978-1-4799-5890-0/14/$31.00 ©2014 |[EEE

2014 IEEE Conference on Communications and Network Security

Touchln: Sightless Two-factor Authentication on
Multi-touch Mobile Devices

Jingchao Sunf, Rui Zhang?, Jinxue Zhang', and Yanchao Zhang!
t School of Electrical, Computer and Energy Engineering (ECEE), Arizona State University
! Department of Electrical Engineering, University of Hawaii
{jcsun, jxzhang, yczhang} @asu.edu, ruizhang@hawaii.edu

Abstract—Mobile authentication is indispensable for preventing
unauthorized access to multi-touch mobile devices. Existing mobile
authentication techniques are often cumbersome to use and also
vulnerable to shoulder-surfing and smudge attacks. This paper
focuses on designing, implementing, and evaluating TouchlIn, a
two-factor authentication system on multi-touch mobile devices.
TouchIn works by letting a user draw on the touchscreen with
one or multiple fingers to unlock his mobile device, and the user
is authenticated based on the geometric properties of his drawn
curves as well as his behavioral and physiological characteristics.
TouchIn allows the user to draw on arbitrary regions on the
touchscreen without looking at it. This nice sightless feature makes
TouchlIn very easy to use and also robust to shoulder-surfing and
smudge attacks. Comprehensive experiments on Android devices
confirm the high security and usability of TouchIn.

I. INTRODUCTION

Recent years have seen the explosive growth of multi-
touch mobile devices such as iPads and Nexus 7 tablets. In
computing, multi-touch refers to the ability of sensing the input
from two or more points of contact with a touchscreen at one
time. The great demand for multi-touch technology is largely
driven by the skyrocketing quest for multi-touch smartphones,
tablets, and other consumer electronic devices.

Mobile (user) authentication—Iletting multi-touch mobile de-
vices ascertain whom they are interacting with—is necessary
for preventing unauthorized access to mobile devices which
store increasingly more private information. Existing mobile
authentication techniques can be broadly classified into three
paradigms: something you know such as alphanumeric/graphi-
cal passwords, something you have such as a hardware token
[1]-[4], and someone you are such as biological and behav-
ioral characteristics [S]-[13]. Multi-factor mobile authentica-
tion refers to reliance on more than one paradigm.

The something-you-know paradigm has so far been the
most widely used. For example, a simple password on iOS
devices is a 4-digit number, and the Android Pattern Lock
technique uses a graphical password as a pattern on a 9-
point grid. To input a correct password, a user has to look
at the screen and touch specific points on a virtual keyboard
or grid. Such password entry has four essential drawbacks.
First, it is cumbersome and a common frustration so that many
(if not most) people just avoid password protection [2], [14].
Second, it is vulnerable to shoulder-surfing attacks because the
password can be potentially observed by malicious bystanders
in crowded public places [15], [16]. Third, it is susceptible

to smudge attacks [16], [17], as the user repeatedly touches
the same points on the screen before his password changes.
Last, it is inaccessible to people with visual impairment [14],
corresponding to 285 million people worldwide [18] and 21.5
million US adults aged 18+ [19].

Although free of the above drawbacks, the other paradigm-
s also have limitations. In particular, the something-you-
have paradigm requires specifically built auxiliary hardware
such as hardware tokens [1], [2] not immediately available
on the market. In addition, belonging to the someone-you-
are paradigm, biometric authentication techniques relying on
face/iris/voice/fingerprint recognition are vulnerable to spoofing
mechanisms [2]. For example, the fingerprint authentication
feature on the latest iPhone 5S has been quickly broken [20].

This paper presents the design, implementation, and evalua-
tion of Touchln, a two-factor authentication system for multi-
touch mobile devices as a novel solution to the aforementioned
issues. Our major contributions are twofold.

First, we design and implement Touchln as a novel com-
bination of the something-you-know and someone-you-are
paradigms. Touchln comprises two phases. In the enrollmen-
t phase, a device owner uses one or multiple fingers to
draw arbitrary geometric curves of his own choice (called
a curve password) on his multi-touch screen. An authenti-
cation template is then created based on features extracted
from his input, including x-coordinate, y-coordinate, direction,
curvature, x-velocity, y-velocity, x-acceleration, y-acceleration,
finger pressure, and hand geometry. The first four features
relate to the something-you-know paradigm and can together
accurately define the geometric characteristics of the drawn
curve. They are incorporated based on the observation that
self-defined curves are easier for the user himself to remember
and reproduce but difficult for attackers to guess. In contrast,
associated with the something-you-are paradigm, the remaining
six features correspond to the user’s behaviorial characteristics
and physiological characteristics. They are nearly impossible
for attackers to infer and forge even if they may manage to
know the correct curve password. We formulate the weighted
combination of these features as an optimization problem
and propose a solution based on machine learning. In the
subsequent authentication phase, anyone attempting to unlock
the mobile device needs to draw on the multi-touch screen,
from which a candidate template is extracted. If the candidate
and authentication templates match, the user is allowed in.

436



2014 IEEE Conference on Communications and Network Security

Second, we implement Touchln on Google Nexus 7 tablets
and evaluate its security and usability through comprehensive
experiments under various adversary models. Specifically, our
security and usability studies involve 30 volunteers with their
eyes closed throughout the experiments to emulate a rather
constrained environment where Touchln is used sightlessly. We
show that Touchln has very low false positives and negatives,
denying unauthorized users for 97.7% (97.8%) of the time and
admitting authorized users for 97.5% (99.3%) of the time for
a password involving a single curve (multiple curves). Finally,
our usability survey shows that most volunteers find Touchln
easy to use and curve passwords easy to memorize.

Touchln does not suffer from the aforementioned drawbacks
observed with existing mobile authentication techniques. First,
it is a sightless solution in that the user can draw his password
curve without seeing the screen. There are two major impli-
cations from this feature: (1) Touchln is both accessible and
user-friendly for sighted people and also people with visual
impairment; (2) the user can perform device unlocking under
some cover (say a briefcase or jacket) to completely thwart
shoulder-surfing attacks [15], [16]. Second, the user can draw
anywhere on the touchscreen under an arbitrary orientation
for each unlocking attempt. Finger smudges can thus be more
randomly distributed over a larger portion of the screen instead
of at some fixed points, making smudge attacks [16], [17] much
less a threat. Third, Touchln does not require any auxiliary
hardware and is applicable to off-the-shelf multi-touch mobile
devices. Finally, Touchln is highly secure due to its reliance on
two authentication paradigms.

