT SIMULATION SETTINGS

Para. Value Meaning
k 1000 The number of nodes

ε 0.15 The differential privacy parameter

θ 100 The number of ranges

r 80 The percentile value

• Accuracy: The accuracy is used to evaluate the utility

after introducing Alg. 1. We treat the range index of

each round in communication-efficient scheme as the

ground truth and compare it with the range index of

the corresponding round in PriStream. The accuracy is

defined as the ratio of the number of the same indexes

over the total rounds.

• Privacy loss: The privacy loss is defined as

ε̂ = max ln
Pr[M(Si(tl), h) = j]

Pr[M(S′
i(tl), h) = j]

, (17)

where Si and S′
i are two adjacent streams which differ

in only one element. Obviously, the smaller ε̂, the less

impact of the change of one element on the range

index generation algorithm, the higher level of differential

privacy is offered, and vice versa.

We use two datasets to evaluate the performance of

PriStream. The first dataset is MHEALTH [35], a mobile

health dataset that comprises body motion and vital sign mea-

sures for several volunteers of diverse profiles while perform-

ing 12 physical activities such as walking, running and climb-

ing stairs. The dataset contains totally 1,215,745 recordings,

each of which is composed of 24 types of signals from the

sensors such as accelerometer, gyroscope, and magnetometer.

In this paper, we used all the 1,215,745 recordings for one type

of signal because they are at the same scale and are the focus of

this paper; we leave the monitoring and evaluation of multi-

dimension streams with different scales as future work. We

then randomly partition them into 1000 subsets, representing

1000 distributed nodes, each of which has about 1216 data

items, corresponding to 1216 intervals. The service provider

starts the initialization phase at interval 608 and then conducts

subsequent 608 rounds of queries, and each node will generate

vi(tl) based on its previous 608 data items. The second dataset

is a synthetic dataset generated by MATLAB used to simulate

the case with different data distribution. In particular, the data

in MHEALTH dataset follow Gaussian distribution. We extract

the data range from MHEALTH dataset and then generate a

synthetic dataset which is uniformly distributed in the same

data range from. All other metrics such as the number of

nodes, the number of intervals, and the number of query

rounds in synthetic dataset are the same as that in MHEALTH

dataset.

The default simulation settings are summarized in Tab. I.
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Fig. 1. Impact of the number of rounds on communication overhead.
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Fig. 2. Impact of ε on accuracy.

B. Simulation Results

We report the simulation results of a communication-

efficient scheme (e.g., PriStream without Alg. 1), PriStream

and a baseline scheme that lets each node directly submit its

statistic value to the service provider.

Fig. 1 compares the communication overhead of the base-

line, the communication-efficient, and PriStream schemes with

b (i.e., the number of rounds) varying from 1 to 600. We can

see that the communication-efficient and PriStream schemes

incur much lower communication overhead than the baseline

scheme does. The reason is than the number of nodes that

submit data to the service provider in communication-efficient

and PriStream schemes is much smaller than in the baseline

scheme. Besides, by reporting range index instead of statistic

value, communication overhead is further reduced. In addition,

we can see that PriStream scheme incurs higher communica-

tion overhead than that of the communication-efficient scheme.

The reason is that the range index of each node’s statistic value

is perturbed to other range indexes for the protection of data

privacy, resulting in more range index being submitted to the

service provider.

Fig. 2 shows the relationship between the accuracy and

the differential privacy parameter ε. Obviously, the baseline

scheme, which does not consider the data privacy, achieves

100% accuracy without being affected by the change of ε.
However, the accuracy of PriStream increases as the differ-

ential privacy parameter ε increases. The reason is that as ε
increases, the perturbed range index generated by Alg. 1 is

more likely to be the same as its perturbed range index in

previous interval, leading to less range index updates.

Fig. 3 shows the impact of differential privacy parameter ε
on the communication overhead of PriStream. We can see that

�

0 0.1 0.2 0.3 0.4

C
om

m
. o

ve
rh

ea
d

�105

1

2

3

4

5

6
r = 0.2
r = 0.8

(a) MHEALTH dataset

�

0 0.1 0.2 0.3 0.4 0.5

C
om

m
. o

ve
rh

ea
d

�105

1

2

3

4

5

6
r = 0.2
r = 0.8

(b) Synthetic dataset

Fig. 3. Impact of ε on communication overhead.
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Fig. 4. Privacy loss of PriStream.

the communication overhead decreases as ε increases, demon-

strating a trade-off between ε and communication overhead.

The reason is that the higher ε, the higher the probability

that a node’s statistic value remains in the same range after

perturbation, and the fewer nodes that need to report range

index updates.

Fig. 4 illustrates the privacy loss after using PriStream. We

can see that the privacy loss is always below 0.15. According

to Tab. I, the simulation setting of differential privacy parame-

ter is ε = 0.15, which indicates that our designed scheme can

always guarantee the desired 2ε-differential privacy.

Fig. 5 shows the impact of the number of ranges on

accuracy. We can easily find that the accuracy decreases as

the number of ranges increases for both datasets. The reason is

that the larger the number of ranges, the smaller the range size,

the higher the probability that the statistic value is perturbed

to other ranges.

Fig. 6 shows the impact of θ on communication overhead.

We can see that the communication overhead increases as θ
increases. The reason is that the larger the θ is, the smaller the

range size, the higher the probability that the statistic value is

perturbed to a different range, and the higher communication

overhead.

VII. CONCLUSION

This paper proposes PriStream, a novel privacy-preserving

and communication-efficient distributed stream monitoring

system. Different from previous work on monitoring the

function of mean statistic value, our proposed scheme monitors

the statistic value at the given percentile rank in a privacy-

preserving and communication-efficient fashion. The efficacy

and efficiency of our PriStream are confirmed by detailed

MATLAB simulations.
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Fig. 5. Impact of θ on accuracy.

�

0 100 200 300 400

C
om

m
. o

ve
rh

ea
d

�105

0
1
2
3
4
5
6

r=0.7
r=0.6

(a) MHEALTH dataset

�

0 100 200 300 400

C
om

m
. o

ve
rh

ea
d

�105

0
1
2
3
4
5
6

r=0.7
r=0.6

(b) Synthetic dataset

Fig. 6. Impact of θ on communication overhead.
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