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Abstract—The explosive growth of mobile-connected and
location-aware devices makes it possible to have a new way of
establishing trust relationships, which we coin as spatiotemporal
matching. In particular, a mobile user could very easily maintain
his spatiotemporal profile recording his continuous whereabouts
in time, and the level of his spatiotemporal profile matching that
of the other user can be translated into the level of trust they two
can have in each other. Since spatiotemporal profiles contain very
sensitive personal information, privacy-preserving spatiotemporal
matching is needed to ensure that as little information as possible
about the spatiotemporal profile of either matching participant is
disclosed beyond the matching result. We propose a cryptographic
solution based on Private Set Intersection Cardinality and a more
efficient non-cryptographic solution involving a novel use of the
Bloom filter. We thoroughly analyze both solutions and compare
their efficacy and efficiency via detailed simulation studies.

I. INTRODUCTION

Mobile-connected devices are penetrating everyday life.
According to a recent Cisco report [1], the number of mobile-
connected devices such as smartphones, tablets, laptops, and
eReaders will exceed the world population in 2012 and hit 10
billion in 2016. The majority of mobile-connected devices are
expected to have multiple communication interfaces (cellular,
WiFi, Bluetooth, etc.) whereby to conveniently communicate
with nearby devices. In addition, they will be location-aware
and can always acquire their own precise locations via pre-
installed cellular/WiFi/GPS positioning software.

The explosive growth of mobile-connected and location-
aware devices makes it possible to have a new way of
establishing trust relationships, which we coin as spatiotem-
poral matching. In particular, a mobile user could very easily
maintain his spatiotemporal profile recording his continuous
whereabouts in time, and the level of his spatiotemporal profile
matching that of the other user can be translated into the level
of trust they two can have in each other. As an example, if
Alice and Bob discover via spatiotemporal matching that they
often go to the same coffee shop or take the same train in the
same period, it is natural for Alice to trust Bob over another
person whom she only met once before. Below are some
exemplary applications of spatiotemporal matching selected
from a potentially long list.

• (Participatory Sensing) Multiple mobile users often
jointly perform a sensing task about urban environ-
ments in a participatory-sensing application [2]. It
is highly advantageous for mobile users to collabo-
rate with others with similar spatiotemporal profiles
instead of random persons (e.g., tourists) especially
when there are expected rewards commensurate with
the quality of sensed data.

• (Ad Targeting) Advertisers may minimize operating
costs by sending tailored ads to consumers often
appearing at some locations and/or during certain
time periods. This can be achieved by comparing the
specified spatiotemporal profiles of advertisers with
those of potential ad viewers.

• (Missed Connection) A missed connection is an oc-
currence where two or more people cannot exchange
contact information or the information exchanged is
lost. An example is two commuters who exchange
glances daily when taking the same train. People
involved could (re)discover each other by comparing
their spatiotemporal profiles via free dedicated missed-
connection sites.

Spatiotemporal matching also complements the traditional way
of establishing trust relationships by letting involved parties
verify others’ cryptographic credentials (e.g., public-key cer-
tificates) which often only establishes personal identities.

There are two critical requirements for releasing the full
potential of spatiotemporal matching. In particular, spatiotem-
poral profiles contain very sensitive personal information, and
incautiously disclosing them to the public may cause severe
consequences. For example, if an employer surreptitiously
discovers an employee’s frequent patronage of night clubs, the
employee may get unfair treatment at the workplace; if a thief
knows the routine of a target victim, he could break in when
the victim will be away for a long time. It is thus crucial to have
privacy-preserving spatiotemporal matching, which ensures
that as little information as possible about the spatiotemporal
profile of either matching participant is disclosed beyond the
matching result. In addition, spatiotemporal matching may be
directly performed on mobile devices and thus needs to be
very efficient in both communication and computation.

There is no sound solution to privacy-preserving spatiotem-
poral matching. In particular, the work on privacy-preserving
profile matching [3]–[5] targets non-spatiotemporal user pro-
files such as hobbies or interests, and it is unclear how to
extend these schemes for spatiotemporal profiles. In addition,
some solutions are available for privacy-preserving proximity
test [6], [7] which is to test whether two users are in each
other’s physical proximity at a certain time point. In contrast,
spatiotemporal matching in our definition refers to two users
testing their physical proximity for an extended period of time.
Directly applying these mechanisms [6], [7] to our problem
will be highly inefficient and impractical.

This paper focuses on realizing efficient privacy-preserving
spatiotemporal matching. Our essential idea is to let each user
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periodically record his own locations, each of which is then
approximated by a geographic cell index among a large set
of predefined ones. A user’s spatiotemporal profile can then
be defined as a set of 2-tuples with each comprising a time
index and the corresponding cell index. Two users engaging
in spatiotemporal matching can then check whether their
spatiotemporal profiles have more than a threshold number
of common 2-tuples in a privacy-preserving fashion. Our
contributions in this paper can be summarized as follows.

• We are the first to formulate spatiotemporal matching
as a new way of establishing trust relationships and
identify critical privacy and efficiency challenges.