II. RELATED WORK

Due to space limitations, we only brief the prior work most
germane to our Touchln system.

In addition to alphanumeric and graphic passwords, ges-
ture passwords are associated with the something-you-know
paradigm. Bailador ef al. [21] proposed to authenticate a mobile
user by letting him make a handwritten signature in the air
while holding a mobile phone, and the in-air signature is
captured through the 3D accelerometer sensor pervasive on
smartphones and tablets nowadays for comparison with one
previously stored on the phone. A similar idea is presented
in [22], [23] to use the accelerometer sensor to capture user-
created gestures. Besides being socially awkward, these tech-
niques can only be used as weak authentication techniques and
are vulnerable to the attackers seeing the users perform their in-
air signatures or gestures, as mentioned in [21]-[23]. In [15], a
comprehensive set of five-finger gestures are defined for multi-
touch device authentication. The shape of each user performing
a given gesture is used and evaluated as his device password.
The security of this technique and the use of personalized
gestures instead of predefined ones are not fully investigated.
In addition, performing five-finger gestures on mobile devices
with a small display may not be user-friendly. Moreover,
Kinwrite [24] is a handwriting-based gesture authentication
system, but it requires an external device like Kinect to detect
3D handwriting motions. Moreover, GEAT [16] authenticates
a mobile user based on how he inputs the specific gestures
and does not fulfill the sightless requirement. Most recently,

Sherman et al. [25] studied the security and memorability of
freeform multitouch gestures for mobile authentication. Their
major focus is to analyze the security of the free-form gesture
shape and evaluate its memorability, and does not consider the
sightless requirement. As independent study on similar topic at
the same time, we consider not only the shape of the gesture but
also a large number of touch dynamics to design and evaluate a
sightless authentication system. Finally, PassChords [14] is the
only prior work dedicated to the sightless requirement to the
best of our knowledge. It requires a user to tap several times
on the multi-touch screen with one or more fingers, and the
sets of fingers in all the taps together compose a password for
comparison with one stored on the mobile device. Although
promising results have been shown from usability studies, the
authentication failure rate is 16.3% [14], and our experiments
reveal that PassChords is vulnerable to shoulder-surfing attacks.

The something-you-have authentication paradigm often re-
quires special auxiliary devices not immediately available on
the market. Knuepfel made Signet Rings that use conductive
material to create several electrical pathways from a carrier’s
fingers to the capacitive touchscreen, and the pathways are
arranged in a distinct pattern as a password [26]. A similar
technique with more details is introduced in [2]. In addition,
the Magkey and Mickey miniature devices presented in [1]
rely on secret-embedded magnet fields and acoustic signals
detected by the smartphone’s compass sensor and microphone,
respectively. Furthermore, a wearable token is used in [3] to
keep attesting the user’s presence to his mobile device by
sending authentication messages via a short-range wireless link
(e.g., Bluetooth). Finally, the IR Ring in [4] authenticates
a user’s touches to a multi-touch display by transmitting a
cryptographic signal through the infrared channel. In contrast,
Touchln is for off-the-shelf multi-touch mobile devices and
requires no special auxiliary devices.

The someone-you-are authentication paradigm depends on
physiological or behavioral biometrics. Physiological biomet-
rics relate to a person’s physical features such as fingerprints,
iris patterns, retina patterns, facial features, palm prints, hand
geometry. These features are difficult to be accurately identified
on mobile devices and also susceptible to well-known spoofing
mechanisms [2], [27]. In contrast, behavioral biometrics relate
to a user’s behavioral patterns such as location traces [7], gaits
[8], [9], keystroke patterns [10], and touch dynamics [11],
[13]. These techniques are suitable as secondary authentication
mechanisms, as they may be vulnerable to attackers familiar
with the victim’s behavioral patterns [7], [11].

III. MULTI-TOUCH BASICS

In this section, we outline the fundamentals of multi-touch
screens to help understand TouchlIn.

We focus on the most popular capacitive multi-touch screens.
Our security and usability studies involve popular Android
devices. When a user draws with one or multiple fingers
on the touchscreen, every finger will trigger a sequence of
touch events which can be retrieved from Android OS. Ev-
ery touch event can be characterized by a set of features,
among which the following are relevant to Touchln: finger ID
assigned to and uniquely identifying every finger during the

437



2014 IEEE Conference on Communications and Network Security

Input the same curve(s) one more time

Data Processing

Feature Classifier
Extraction Training

Touch
Events Template]

Accept/Deny

Fig. 1: The Touchln system architecture.

Touch
Monitoring

finger motion, coordinate of the touch point, timestamp of the
touch event, pressure and size applied to the touchscreen. For
the Cartesian touch coordinates, the origin is at the top-left
corner of the touchscreen, and the left-to-right and top-to-down
directions define the x-axis and y-axis directions, respectively.
Note that Android devices can support both landscape and
portrait orientations, in which case the origin will vary. To
avoid the confusion, the touchscreen is automatically locked
to the portrait orientation during authentication. In addition,
the pressure and size range from zero to one in Android OS.

IV. ADVERSARY MODEL

As discussed, our Touchln system relies on the device
owner’s self-defined geometric curves, which are referred to as
the curve password hereafter. Motivated by [24], we consider
four adversary models from the weakest to strongest.

o Type-I: The adversary knows neither the shapes of the
curve password nor how the device owner draws the
curves to unlock the mobile device.

o Type-II: The adversary can observe how the device owner
draws the curves but not the curve shapes.

o Type-III: The adversary can observe how the device
owner draws the curves and the rough curve shapes. For
example, the adversary may know the curve password is
an English letter but not the exact shape.

o Type-1V: The adversary knows exactly how the device
owner draws the curves and also the curve shapes.

V. TOUCHIN OVERVIEW

In this section, we give an overview of the TouchIn system.
As shown in Fig. 1, Touchln is composed of an enrollment
phase and a verification phase.