• We propose two protocols for privacy-preserving spa-
tiotemporal matching. The first protocol is based on
Private Set Intersection Cardinality (PSI-CA) [8] and
can ensure nearly perfect spatiotemporal privacy at the
cost of possibly large communication and computa-
tion overhead. The second protocol involves a novel
use of the Bloom filter [9] and enables either party
involved in spatiotemporal matching to estimate with
tunable accuracy the number of common elements
in their spatiotemporal profiles without disclosing too
much private information to each other. This protocol
incurs much lower communication and computation
overhead than the first protocol at the cost of slightly
reduced spatiotemporal privacy protection.

• We thoroughly analyze the correctness, accuracy, pri-
vacy provision, and overhead of both protocols, and
we also compare them via detailed simulations driven
by experimental data.

The rest of this paper is organized as follows. Section II
presents the problem formulation. Section III illustrates two
novel privacy-preserving spatiotemporal matching protocols.
Section IV theoretically analyzes the performance of the pro-
posed protocols. Section V evaluates our protocols by detailed
numerical and experimental results. Section VI surveys the
related work. Section VII concludes this paper.

II. PROBLEM FORMULATION

A. Problem Statement

We consider a large geographic region such as the NYC
metropolitan area with system users as either permanent res-
idents or temporary visitors. Each user carries at least one
mobile-connected device (mobile device for short hereafter) ,
which has a WiFi /Bluetooth interface and is able to acquire his
position via on-device positioning software. Such assumptions
on device capabilities are fairly justifiable on most current and
future mobile devices. In addition, time is divided into equal-
length epochs, each represented by a globally unique epoch
index of lepoch bits. We also postulate that each mobile device,
which may traverse different time zones, can always convert
its local time into the corresponding epoch index.

Each user u’s spatiotemporal profile is defined as a set
of 2-tuples (i, locu,i), where i and locu,i denote the epoch
index and the corresponding location index, respectively. In
our protocol, locu,i comprises some physical locations closely

approximating the user’s whereabouts in epoch i. The detailed
construction of spatiotemporal profiles is postponed to Sec-
tion III.

We use Alice and Bob as two exemplary mobile users
throughout the paper. Let PA = {(i, locA,i)}∞i>0 and PB =
{(i, locB,i)}∞i>0 denote the spatiotemporal profiles of Alice
and Bob, respectively. We also let PA,α→β and PB,α→β

denote their respective spatiotemporal profiles from epochs α
to β. Assume that they want to compare their spatiotemporal
profiles, which can be done in different ways according to
concrete application scenarios. For example, in applications
like Participatory Sensing [2], Alice and Bob would execute
our protocol directly on their mobile devices when in each
other’s vicinity; in applications like Missed Connection, Alice
and Bob could both synchronize their profiles to computers
and conduct matching via free dedicated missed-connection
sites; in applications like Ad Targeting, one of them serving
as an advertiser uses a wired computer, and the other could
use either a mobile device or wired computer, in which case
spatiotemporal matching can be conducted via some third-
party Internet ad broker. For simplicity, we ignore such un-
derlying application details and simply assume the availability
of a suitable communication channel between Alice and Bob.

Assume that Alice and Bob want to compare their spa-
tiotemporal profiles from epochs α to β. A complete matching
process involves each of them initiating an independent pro-
tocol instance. The number of encounters with Bob in Alice’s
eye in any epoch i ∈ [α, β] equals the number of common
locations in their location indexes in epoch i, and the number
of encounters with Bob from epochs α to β in her eye equals
the sum of total encounters in every epoch from α to β. In the
similar fashion, we can define the total number of encounters
with Alice from Bob’s viewpoint from epochs α to β. We
proceed to introduce the following definition.

Definition 1. (Spatiotemporal Match) After protocol exe-
cution, a spatiotemporal match between Alice and Bob from
epochs α to β is said to occur if the total number of
encounters with Bob exceeds τA from Alice’s viewpoint, and
the total number of encounters with Alice exceeds τB from
Bob’s viewpoint, where τA and τB are personal thresholds
independently chosen by Alice and Bob, respectively.

We assume that Alice and Bob both desire strong s-
patiotemporal privacy. Our focus is to devise an efficient
protocol ensuring that as little information as possible about
the spatiotemporal profile of either Alice or Bob is disclosed
beyond the matching result. One may think about letting them
directly exchange and compare their spatiotemporal profiles
under pseudonyms instead of real names so that a known
spatiotemporal profile cannot be directly linked to a real
identity. Unfortunately, the knowledge of a pseudo-identity’s
spatiotemporal profile may be disastrous enough, e.g., leading
to physical chasing to unveil the corresponding real identity.
We thus need a sound solution regardless of the use of
pseudonyms.

B. Adversary Model

We assume a honest-but-curious adversary model common-
ly adopted to study privacy-preserving profile matching [3]–[5]
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or proximity test [6], [7]. With Alice and Bob as an example,
they both honestly follow the spatiotemporal matching protocol
while having great curiosity about the other’s spatiotemporal
profile. Although either or both of them may use honest or
fake spatiotemporal profiles in matching, we will show that
a randomly forged spatiotemporal profile will very unlikely
result in a spatiotemporal match with the other party.

We do not consider continuous fake-profile attacks and
denial-of-service (DoS) attacks due to space limitations. In
the former, either matching participant keeps using fake spa-
tiotemporal profiles possibly under different pseudonyms in
order to accumulate more information about the other party’s
spatiotemporal profile as time goes by, while in the latter, an
attacker just aims at depleting the resources of the other party
in the same way. The only feasible countermeasure against
both attacks in our opinion is for every party to rate-limit the
total number of matching requests he/she will accept. Further
investigations on these attacks is beyond the scope of this
paper.