The enrollment phase is to acquire an authentication template
from the device owner’s self-defined curves. In particular, the
user is prompted to freely draw with one or multiple fingers
of his choice on the touchscreen. A Touch Monitoring
module is designed to track the motion of every finger by in-
voking Andriod APIs and record the touch-event data for every
finger as a series of 4-tuples (finger ID, coordinate, timestamp,
pressure). By connecting the coordinates in accordance with the
timestamps, we can obtain the highly approximate curve drawn
by every finger. Touchln allows the user to hold the device in
arbitrary ways and draw on any region of the touchscreen. This
property is enabled by a Data Processing module to ad-
just the orientation of and normalize every curve. Touchln uses
ten features related to the geometric properties of a curve, how
it is drawn, and who draws it, including x-position, y-position,

direction, curvature, x-velocity, y-velocity, x-acceleration, y-
acceleration, finger pressure, and hand geometry, respectively.
So a Feature Extraction module is designed to extract
hand geometry data, and a time series of feature values for
each of the rest nine features. Finally, the extracted feature
data are inputted into a Classifier Training module
to generate an authentication template, which is stored on the
mobile device. The Classifier Training module also
outputs the weights assigned to every feature when composing
the authentication template. Generating a high-quality template
may need the device owner to draw multiple times in (approx-
imately) the same way, which we will seek to minimize for
usability concerns.

During the verification phase, anyone attempting to unlock
the device is prompted to input a password without any hint
given. Every finger’s input will be treated as a single curve.
The same first three modules in the enrollment phase are used
to extract ten features from every input. Then the feature data
from all finger inputs are input into a Verification module
for comparison with the authentication template. If there is a
match, the user is considered legitimate and allowed in; other-
wise, the user can retry. The user is considered unauthorized
and denied access after a threshold number of failed attempts.

VI. ENROLLMENT

In this section, we detail the design of the enrollment phase
in accordance with the diagram in Fig. 1.

A. Data Processing

This module is invoked after the device owner finishes
drawing by lifting his fingers and takes the resulting 4-tuple
touch-event data as input. The following submodules are then
executed sequentially.

1) Orientation Adjustment: Touchln does not require the us-
er to hold the device in any specific way or draw in designated
regions. As said, this user-friendly feature is important for sat-
isfying the sightless requirement as well as thwarting shoulder-
surfing and smudge attacks. The consequence is that multiple
attempted drawings of the same curve on different touchscreen
regions will lead to different sets of touch coordinates, which
are unlikely to compare. To handle this situation, we design two
methods to adjust the curve orientations, which apply when one
or multiple curves are detected, respectively.

Single-curve orientation adjustment

The basic idea of this technique is to adjust the curve
orientation based on some feature points of the curve. Assume
that the curve is associated with [ touch coordinates denoted by
{(z:,y:)}._,. We first compute the coordinate (z,,y,) of the
curve’s center point as z, = Y., x;/l and y, = S -_, yi/l.
Then we move the curve along horizontal and vertical direc-
tions until the center point becomes the origin of a Cartesian
coordinate system. After this movement, the [ coordinates
become {(x},y!)}._,, where ¥} = x; — x4, and ¥, = y; — Ya.
The next step is to decide the starting and ending points of
the curve. Note that every finger contacts with the touchscreen
will generate some closer coordinates with almost identical
timestamps, and it is unlikely to reproduce every finger contact.
This means that even if we want to draw the same curve in

438



2014 IEEE Conference on Communications and Network Security

.
|\ Las Y,

(144010 (A

(a) Single-curve adjustment: case 1.

(b) Single-curve adjustment: case 2.

] ' o r o
L) g0 W1 8) . ;

(c) Multi-curve adjustment.

Fig. 2: Curve orientation adjustment.

exactly the same way, the starting and ending points of the
curve may still be different. To accommodate this variation,
we compute an average starting point with coordinate (zs,ys)
as the average of the first 75 coordinates in time and an average
ending point with coordinate (z.,y.) as the average of the last
ne coordinates in time, where 7, and 7. are empirical system
parameters. Finally, we draw an arrow from (z, ys) to (z¢, ye)
and then rotate the curve until the arrow direction is the same
as that of the z- axis After this rotation, the [ coordinates of the
curve become {(z, yl “}_,, where 2/ = 2/ cosa + Y sin v,
y! = —xlsina + y;cosa, and o = arctan ¥==¥=_ Fig. 2(a)
shows an example where the solid, dashed, and dotted curves
correspond to the original one, the one after movement, and
the one after rotation, respectively.

If the distance between the average starting and ending points
is very small, ie., \/(zs — 7c)2 + (ys — ye)2 < & for a very
small system parameter &, the average starting and ending
points are likely to be different even if the same user tries to
draw the same curve multiple times. As a result, the very short
arrow from the average starting point to the average ending
point may have opposite directions for different drawings of the
same curve. If we still rotate the curve as above, the same user’s
multiple drawings may not match. To handle this situation, we
further define an anchor point with coordinate (z,, y, ), where
xy = (x5 + x.)/2, and y, = (ys + ye)/2. Then we draw
an arrow from the origin to the anchor point and rotate the
curve until the arrow direction is the same as that of the z- axis.
Finally, the [ coordinates of the curve become {(x zj Ly,
where z} = 2/ cos B+ y}sin B, y/ = —x}sin 8+ 1y, cos 3, and
g = arctan yT . This technique, however, cannot be applied
when the average starting and ending points are far from each
other. An example for this case is shown in Fig. 2(b), where the
solid, dashed, and dotted curves correspond to the original one,
the one after movement, and the one after rotation, respectively.
Multi-curve orientation adjustment

The orientations of multiple curves can be similarly adjusted.
In particular, assume that the device owner uses M € [2, 5] fin-
gers to simultaneously draw M curves. We denote the original
coordinates of the ith (Vi € [1, M]) curve by {(z; ;, y,])}é;l
We first compute the average starting point of the first curve
with coordinate (z1 s, y1,5) as the average of the first 75 ones in
{(z1,;, ym)}é-l:l. Then we move the M curves together along
horizontal and vertical directions until the average starting point
becomes the origin. The /; coordinates of the ith (Vz’ € [1,M])

curve thus become {(z] ;,y; j)}é 1» Where z

=Tij — T1,s,

and y; ; = yij — Y1,s- Then we compute the average starting
point of the second curve with coordinate (25 ,, 5 ;) as the
average of the first 7, ones in {(méj,yéj)}éz’zl Finally, we
draw an arrow from the origin to (x5 ,, 5 ,) and rotate the M
curves together until the arrow direction follows the x-axis. Af-
ter this rotation, the [; coordinates of the ith (Vi € [1, M]) curve

" " I / e

change to {(xij,yij) j=1> Where x{; =z ; cosy+y; 457,
- — J2 s

yi; = —xi;siny + y; cosy, and vy = arctan 2= In

Fig. 2(c), the solid, dashed, and dotted curves refer to the
original ones, the ones after movement, and the ones after
rotation, respectively.