There might also be external eavesdroppers or physical
chasers. The former overhear the messages incurred by a
spatiotemporal matching instance and can be easily thwarted
by letting the matching participants encrypt the protocol mes-
sages. The latter tail a victim user and thus can always have a
spatiotemporal profile resembling that of the victim user. There
is no sound technical solution to such chasing attacks.

III. PRIVACY-PRESERVING SPATIOTEMPORAL MATCHING

In this section, we first introduce a basic protocol for
privacy-preserving spatiotemporal matching based on Private
Set Intersection Cardinality (PSI-CA) [8] and then present a
much more efficient one based on estimation.

A. Basic Protocol based on PSI-CA

Our protocol explores the prevalent capability of mobile
devices obtaining their physical locations based on hybrid
GPS, WiFi, and cellular positioning techniques. Assume that
each epoch is evenly divided into λ intervals, where λ ≥ 1
is a global parameter. In general, each user passively records
his location in the middle of each interval to tolerate synchro-
nization errors among mobile devices. Recall that any user
u’s spatiotemporal profile is defined in Section II-A as a set
of 2-tuples like (i, locu,i). We have locu,i = {pu,i[j]}λj=1,
where pu,i[j] denotes user u’s jth location in epoch i. Consider
the exemplary users Alice and Bob with profiles PA =
{i, {pA,i[j]}λj=1}∞i=1 and PB = {i, {pB,i[j]}λj=1}∞i=1, respec-
tively. Now they attempt to compare their profiles from epochs

α to β, i.e., {i, {pA,i[j]}λj=1}βi=α and {i, {pB,i[j]}λj=1}βi=α,
equivalent to the comparison of λ(β − α+ 1) location pairs.

We further assume that each physical region of interest (like
a metropolitan area) can be approximated by a square called a
level-1 cell. Then we divide the level-1 cell into four equally-
sized squares called level-2 cells, each of which is further
divided into four equally-sized squares named as level-3 cells.
This process continues until reaching level-θ cells, each having
a side length no larger than a desired threshold, and how to
determine the cell-division threshold will be discussed later.
Note that there are totally 4j−1 level-j cells for ∀j ∈ [1, θ].

Then we assign a unique cell index to the cell(s) on every
level. In particular, the index of the level-1 cell is 0, and the
indexes of the upper-left, lower-left, upper-right, and lower-
right level-2 cells are 00, 01, 02, and 03, respectively. The
same indexing rule can be applied to the cells on all levels.
The region-division rules are public information and can be
downloaded as needed. In practice, each user just needs to
have the rules related to the regions he commonly stay in or
travel to, so the related storage overhead is negligible.

To facilitate the comparison of location pairs, we propose
an adaptive quantization technique which works by letting
each user convert his locations into cell indexes. In particular,
assume that Alice and Bob negotiate a common region of
interest on which to conduct spatiotemporal matching. Since
each region corresponds to a large geographic area, disclosing
the regions of interest to each other may not be a serious
concern in practice; otherwise, Alice and Bob can apply Private
Set Intersection (PSI) [10] to negotiate the common region,
which will be very efficient given the limited possible regions.
In addition, they agree on a cell level ξ ∈ [1, θ] on which
the quantization takes place, and the impact of ξ will be

discussed shortly. Then Alice converts {i, {pA,i[j]}λj=1}βi=α
into PA,α→β = {{i, j, p̄A,i[j]}λj=1}βi=α, where p̄A,i denotes
the index of the level-ξ cell that contains pA,i. If a certain
location is not in the negotiated region, the corresponding cell
index is set to some randomly chosen unlikely cell index indi-
cating this abnormality. Similarly, Bob can convert his profile

{i, {pB,i[j]}λj=1}βi=α into PB,α→β = {{i, j, p̄B,i[j]}λj=1}βi=α.
With adaptive quantization in place, the number of encounters
between Alice and Bob equals the number of level-ξ cells they
both came across in the same epoch interval, or equivalently
the intersection cardinality |PA,α→β

⋂PB,α→β |.
How could Alice and Bob discover |PA,α→β

⋂PB,α→β |
in a privacy-preserving fashion? An intuitive idea is to apply a
PSI-CA protocol such as [8]. If Alice initiates the protocol, the
PSI-CA protocol allows her to know nothing about PB,α→β

other than mA = |PA,α→β

⋂PB,α→β |. Likewise, if Bob
initiates the protocol, he can learn nothing about PA,α→β

beyond mB = |PA,α→β

⋂PB,α→β |. Finally, Alice checks
if mA is greater than her personal threshold τA, and Bob
checks if mB is greater than his personal threshold τB . If
so, a successful spatiotemporal matching occurs.

Although this basic method allows Alice and Bob to de-
termine the actual number of encounters and offers very high-
level privacy protection for them, it has large communication
and computation overhead when λ(β − α+ 1) is large and is
thus not suitable for resource-constrained mobile devices, as
we will analyze in Section IV-B and evaluate in Section V. It
is thus necessary to explore a more efficient alternative.