For this method to work, the device owner needs to put
his M fingers always in the same order on the touchscreen,
which is fairly easy according to our experimental studies.
This requirement also implies that the touching order of his
M fingers can also be implicitly used as a partial password.
Specifically, although the adversary may manage to observe
the shapes of the M curves and reproduce them, the order in
which the M fingers touch the screen is much more subtle
to observe. As a result, the M curves drawn by the adversary
may be ordered very differently from those drawn by the device
owner. It follows that the adversary’s M curves after the above
orientation adjustment may be very different from those of the
device owner, in which case authentication attempt will fail.

2) Normalization: Even if the device owner can accurately
reproduce his curve shapes, it is often more difficult for him to
memorize and reproduce the curve lengths. The normalization
submodule is designed to handle this situation and applies to
both single-curve and multi-curve cases. Consider the multi-
curve case as an example. Recall that the [; coordinates of the
ith curve change to {(z};, y; J)};"Zl. We define the normalized

l; coordinates as {(xwvyw)};:p where
" i
_ ‘ri] - mln{xz kS k=1
L5 = 1; 1 ’
max{:cl P mm{xl P
and .
1 : 1 7
_ Yij — min{y; k}kfl
Yij =

l; l; :
ma‘X{yzk k=1 mln{yzk k=1

B. Feature Extraction

Then we extract ten features from the touch event data for
every curve. The following description applies to the ith curve
(Vi € [1,M]) of the multi-curve case and also applies to

439



2014 IEEE Conference on Communications and Network Security

the single-curve case after slightly changing the notation. The
feasibility of the features is studied in our technical report [29].

x- and y-coordinates: C; = {(Z; ;, gi7j)}§i:1.

Curvature: The curvature is the amount by which a geomet-
ric object deviates from being flat or straight. The curvature at
point (Z; ;,y: ;) can be derived as

- 47 AT —4VT AT n
6y = )2 Y )2)3/2
((AF;)2 + (A7)

where
AT = (T — Tij—1)/2, A ; = (Ui j+1 = ij-1)/2,
3

x- and y-velocity: The x-velocity and y-velocity of touch-
event j € [2,1;] are defined as
Lij = Tij—1 W= Yij —Yij—1

b
tij —lij—1 tij —tij—1

where ¢; ; and ¢; ;_; denote the timestamp of the jth and (j—
1)th touch event, respectively.

x- and y-acceleration: The acceleration of the jth touch
event is defined as

y Y
e _ Vi Vi g Vi Vi
A= A= : @)
tij—lij—1 7 tij—tij
Direction: The direction at (Z; ;, 7, ;) is defined as
o ; = arctan M 4)

Tij41 — Tij

Touch pressure: The touch pressure on the touchscreen is
hardly observable by the adversary and can thus also be used as
some behavioral characteristic. Android OS reports the finger
pressure for every touch event as a value ranging from O (no
pressure at all) to 1 (normal pressure), and can be denoted as
Pi = {pij}i1-

Hand geometry: Due to the uniqueness of each user’s hand
size and shape, the distance between any two fingers (known
as hand geometry information) can also be used to uniquely
identify a user. M fingers together determine (]gj ) finger pairs,
where the distance between ith and jth fingers is computed as

eiJ = \/(ji,s - j:j,s)z + (gi,s - gj,s)Q )

where (Z; s,9i,s) and (Z; s, 7,s) denote the normalized coor-
dinates of the average starting points of the ith and jth curves,
respectively. These (1\2/[) distance metrics compose the hand
geometry information.

C. Classifier Training

This module is to obtain an optimal classifier based on the
extracted feature data from the training set. In what follows,
we first discuss the comparison of two arbitrary curves. We
then discuss how to assign optimal weights to coordinate,
curvature, velocity, acceleration, and direction features. Since
hand geometry information does not have an associated time
series, we discuss how to incorporate it into the authentication
template in Section VI-D.

1) Curve Comparison: As said, every finger-drawn curve
is associated with nine time series, corresponding to the x-
coordinate, y-coordinate, curvature, x-velocity, y-velocity, x-
acceleration, y-acceleration, direction and touch pressure fea-
tures, respectively. To compare two arbitrary curves, we use
Dynamic Time Warping (DTW) [28] to compute the distance
between each of the nine time-series pairs. We denote by
{d;}}_, the DTW distance results for the x-coordinate, y-
coordinate, curvature, x-velocity, y-velocity, x-acceleration, y-
acceleration, direction and touch pressure features, respectively.
Then we need to find a combination of {d;}?_, to classify the
curves from both authorized and unauthorized users, where w;

\IJ?‘./J. = (?jz}jJrl — 27+ gi7j71)’ \Ilfj = (j;i’j+1 — 2%, ; + ji}jﬂ}l@notes the weight assigned to feature <.

2) Weight Assignment: The objective of weight assignment
is to assign different weights to different features to minimize
false negatives and positives. For this purpose, Touchln will
come with A\ random curves, each also having nine time series
of feature data. Assume that the device owner is prompted
to draw every chosen curve w times, where each drawing is
referred to as a sample curve. These w sample curves along
with the A preloaded curves compose a training set. Then we
randomly select one of the w sample curves as a reference
curve and use DTW to compare it with every other curve in
the training set. For convenience, we denote the reference curve
by CURVE, and every other curve by CURVE, for i € [1,w+
A — 1]. We also let {d; ;}9_, denote the nine DTW distance
results between CURVE, and CURVE,.