B. Advanced Protocol based on Bloom Filter

Our second protocol involves a novel use of the Bloom
filter [9] and is motivated by the observation that an accurate
estimation of the number of encounters may suffice in practice.

A Bloom filter [9] is a space-efficient probabilistic data
structure for set-membership testing and many other applica-
tions [11], [12]. Assume that we want to use a w-bit Bloom
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filter for a data set {si}di=1, which has every bit initialized to
bit-0. Let {ha(·)}ka=1 denote k different hash functions, each
with output in [1, w]. Every element si is added into the Bloom
filter by setting all bits at positions {ha(si)}ka=1 to bit-1. To
check the membership of an arbitrary element e in the given
data set, we can simply verify whether all the bits at positions
{ha(e)}ka=1 have been set. If not, e is certainly not in the data
set; otherwise, it is in the data set with some probability jointly
determined by d,w, and k.

Our protocol involves each of Alice and Bob using a
different set of hash functions to construct a Bloom filter
based on her/his spatiotemporal profile. In particular, let H
denote a large and public pool of hash functions with each
indexed by a unique identifier. Assume that Alice and Bob are
to find out |PA,α→β

⋂PB,α→β | as in the basic protocol. The
following operations are done in sequence for Alice to obtain
an estimated m̂A about |PA,α→β

⋂PB,α→β |.
1. Alice sends a matching request to Bob.
2. Bob randomly chooses k hash functions from H with

indexes denoted by HB and then inserts each element
in his quantized profile PB,α→β into a w-bit Bloom
filter (denoted by BFB) with different l < k functions
randomly selected from HB and k − l random hash
functions outside H. Finally, Bob returns HB and
BFB to Alice.

3. Alice constructs a w-bit Bloom filter (denoted by
BFA) based on the hash functions specified in HB

and her quantized profile PA,α→β . Then she counts
the number of common bit-0 positions in BFA and
BFB (denoted by n0) whereby to compute

m̂A =
2kλ(β − α+ 1)− w(lnw − lnn0)

l
. (1)

The correctness and accuracy of this estimation will
be thoroughly analyzed in Section IV-C.

Likewise, Bob can estimate the number of encounters with
Alice from epochs α to β as m̂B . Finally, they can jointly de-
termine whether there is a successful spatiotemporal matching
after independently comparing m̂A (or m̂B) with the personal
threshold τA (or τB).

We have some important remarks to make. First, since
Alice and Bob use some common hash functions in HB to
construct their respective Bloom filter, the same pairs of epoch
and cell indexes in their quantized spatiotemporal profiles (if
any) are likely to set the same bit positions. So we can estimate
the number of common pairs of epoch and indexes via the
number of common bit-0 and/or bit-1 positions. Second, the
reason for Bob using k− l random hash functions unknown to
Alice for each epoch-cell index pair is to prevent Alice from
accurately estimating the cell indexes of Bob by simple Bloom
set-membership tests. In particular, if Bob uses the same k hash
functions in HB to generate BFB , Alice can easily test whether
every possible epoch-cell index is in BFB , which is equivalent
to breaching Bob’s spatiotemporal privacy. The choice of k
and l will be detailed in Section IV-C. Finally, the construction
of many different hash functions for implementing the Bloom
filter is also very important. One common method is to seed a
cryptographic hash function such as SHA-2 with the indexes

of hash functions we want. There are also some more efficient
realizations of many hash functions specifically for the Bloom
filter [13], [14].

C. Discussion

There are some important design issues to discuss.

Impact of recording frequency: Each user records his
location in the middle of each interval in each epoch of
fixed length. The fewer intervals in each epoch, the lower
the recording frequency, and the more likely for matching
false negatives to occur, in which case a protocol initiator
considers the responder a mismatch who actually encountered
him multiple times and just did not record the encounter
locations due to the low recording frequency. In contrast, the
higher the recording frequency, the less likely for matching
false negatives to occur, and the longer every location index
in every epoch which will lead to larger computation and
communication overhead.

Impact of quantization granularity: The granularity of
spatiotemporal matching can be controlled by choosing a
proper quantization level ξ ∈ [1, θ]. A larger ξ can lead to finer-
grained matching at the sacrifice of spatiotemporal privacy,
while a smaller ξ can lead to better spatiotemporal privacy at
the cost of coarser-grained matching.

Impact of imperfect quantization: Our quantization process
may cause some ambiguity. For example, if the recorded
locations of Alice and Bob in the same interval are near the
upper-left and lower-right corners of the same level-ξ cell,
they will be quantized to the same level-ξ index and thus
translated into one encounter. In contrast, if the two locations
are in adjacent level-ξ cells and close to each other along the
cell boundary, they, however, will be quantized to different
level-ξ indexes and translated into a non-encounter. To resolve
such ambiguity, we plan to adopt more advanced and complex
quantization technique such as those proposed in [6] in our
future work.

Impact of long-time encounters: If two users stay in each
other’s proximity for a long time with their recorded locations
always quantized to the same cell indexes, they will discover
multiple encounters via our protocols, though some people
may consider that they just have one encounter lasting for a
long time. We argue that the matching result from our protocol
execution somehow reflects the true spatiotemporal relation-
ship between them and is desired in practice. In particular,
given two other users who encountered him both once but for
different amount of time, a user may naturally have more trust
in the one with longer encounter time.