We formulate weight assignment as a classification problem.
In particular, all the training curves can be classified into two
classes: the w sample curves of the device owner belong to
Class I (¢ = 0), while the A random curves belong to Class II
(¢ = 1). We use the Logistic Regression (LR) algorithm as the
classification algorithm to distinguish the two classes. In par-
ticular, for a two-classification task, the LR algorithm finds the
optimal linear combination of all features to separate two class-
es of curves with the minimum misclassification cost. For this
purpose, we further introduce a constant dy = 1 and wy as the
corresponding weight for do. Let d; = [do, di 1, di2, - ,dio]"
be the distance vector and w = [wg, wy, wa, - -+ ,wg|’ be the
weight vector of CURVE; (Vi € [1,w + A — 1]). The linear
combination of the distance and weight vectors is expressed
by WTdi = wo + ’wldi,1 + w2d7;,2 R UJQdi79. We proceed
to define 1

hw'd;) = Tq o7, (6)
where h(-) is the sigmoid function with the range [0,1]. In
particular, if w?'d < 0, then h(w?d) < 0.5, and if w/'d > 0,
then h(wTd) > 0.5. Then CURVE; can be classified as

. {o, h(wTd;) < 0.5,

1, h(w'd;)>05. @

We need to make sure that the majority of the sample curves
can be classified into Class I (low false negatives) and most
of the A preloaded curves can be classified into class II
(low false positives). An ideal classifier should have h(w’d;)
much smaller (or larger) than 0.5 if CURVE,; is a sample (or
preloaded) curve. We thus define the misclassification cost for

440



2014 IEEE Conference on Communications and Network Security

CURVE,; as
—log(l — h(WTCb)), fi = 0,

C(h(whd;), ;) = 8
PO = Ctogwray), =1 @
The overall misclassification cost is then defined as
1 n
== h(w'd;), ¢;
T(w) = 5 PO, 8
n 9
_ ! Z (¢;log h(w'd;) ®
n
i=1

+ (1= ¢;)log(1 — h(w'd;))) ,

where n = w+ A — 1. Our final goal is thus to find the weight
vector w which can minimize 7 (w).

We use gradient descent method to solve the minimization
problem. Specifically, we update every weight w; as

0T (w)

8wj

= U)j — Z(h(WTdZ) — gi)di,j;
i=1

wj:wj—a

(10)

where o and d; ; denote the learning step and the ith curve’s jth
DTW distance, respectively. The updating process ends when
J(w) stops decreasing, in which case we obtain the optimal
weight vector w.

D. Creation of Authentication Templates

The final authentication template includes the feature data
of every chosen reference curve and its corresponding weight
vector from the Classifier Training module, which is
referred to as a curve sub-template. If the device owner uses
M > 2 curve password with w sample inputs during the
enrollment phase, the authentication template also includes a
hand-geometry sub-template. The hand-geometry sub-template
is denoted by [€; ,¢; |, where ¢; and ¢; denote the minimum
and maximum distances between the ith finger pair among the
w samples of the M curves.

VII. VERIFICATION

The verification phase starts when someone tries to un-
lock the mobile device. The user will be prompted to input
his password. The verification phase uses the same Touch
Monitoring, Data Processing, and Feature
Extraction modules to extract the data for the ten features.
The extracted data are then inputted into a Verification
module, where two tests are performed.

Curve test: If single-curve authentication is used, the candi-
date curve is tested using the trained classifier. If it is classified
as Class I (or Class II), the curve test succeeds (or fails). If
multi-curve authentication is used, every candidate curve in
the input needs to be tested within the corresponding classifier.
If all the candidate curves are classified as Class I, the curve
test succeeds and fails otherwise.

Hand-geometry test: This test applies to multi-curve cases.
If the distance between every finger pair in the input falls be-

B FPR of single curve
+¢FNR of single curve

& FPR of multiple curves
AFNR of multiple curves|

© 9o
© o
o

o O
G w

FP/FN Rate

©
>

©
=

Accuracy [%]

#Testing accuracy (single curve)
-Training accuracy (single curve)
A:Training accuracy (multiple curves
9o|E Testing accuracy (multiple curves)
3 4 5 6 7 8 9 3 4 5 6 7 8 9
Training Size Training Size

©
N

(a) Classification accuracy (b) False-positive/negative rates

Fig. 3: Impact of the training-set size.

tween the corresponding minimum and maximum distances in
the handle-geometry template, it succeeds and fails otherwise.
The user is considered legitimate and allowed in only when
his input passes all the tests above; otherwise, he is denied
access. Although we have tried to minimize false negatives, an
authorized user may be denied access in very rare situations,
e.g., due to sudden memory loss. One remedy is to let the
authentication template include multiple reference curves and
their corresponding classifiers. The curve test is said to succeed
if the candidate curve(s) is classified as Class I by any classifier.
As another remedy, TouchIn can be combined with a traditional
password-based authentication system which is normally too
inconvenient to use and only invoked as the last resort.

VIII. PERFORMANCE EVALUATION

In this section, we report the experimental security and
usability studies of TouchIn on Google Nexus 7 tablets.

A. Data Acquisition

We recruited 30 volunteers (six female and 24 male) over
a two-week period, all of whom are aged 20 to 30 and
pursuing their BE/MS/PhD degrees in Electrical Engineering or
Computer Science. The experiments were done on two Google
Nexus 7 tablets with 1.6 GHz NVIDIA Tegra 3 quad-core
processor, 1G RAM, 16G internal storage, a 7-inch capacitive
multi-touch screen, and Android 4.2 OS. Each volunteer was
first briefed about 10 minutes for our research studies and was
asked to close his/her eyes while drawing on the touchscreen
to emulate the sightless requirement. Moreover, each volunteer
was asked to independently decide three different curves with
each involving one finger (single-curve for short) and three
others with each involving multiple fingers of the same hand
(multi-curve for short). Finally, each volunteer was instructed
to draw each of his/her own six curves 20 to 50 times, leading
to 3600 single-curve samples and 3600 multi-curve samples.
In addition, we recruited 10 more volunteers with similar
background to mimic attackers. We made videos of legitimate
volunteers drawing curves on the touchscreen and showed the
videos to attackers. Since it is infeasible to ask each attacker to
watch too many videos, we let each attacker watch the videos
of three randomly selected victims with each drawing one curve
password randomly chosen from his/her three. In accordance
with the adversary models in Section IV, we considered the
following attacks.

Attack 1: one-time observation. The attackers were allowed
to observe how the victims input their curve password once

441



2014 IEEE Conference on Communications and Network Security

o
©
©
o
©

o
©
®
o
®

Precision

54
w©
<

True Positve Rate
o
3

o
©
>
o
o

0.95

o
2

005 01 015
False Positive Rate

(a) Precision-Recall curves (b) ROC curves
Fig. 4: Performance of single-curve authentication.

5
0.92 O.Qé 0.96 0.98 1 o 0.2

ecall

e
©
©
e
©

o
©
&
o
@

o
©
~

Precision
o
2

True Positve Rate

o
©
<]
o
o

0.95

o
o

5
092 094 096 098 1 ) 005 01 015 0.2
Recall False Positive Rate

(a) Precision-Recall curves (b) ROC curves
Fig. 5: Performance of multi-curve authentication.

without knowing other information. More specifically, we first
showed the video of each victim’s authentication process with
one finger to each attacker once and asked each attacker to
make five authentication attempts for each victim. Next, we
showed the video of each victim’s authentication process with
two fingers to each attacker once and also asked each attacker to
mimic each victim for five times. We collected 3 x5x 10x 2 =
300 mimicked curve samples for three victims for this attack.

Attack 2: four-time observations. The attackers contin-
ued observing the videos of single-finger and two-finger au-
thentication processes of each victim three more times and
then produced five mimicked curve samples for each victim.
Besides, ten attackers also observed the video of two-finger
authentication process of each victim three more times, and
produced another five mimicked curve samples. We collected
3 x5 x 10 x 2 = 300 mimicked curve samples for this attack.

Attack 3: four-time observations and rough curve in-
formation. The attackers were additionally provided with the
rough shapes of each victim’s curve password of the three
victims, e.g., whether the curve password is an ellipse or a
rectangle. Then each attacker was asked to make five attempts
with both one finger and two fingers for each victim, leading to
3 x5 x 10 x 2 = 300 mimicked curve samples for this attack.

Attack 4: four-time observations and exact curve infor-
mation. The attackers were finally presented with the exact
shape of the curve password. Each of them then made five
more attempts with both one finger and two fingers for each
victim, producing another 3 x 5 x 10 x 2 = 300 curve samples.

Attacks 1 and 2 correspond to the Type-II adversary intro-
duced in Section IV, and Attacks 3 and 4 correspond to the
Type-III and Type-IV adversaries, respectively. Since Type-I
attackers refer to those totally blind to the curve password, we
can evaluate their impact by testing the collected curve samples
of legitimate users against those of others, as to be shown later.

B. Performance Metrics

ROC Curve. A ROC curve is created by plotting the true-
positive rate versus the false-positive rate. More specifically, let
#71pP, 7P, #TN, and #gn denote the number of true positive,
false positive, true negative and false negative, respectively. The
true-positive and false-positive rates are calculated respectively

as
#Tp
- T 1
e #1p + #EN (v
and
#rp
L LB E— 12
FRR #Hrp + #TN (12)

Touchln should achieve both a high true-positive rate and a low
false-positive rate.

Precision-Recall Curve. In our scenario, precision is the
measure of accuracy provided by the authentication system.
It represents the percentage of legitimate users out of those
passing the authentication and can be computed as

__ e
#1p + H#rp

Recall is the measure of the capability the authentication system
can pass authorized users and is defined as Recall = TPR.

Authentication Time. This refers to the time for the mobile
device to decide whether to allow the user in and should be as
short as possible.

Precision =

13)

C. Experimental Results

1) Performance for Legitimate Authentication: We first

demonstrate our system performance for legitimate users only.
Recall that each of the 30 volunteers chose three curve pass-
word for single-curve authentication and input each curve 20 to
50 times, producing 3,600 single-curve samples. Then we ran-
domly chose w samples for each of the 30 x 3 curve password
to form a training set of 90w sample curves for the classifier.
This corresponds to having A = 89w preloaded random curves
for each curve password. The rest curve samples composed a
testing set. We did the same for the 3,600 multi-curve samples.
We conducted the evaluation for every legitimate user each with
three different curve passwords, and each reported data point
represents the average of 90 authentication instances, unless
otherwise stated.
Impact of the Training-set Size: We first show the impact of
the training-set size on the classification result. Intuitively, the
larger the training set, the more information provided, the better
the classifier performance. We varied the size of the training
set by changing w and recorded the corresponding training-
accuracy measurements, testing-accuracy measurements, false-
positive rate, and false-negative rate.

Fig. 3(a) shows the impact of the training-set size on training
accuracy and testing accuracy of single-curve authentication
and multi-curve authentication, respectively, where the training
(or testing) accuracy is defined as the ratio of true positives and
negatives to the total number of curve samples involved in the
training (or testing) process. We can see that the classification
accuracy increases as w increases and stays very high as
w > 4. In addition, we can see that the false-positive and

442



2014 IEEE Conference on Communications and Network Security

d
®

[

=4
=)

Precision

—Att. 1
—Att. 2

True Positve Rate
o o
N N

——Att. 3|
0 —Att. 4]
0 02 04 06 08 1 0 02 04 06 08 1
Recall False Positive Rate
(a) Precision-Recall curves (b) ROC curves
Fig. 6: Single-curve authentication under attacks.
1 1 (
038 038
2
£ 0.6 Sos
2 g
o =
2 0.4 § 0.4
—Att. 1 P —Att. 1
0.2}|—Att. 2 502 —Att 2
—Att. 3 = —At.3
o —Att. 4 0 —Att. 4]
0 02 04 06 08 1 0 02 04 06 08 1

Recall - False Positive Rate

(a) Precision-Recall curves (b) ROC curves

Fig. 7: Multi-curve authentication under attacks.

false-negative rates of both single-curve authentication and
multi-curve authentication decrease as w increases and stay
sufficient low as w > 5. Such results are desirable because w
is directionally proportional to enrollment time and usability.