IV. PERFORMANCE ANALYSIS

In this section, we conduct theoretical analysis of the basic
and advanced protocols.

A. Performance Metrics

We use the following metrics to evaluate our protocols.
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Accuracy: The following standard (ε, δ) guarantee is used to
measure the accuracy of the protocol output,

Pr[(1− ε)m ≤ m̂ ≤ (1 + ε)m] > 1− δ, (2)

where m is the actual number of common elements (or
encounters), and m̂ is the estimation of m via our protocol.

Privacy: We quantify spatiotemporal privacy by the Shannon
entropy, a commonly used measure of uncertainty. For exam-
ple, recall that Bob’s quantized spatiotemporal profile from

epochs α to β is PB,α→β = {{i, j, p̄B,i[j]}λj=1}βi=α, where
p̄B,i denotes a level-ξ cell index. The only information Alice
knows about PB,α→β before protocol execution include the
parameters α, β, and λ. Since there are totally N = 4ξ−1
level-ξ cell indexes, each of them is equally likely to be p̄B,i[j]
from Alice’s viewpoint. There are thus totally Nλ(β−α+1) can-
didate quantized profiles for PB,α→β with equal probability in
Alice’s eye. So the maximum spatiotemporal privacy of Bob
with regard to Alice ( i.e., the maximum uncertainty of his
spatiotemporal profile to Alice) can be evaluated in bits as

E∗ = log2N
λ(β−α+1) = 2λ(β − α+ 1)(ξ − 1). (3)

After the execution of either protocol, Alice can know more
information about the probability of each candidate profile be-
ing Bob’s profile whereby to reduce the entropy or uncertainty,
which we will analyze later in this section. The maximum
spatiotemporal privacy of Alice with regard to Bob is the same
as above.

Overhead: We will analyze the communication and compu-
tation overhead of both protocols.

B. Analysis of Basic Protocol based on PSI-CA

We focus on the case that Alice initiates one protocol run
with Bob, and the other case can be likewise analyzed.

Accuracy Analysis: Since the underlying PSI-CA protocol
such as [8] outputs the exact number of common elements of
two quantized spatiotemporal profiles, our basic protocol can
achieve 100% accuracy (i.e., m̂ = m).

Privacy Analysis: After the protocol execution, Alice only
knows m, the number of common elements in her profile
PA,α→β and Bob’s profile PB,α→β . To determine Bob’s
profile, Alice first needs to guess the m intervals in which she

and Bob encountered, and there are
(
λ(β−α+1)

m

)
possibilities

with N = 4ξ−1 for the level-ξ quantization. In addition, for
each of the rest λ(β − α+ 1)−m intervals, there are N − 1
possible cell indexes (excluding Alice’s own). Therefore, the
entropy of Bob’s profile to Alice is given by

E1 = log2

(
λ(β − α+ 1)

m

)
+(λ(β−α+1)−m) log2(N−1).

(4)

Overhead Analysis: The computation and communication
overhead depend on the underlying PSI-CA protocol. Consider
the one in [8] as example. If Alice initiates the protocol
execution, she needs up to 2(λ(β − α + 1) + 1) modular
exponentiations and λ(β − α + 1) modular multiplications,
and Bob needs up to 2λ(β − α+ 1) modular exponentiations

and λ(β − α + 1) modular multiplications. The overall com-
munication overhead is about (3λ(β − α + 1) + 2)1024 bits
to ensure 1024-bit security which is considered necessary and
sufficient in practice.

C. Analysis of Advanced Protocol based on Estimation

Accuracy Analysis: The accuracy of the advanced protocol
is guaranteed by the following theorem.

Theorem 1. Given the number of common bit-0 positions n0

in the w-bit Bloom filters BFA and BFB constructed in the
advanced protocol, Alice can estimate |PA,α→β

⋂PB,α→β |
as

m̂ =
2nk − w(lnw − lnn0)

l
, (5)

where n = λ(β − α + 1) is the number of elements in both
PA,α→β and PB,α→β . Assuming that εm ≥ 1, m̂ is an (ε, δ)
estimation of m if

δ ≥ w(e
2nk
w − (1 + 2nk

w ))

l2ε2m2
. (6)

Proof: For each bit position of either Bloom filter, the
probability that it is set to bit-1 by a common element with l
common hash functions is given by

p = 1− (1− 1

w
)ml ≈ 1− e−

ml
w . (7)

The probability that it is set to bit-1 in all the other cases is
given by

q = 1− (1− 1

w
)nk−ml ≈ 1− e−

nk−ml
w . (8)

Therefore, the probability that a position is bit-0 in both BFA
and BFB (i.e., common bit-0 position) is given by

P0 = (1− p)(1− q)2 = e−
ml
w e−

2(nk−ml)
w . (9)

Since Alice can count the number of common bit-0 positions
n0 in BFA and BFB , the following equation can be established

P0 = e−
ml
w e−

2(nk−ml)
w =

n0

w
. (10)

Solving this equation, we have

m̂ =
2nk − w(lnw − lnn0)

l
. (11)

Next, we derive the variance. We cast the problem into RFID
tag estimation and refer to the results in [15]. The RFID system
with t tags divides a time period into f slots and let each RFID
tag randomly select one of f slots to respond. One slot may be
responded by zero, one, or multiple tags. The expected number
of zero-response slots is nearly fe−t/f . Knowing the number
of zero-response slots, the system administrator can estimate
the number of present RFID tags. Our estimation method based
on the Bloom filter is similar to RFID tag estimation if we
consider common bit-1 positions and common bit-0 positions
as multiple-response and zero-response slots in the RFID
system, respectively. The expected number of common bit-0
positions of BFA and BFB is nearly we−(2nk−ml)/w. Knowing
the number of common bit-0 positions, we can estimate the
intersection size m.
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Let ρ = 2nk−ml
w . According to Theorem 1 in [15], we have

n0 ∼ N (μ, σ2), where

μ = w(1− 1

w
)2nk−ml = we−ρ , (12)

σ2 = we−ρ(1− (1 + ρ)e−ρ) . (13)

We can view μ as a function of the true number of common
elements, denoted by μ(m). Since μ(m) is monotonic contin-
uous functions of m, it has a unique inverse, denoted by g(),
i.e., g(μ(m)) = m. Let 2nk −ml → ∞ and w → ∞, while
maintaining 2nk−ml

w = ρ. Since g(μ(m)) = m, differentiating
this equation with respect to m, we get g′(μ(m))μ′(m) = 1.
it follows that g′(μ(m)) = 1

μ′(m) . According to Theorem 6 in

[15], the variance of common bit-0 estimation of m is given
by

δ0 = σ2(m)[g′(μ(m))]2 =
σ2(m)

[μ′(m)]2
. (14)

Since μ = we−
2nk−ml

w and σ2 = we−ρ(1− (1 + ρ)e−ρ). Dif-

ferentiating μ(m) with respect to m, we can obtain
dμ(m)
dm =

le−ρ. Therefore we have

δ0 =
we−ρ(1− (1 + ρ)e−ρ)

l2e−2ρ
=

w(eρ − (1 + ρ))

l2
. (15)

In addition, since dδ0
dρ = w

l2 (e
ρ − 1) > 0, we know that δ0

is monotonic increasing with ρ. Since 0 ≤ m ≤ n, we have
n(2k−l)

w ≤ ρ ≤ 2nk
w . Therefore when ρ = 2nk

w , we have

δ0max =
w(e

2nk
w − (1 + 2nk

w ))

l2
. (16)

We thus have m̂ ∼ N (m, δ0). According to the Chebyshev’s
inequality, we have

Pr(|m̂−m| ≤ εm) ≥ 1− δ0
ε2m2

≥ 1− δ . (17)

Therefore, m̂ is an (ε, δ) estimation of m if

δ ≥ δ0max

ε2m2

=
w(e

2nk
w − (1 + 2nk

w ))

l2ε2m2
.

(18)

Privacy Analysis: The privacy analysis of advanced protocol
is given by the following theorem.

Theorem 2. Let BFB denote a w-bit Bloom filter Bob
constructs on his level-ξ quantized profile PB,α→β =

{{i, j, p̄B,i[j]}λj=1}βi=α using l functions from HB and k − l
functions unknown to Alice. After transmitting BFB and HB

to Alice, his remaining privacy of PB,α→β against Alice is

E = λ(α+ β − 1)E[i, j] , (19)

where

E[i, j] =

N∑
x=1

(
N

x

)
P x(1− P )N−x log2 x,

P =
k∑
i=l

(
k

i

)
pi(1− p)k−i ,

p = 1− e−
λ(α+β−1)k

w .

(20)

Proof: Bob’s privacy disclosure is caused by transmitting
BFB and the indexes HB of k hash functions to Alice. In
particular, Alice can exploit BFB and the knowledge that
Bob inserts every element in PB,α→β using l random hash
functions from HB and k − l unknown hash functions to
deduce some information about PB,α→β . Consider an arbitrary
element 〈i, j, p̄A,i[j]〉 as an example. For each of the N
possible cell indexes, say cID, Alice can test whether it is
a viable candidate for the unknown p̄A,i[j] by using all the k
hash functions in HB to compute the k corresponding positions
for the resulting element 〈i, j, cID〉. If there are at least l out
of k corresponding positions set to bit-1 in BFB , we have
cID = p̄A,i[j] with probability P ; otherwise, we must have
cID �= p̄A,i[j].

Now we estimate P . After inserting all the λ(α + β − 1)
elements in PB,α→β into BFB , the expected number of bit-
1 positions is w(1 − (1 − 1

w )
λ(α+β−1)k). For a random hash

function applied to cID, the probability of the corresponding
bit position having been set to bit-1 is

p = 1− (1− 1

w
)λ(α+β−1)k ≈ 1− e−

λ(α+β−1)k
w . (21)

The probability that at least l corresponding bit positions
corresponding to cID have been set to bit-1 is then given
by

P =

k∑
i=l

(
k

i

)
pi(1− p)k−i . (22)

Let Xi,j denote the number of valid candidate cell indexes
for p̄A,i[j]. The remaining entropy for interval i in epoch j
is then log2Xi,j . Since Xi,j is randomly distributed in [1, N ]
(N = 4ξ−1), we have the mean remaining entropy for interval
i in epoch j as

E[i, j] =
N∑
x=1

Pr(Xi,j = x) log2 x

=

N∑
x=1

(
N

x

)
P x(1− P )N−x log2 x .