Authentication Performance: Now we show the authentica-
tion performance of Touchln. For each curve password of every
legitimate user, its remaining samples in the testing set can be
regarded as the user’s inputs at different times, while all the
other samples in the testing set can be regarded as the inputs
by a Type-I attacker. For clarity and simplicity, we report the
average results as well as the upper and lower bounds for all
the curve passwords in the precision-recall and ROC curves.

Fig. 4 illustrates the performance of single-curve authentica-
tion. We can see that the average precision-recall curve is close
to the top-right corner, which indicates that our system can
obtain high precision and high recall simultaneously. Similarly,
the average ROC curve is close to the top-left corner, which
indicates that our system can achieve a high true-positive rate
together with a low false-positive rate. Both precision-recall
and ROC curves show that our system is good at distinguishing
legitimate and illegitimate users.

Fig. 5 demonstrates the performance of multi-curve au-
thentication. Similar to single-curve authentication, our system
achieves high precision and high recall simultaneously as well
as a high true-positive rate and a low false-positive rate. In
addition, we can see that the average performance of multi-
curve authentication is better than single-curve authentication.
This is anticipated because more information is incorporated
in the authentication process.

2) Performance Under Attacks: We first report the perfor-
mance of single-curve authentication under attacks. For every
attack and each curve password, we ran the experiments 30
times to obtain the average precision-recall curves in Fig. 6(a)
and ROC curves in Fig. 6(b), in which every attack is associated
with three identical-colored curves with each corresponding to

1,500

EDTW calculation
F Verification

100

Time (s)

o
50 B Training time on Tablef E
A Training time on PC = 500
o Wx
¢

300 100

100 200 | 300 ; 50
# of curves in training set Curve Length (points)

(a) Enrollment time. (b) Verification time.
Fig. 8: Computation overhead for single-curve authentication.

one victim. From Fig. 6, we can see that as the attack strength
increases, the performance of our system decreases. This is
anticipated because the attackers know more information about
the curve password as the attack strength increases.

Next, we show the performance of multi-curve authentication
under the attacks. The similar trend can be found in Fig. 7.
In particular, the system performance decreases as the attack
strength increases. In addition, it is obvious that multi-curve
authentication performs better than single-curve authentication
under various attack models. The reason is that multi-curve
authentication compares the features of multiple corresponding
curves and also checks other feature such as hand geometry,
which are much more difficult to infer by the attackers.

3) Computation Overhead: The computation overhead of
Touchln lies in two aspects. The first is mainly incurred by
classifier training in the enrollment phase, and the second is
mainly caused by feature extraction, DTW distance calcula-
tions, and classification in the verification phase.

Classifier training can be done either on the mobile device
or through a trusted third party as in [13]. Fig. 8(a) shows the
enrollment time for single-curve authentication when classifier
training is done on a Google Nexus 7 tablet and a Dell desktop
with 2.67 GHz CPU, 9 GB RAM, and Windows 7 64-bit
Professional. We can see that the enrollment time on Google
Nexus 7 is about 120 seconds when the training set contains
300 curve samples. Although such enrollment time seems long,
it is still acceptable because classifier training is a one-time
process and can be done when the user does not use the mobile
device. As in [13], an alternative way for classifier training is
to outsource it to a trusted third-party server computing and
returning the weight vector to the user. As shown in Fig. 8(a),
the enrollment time on the Dell desktop is much shorter than
that on Google Nexus 7 and can be much more shortened on
a more powerful cloud server. The enrollment time for multi-
curve authentication involving M curves is approximately M
times that for multi-curve authentication.

The verification time for single-curve authentication is shown
in Fig. 8(b). According to our experiments on Google Nexus
7 tablet with Android 4.2, the time for feature extraction and
classification is less than one millisecond and thus negligible. In
contrast, the time for DTW distance calculations increases with
the number of feature points on an curve password. To shed
some light on the verification overhead, Fig. 8(b) shows the
average time for single-feature DTW distance calculations and
the overall verification time which involves the DTW distance
calculations for nine curve features. As we can see, the average
DTW calculation time increases as the number of curve points

443



2014 IEEE Conference on Communications and Network Security

increases. According to our experimental data, most curve
passwords contain less than 300 points which only cost less
than 100 ms for single-feature DTW distance calculation, and
the overall verification time is below 900 ms. As to multi-
curve authentication with M curves, the verification time is
approximately M times the single-curve verification time.

TABLE I: Comparison with existing schemes

Scheme - TPR - - FPR -
Single | Multiple | Single | Multiple
Touchln 97.5% | 99.3% 2.3% 2.2%
PassChords [14] 83.7% NA
GEAT [16] 94.6% 4.02%

4) Comparison with Existing Schemes: Now we compare
Touchln with PassChords [14], the only known work dedicat-
ed to sightless mobile authentication. As shown in Table I,
Touchln has a much higher TPR (i.e., authentication success
rate) than PassChords. In addition, Touchln has a sufficiently
low FPR, and the FPR information is not available in [14]. We
also observe that PassChords is vulnerable to shoulder-surfing
attacks. In contrast, Touchln is highly resilient to shoulder-
surfing attacks, as we have shown in Fig. 6 and Fig. 7.

We also compare Touchln with GEAT [16], a very recent
mobile authentication scheme. We can see that Touchln has
slightly better TPR and FPR performance than GEAT, but
GEAT does not have the same sightless feature of Touchln.

TABLE II: Usability scores

Mean | Standard Deviation | Min | Median | Max
Q1 4.5 0.60698 3 5 5
Q2 | 445 0.60481 3 4.5 5
Q3 44 0.68056 3 4.5 5
Q4 4.6 0.59824 3 5 5
Q5 | 435 0.67.82 3 4 5

D. Usability Study

We also evaluated the usability of Touchln by surveying the
experiment volunteers. In particular, we asked them whether
Touchln is easy to use (QI), whether curve passwords are
easy to memorize (Q2), whether Touchln is faster than the PIN
method and Android pattern lock (Q3), whether TouchIn would
be easier to use with more practice (Q4), and their preference of
Touchln (Q5) over the PIN method and Android pattern lock.
The statistic informative of survey scores are listed in Table II,
where the scores range from one (lowest) to five (highest). The
results indicate Touchln is very easy to use and more preferable
than the PIN method and Android pattern lock.