(23)

Assuming that the λ(β−α+1) intervals are independent from
each other, the total remaining entropy is given by

E =

β∑
i=α

λ∑
j=1

E[i, j] = λ(α+ β − 1)E[i, j] . (24)

Overhead Analysis: In contrast to the basic protocol, the
advanced protocol does not depend on expensive cryptograph-
ic operations and involves Alice and Bob each performing
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TABLE I: Comparison of Privacy-preserving Spatiotemporal Matching Protocols

Protocol Result Type Alice’s Comp. Bob’s Comp. Comm.
Basic Protocol Accurate 2(n+ 1) exp, n mul 2n exp, n mul (3n+ 2)1024 bits

Advanced Protocol Estimated n hash n hash w bits
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Fig. 1: Computation and communication overhead.
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Fig. 2: The estimation accuracy of the advanced protocol.

kλ(β − α + 1) hash operations which are very efficient. The
communication overhead comes from the transmission of one
Bloom filter and is of w bits.

V. PERFORMANCE EVALUATION

In this section, we evaluate our protocols using simulations.
Table I summarizes the theoretical performance of the basic
protocol based on PSI-CA [8] and the advanced protocol
based on the Bloom filter, where exp and mul denote 160-
bit exponentiation operation and 1024-bit multiplication op-
eration, respectively, hash denotes one hash operation, n =
λ(β−α+1), and w is the Bloom-filter length. It is clear that
the non-cryptographic advanced protocol theoretically incurs
significantly lower computation and communication overhead
than the cryptographic basic protocol, which will be backed
up by our simulation results.

A. Simulation Settings

We first evaluate the time taken for exp and mul on a Dell
PC with 2.67 GHz CPU, 9 GB RAM, and Windows 7 64-
bit Professional, and also on a LG P-970 smartphone with 1
GHz Cortex-A8 processor, 512 MB RAM, and Android v2.2.
It takes 4 ms for exp and 0.0076 ms for mul on the PC on
average, as well as 15.83 ms for exp and 0.73 ms for mul on
LG P-970 on average. These timing data are the basis of our
simulations.

Other simulation settings are as follows. We assume that
the quantization is done on the level ξ = 6, i.e., N = 4ξ−1 =
1024. In addition, the evaluation program is written in Java,
and every data point represents the average of 1000 runs. As
discussed, a complete spatiotemporal matching involves Alice
and Bob each initiating one protocol execution, but we only
show the results for one protocol execution for simplicity. In
addition, we set δ to 0.02, and ε is the relative error shown in
each figure.

B. Simulation Results

We first compare the computation and communication
overhead of our protocols. For the advanced protocol, we set
k = 10, l = 10, and w = 20n, and vary n from 50 to 1000.
Fig. 1(a) and Fig. 1(b) compare the computation overhead of
the two protocols on Dell PC and LG P-970, respectively.
It is obvious that the advanced protocol incurs much lower
computation overhead than that of the basic protocol due to its
reliance on efficient hash functions instead of expensive PSI-
CA operations. Fig. 1(c) shows the communication overhead of
the two protocols. As expected, the communication overhead
of the basic protocol is proportional to n, while the advanced
protocol incurs very low overhead which equals to the Bloom-
filter length that can be well controlled according to different
accuracy and privacy requirements.

Fig. 2(a) compares the estimated number of encounters m̂
with the actual number of encounters m, when k = 20, l = 16,
n = 1000, and w = 40000. We can see that the estimator in
Eq. (1) is always biased. The reason is that traditional analysis
about the w-bit Bloom filter assumes that every bit position
is set to bit-1 for any of n elements with equal probability
1/w. In practice, however, the probability that one position is
set to bit-1 is not independent of other positions: when one
position is set to bit-1, it slightly reduces the probability that
other positions are set to bit-1 [11], [16], [17]. Therefore, the
actual number of bit-1 positions n1 in the Bloom filter is a
little smaller than that obtained via theoretical analysis, and
the actual number of bit-0 positions n0 in the Bloom filter is
a little larger than that obtained via theoretical analysis. Since
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Fig. 3: The impact of l, the number of common hash functions.
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Fig. 4: The impact of n, the cardinality of spatiotemporal
profiles.

m̂ = 2kn−w(lnw−lnn0)
l , we can expect m̂ to be larger than the

true value m.

We resolve the biased estimation by letting m̂ =
2kn̂−w(lnw−lnn0)

l , where n̂ = ln(nA0/w)
k ln(1−1/w) , nA0 is the number

of bit-0 positions in BFA. Fig. 2(b) shows that this new estima-
tor is almost unbiased and matches well with m. The reason is
that using estimated number of elements n̂ instead of the real
number of elements n = λ(β − α+ 1) takes into account the
above difference between observed and theoretical numbers of
bit-0 and bit-1 positions. So we will use this modified estimator
hereafter whose effectiveness will be further evidenced.

Fig. 3 shows the impact of l (the number of common
hash functions Bob chooses to insert each of his elements)
on the performance of advanced protocol, when n = 1000,
m = 500, and k = 20. We can see from Fig. 3(a) that the
more common hash functions (i.e., larger l), the smaller the
variance of the relative error |m̂A − m|/m (i.e., the more
accurate the estimation). The reason is that the more common
hash functions, the more common bit-0 positions in BFA and
BFB , leading to fewer possible Bloom filters for Alice and
Bob, and the smaller estimation error variance, because the
estimation error mainly comes from the uncertainty of BFA
and BFB . In addition, the more common hash functions Alice
and Bob share, the lower the probability that a random location
index having corresponding bits set to bit-1 by at least l out of
k hash functions, and thus the lower remaining entropy left for
Bob’s location profile after Alice testing all possible location
indexes. It is thus of no surprise to see that Bob’s remaining
privacy of PB,α→β against Alice decreases with both l and w.

Fig. 4 shows the impact of n (the number of location
indexes of each user) on the performance of advanced protocol,
when k = 20, w = 40000, and m = n/2. We can see that
as n increases, the relative error becomes larger. The reason
is that when the Bloom-filter length w is fixed, the more
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Fig. 6: The impact of k, the total number of hash functions.

elements inserted, the fewer common bit-0 positions in BFA
and BFB , the more possible Bloom filters for Alice and Bob,
which leads to higher estimation variance. In contrast, Bob’s
remaining privacy increases as n increases because the fewer
bits-0 positions in BFA, the higher the probability of a random
location index having corresponding bits set to bit-1 by at least
l out of k known hash functions, and the higher remaining
entropy for Bob’s location profile from Alice’s point of view
after testing all possible location indexes.

Fig. 5 shows the impact of w (the Bloom-filter length)
on the performance of advanced protocol, when k = 20,
n = 1000, and m = 500. We can see that the relative error
decreases as w increases. This is because when the number
of elements n is fixed, increase in w leads to more common
bit-0 positions. The more common bit-0 positions, the fewer
possible Bloom filters for Alice and Bob, and thus the smaller
estimation error variance. In addition, Bob’s remaining privacy
against Alice decreases as w increases. The reason is that the
longer the Bloom filter, the lower the probability that a random
location index having corresponding bits set to bit-1 by at least
l out of k known hash functions, and thus the lower remaining
entropy left for Bob’s location profile after Alice testing all
possible location indexes.

Fig. 6 shows the impact of k (the total number of hash
functions for Bloom filter construction) on the performance of
advanced protocol, when n = 1000, m = 500, and the ratios
l/k and nk/w are both fixed. It is obvious that the relative error
decreases as k increases. The reason is that when k increases,
l and w also increase proportionally with fixed l/k and nk/w.
Recall that the variance of the m̂ is inversely proportional to
w/l2 for fixed ρ (cf. Eq. (15)). As l increases, the variance
of estimation error decreases. In addition, Bob’s remaining
privacy against Alice decreases as k increases. The reason
is that the probability that at least l bit positions have been
set decreases as k increases, which leads to lower remaining
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entropy.

From the above figures, a general conclusion we can draw
is that there is an inherent tradeoff between matching accuracy
and spatiotemporal privacy: the more accuracy Alice wants, the
lower spatiotemporal privacy Bob can enjoy, and vice versa.

VI. RELATED WORK

In this section, we briefly discuss some work in several
areas which is most germane to our work in this paper.

There is some work on encounter-based matching [18],
[19]. Manweiler et al. [18] discussed the privacy concerns
for some missed-connection sites, which allows anonymous
users to rediscover strangers that they ever encountered. In
their follow-on work [19], they proposed to let mobile users
exchange spatiotemporal credentials when encountering each
other and later attempt to discover each other via a third-
party server which acts as a rendezvous point for users. In
contrast, our protocols focus on a more general problem and
are completely distributed without requiring mobile users to
interact with each other or a third-party server.

As discussed, the protocols proposed in [3], [4], [20] aim at
coarse-grained matching of user’s non-spatiotemporal personal
profiles such as hobbies or interests. It is unclear how to extend
these schemes for privacy-preserving spatiotemporal matching.

Private proximity testing aims at testing the physical prox-
imity of two users at some discrete time points in a privacy-
preserving fashion. In [6], private proximity test is reduced to
private equality test based on some location tags often sent by
third parties, and the sketches of GSM location tags [7] are
for efficient private proximity test. In contrast, our protocols
evaluate the proximity of two users for any desired continuous
time period. Moreover, our most efficient protocol does not
involve expensive cryptographic operations unlike [6], [7].

There is a series of work on Private Set Intersection (PSI)
[21], [22] or Private Set Intersection Cardinality (PSI-CA) [10],
[23], whereby two mutually mistrusting parties, each holding
a private data set, jointly compute the intersection [21], [22] or
the intersection cardinality [10], [23] of the two sets without
leaking any additional information to either party. PSI, PSI-
CA, or their variants have been the cryptographic foundation
of many private matching schemes such as [3], [4], [6], [7],
[20]. Our first protocol is also based on PSI-CA, but our second
protocol is non-cryptographic.

VII. CONCLUSION

In this paper, we motivated and formulated privacy-
preserving spatiotemporal matching problem as a new way
of establishing trust relationships. We also presented a novel
cryptographic solution based on PSI-CA and a novel non-
cryptographic solution based on a novel use of the Bloom
filter. Detailed performance analysis and evaluation confirmed
the high efficacy and efficiency of our solutions.
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