IX. CONCLUSION

In this paper, we presented and evaluated Touchln, a novel
sightless two-factor authentication system on multi-touch mo-
bile device. The high security, efficiency, and usability were
confirmed by detailed experiments on Google Nexus 7 tablets.

REFERENCES

[1] H. Bojinov and D. Boneh, “Mobile token-based authentication on a
budget,” in HotMobile’11, Phoenix, USA, Apr. 2011.

[2] T. Vu, A. Baid, S. Gao, M. Gruteser, R. Howard, J. Lindqvist, P. S-
pasojevic, and J. Walling, “Distinguishing users with capacitive touch
communication,” in MobiCom’12, Istanbul, Turkey, Aug. 2012.

[3] A. Nicholson, M. Corner, and B. Noble, “Mobile device security using
transient authentication,” IEEE Trans. Mobile Computing, vol. 5, no. 11,
pp. 1489-1502, Nov. 2006.

[4] V. Roth, P. Schmidt, and B. Guldenring, “The IR ring: Authenticating
users’ touches on a a multi-touch display,” in UIST 10, New York City,
NY, Oct. 2010.

[5] S. Kurkovsky, T. Carpenter, and C. MacDonald, “Experiments with
simple iris recognition for mobile phones,” in ITNG’10, Las Vegas, NV,
Apr. 2010.

[6] M. Derawi, B. Yang, and C. Busch, “Fingerprint recognition with em-
bedded cameras on mobile phones,” in MobiSec’11, Aalborg, Denmark,
May 2011.

[71 E. Shi, Y. Niu, M. Jakobsson, and R. Chow, “Implicit authentication
through learning user behavior,” in ISC’10, Boca Raton, FL, Oct. 2010.

[8] J. Mantyjarvi, M. Lindholm, E. Vildjiounaite, S. Makela, and H. Ailisto,
“Identifying users of portable devices from gait pattern with accelerom-
eters,” in /CASSP’05, Philadelphia, PA, Mar. 2005.

[9]1 D. Gafurov, E. Snekkenes, and P. Bours, “Spoof attacks on gait authenti-
cation system,” IEEE Trans. Infom. Forensics and Security, vol. 2, no. 3,
pp- 491-502, Sept. 2007.

[10] E. Maiorana, P. Campisi, N. Gonzalez-Carballo, and A. Neri, “Keystroke
dynamics authentication for mobile phones,” in SAC’/1.

[11] A. Luca, A. Hang, F. Brudy, C. Lindner, and H. Hussman, “Touch me
once and i know it’s you! implicit authentication based on touch screen
patterns,” in CHI’12, May, Austin, TX 2012.

[12] F. Sandnes and X. Zhang, “User identification based on touch dynamics,”
in UIC/ATC’12, Fukuoka, Japan, Sept. 2012.

[13] L. Li, X. Zhao, and G. Xue, “Unobservable re-authentication for smart-
phones,” in NDSS’13, San Diego, USA, 2013.

[14] S. Azenkot, K. Rector, R. Ladner, and J. Wobbrock, “PassChords: Secure
multi-touch authentication for blind people,” in ASSETS’ 12, Boulder, CO,
Oct. 2012.

[15] N. Sae-Bae, K. Ahmed, K. Isbister, and N. Memon, “Biometric-rich
gestures: a novel approach to authentication on multi-touch devices,” in
CHI’12, Austin, TX, May 2012.

[16] M. Shahzad, A. Liu, and A. Samuel, “Secure unlocking of mobile touch
screen devices by simple gestures: You can see it but you can not do it,”
in MobiCom’13, Miami, USA, 2013.

[17] A. Aviv, K. Gibson, E. Mossop, M. Blaze, and J. Smith, “Smudge attacks
on smartphone touch screens,” in WOOT’10, Washington, DC, Aug. 2010.

[18] http://www.who.int/blindness/en/.

[19] http://www.afb.org/section.aspx?SectionID=15.

[20] http://dasalte.ccc.de/biometrie/fingerabdruck_kopieren?language=en.

[21] G. Bailador, C. Sanchez-Avila, J. Guerra-Casanova, and A. Sierra, “Anal-
ysis of pattern recognition techniques for in-air signature biometrics,”
Pattern Recognition, vol. 44, no. 10-11, pp. 2468-2478, Oct./Nov. 2007.

[22] J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan, “User evaluation
of lightweight user authentication with a single tri-axis accelerometer,”
in MobiHCI’09, Bonn, Germany, Sept. 2009.

, “uWave: Accelerometer-based personalized gesture recognition and
its applications,” Pervasive and Mobile Computing, vol. 5, no. 6, pp. 657—
675, Dec. 2009.

[24] J. Tian, C. Qu, W. Xu, and S. Wang, “Kinwrite: Handwriting-based
authentication using kinect,” in NDSS’13, San Diego, USA, 2013.

[25] M. Sherman, G. Clark, Y. Yang, S. Sugrim, A. Modig, J. Lindgvist,
A. Oulasvirta, and T. Roos, “User-generated free-form gestures for au-
thentication: Security and memorability,” in MobiSys’13, Bretton Woods,
USA, 2014.

[26] http://www.technologyreview.com/hack/425130/
pushing-the- limits-of- the-touch-screen/.

[27] M. Faundez-Zanuy, “On the vulnerability of biometric security systems,”
IEEE Aerospace and Electronic Systems Magazine, vol. 19, no. 6, pp.
3-8, June 2004.

[28] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition,” /EEE Transactions on Acoustics, Speech
and Signal Processing, vol. 26, no. 1, pp. 43-49, Feb. 1978.

[29] J. Sun, R. Zhang, J. Zhang, and Y. Zhang, “Touchin: Sightless two-factor
authentication on multi-touch mobile devices,” 2014. http://arxiv.org/abs/
1402.1216

[23]

444



