
Privacy-Preserving Social Media Data Outsourcing
Jinxue Zhang⇤, Jingchao Sun⇤, Rui Zhang†, Yanchao Zhang⇤, and Xia Hu‡

⇤School of Electrical, Computer and Energy Engineering (ECEE), Arizona State University
†Computer and Information Sciences Department, University of Delaware

‡Computer Science & Engineering, Texas A&M University
⇤{jxzhang, jcsun, yczhang}@asu.edu, †ruizhang@udel.edu, ‡hu@cse.tamu.edu

Abstract—User-generated social media data are exploding and

of high demand in public and private sectors. The disclosure

of intact social media data exacerbates the threats to user

privacy. In this paper, we first identify a text-based user-

linkage attack on current data outsourcing practices, in which

the real users in an anonymized dataset can be pinpointed

based on the users’ unprotected text data. Then we propose

a framework for differentially privacy-preserving social media

data outsourcing for the first time in literature. Within our

framework, social media data service providers can outsource

perturbed datasets to provide users differential privacy while

offering high data utility to social media data consumers. Our

differential privacy mechanism is based on a novel notion of ✏-text

indistinguishability, which we propose to thwart the text-based

user-linkage attack. Extensive experiments on real-world and

synthetic datasets confirm that our framework can enable high-

level differential privacy protection and also high data utility.

I. INTRODUCTION

User-generated social media data are exploding. Twitter, the
most popular microblogging service, generates 500 million
tweets per day by 328 million monthly active users as of
June 2017. Facebook, the largest online social network with
about 1.3 billion daily active users as of June 2017, generates
petabytes of data per day. People use social media platforms
to communicate with their friends, share their daily life
experiences, express their opinions on political/social events
and commercial products, etc.

Closely tied to human beings in the physical world, large-
scale social media data have tremendous usages by various
data consumers and have become one of the most profitable
resources for social media service providers [1]. For example,
companies use social media data to study customer behavior,
monitor public responses to their products, deliver online
advertisements more cost-effectively, and uncover the trends
that may impact their businesses; public policy makers explore
social media data to obtain the demographic information for
making strategic decisions; and sociologists leverage social
media data to study the social behavior and establish new
social network theories. In a typical social media mining
application, a data consumer demands a set of users and their
social media data (such as profiles, recent posts, and friends),
which satisfy some desirable criterion. For example, company
A may request the data of all the users who mentioned the
company name in the past week after a public relation crisis.

The disclosure of intact social media data exacerbates the
threats to user privacy. For example, many users mention their

vacation plans in publicly visible tweets without knowing that
criminals can exploit such information for targeted break-
ins and thefts [2]. Criminals may identify potential victims
nearby by directly browsing/searching social media platforms,
and smarter ones can explore the search APIs offered by
social media platforms. The data acquired in this traditional
way are only small and random samples of all the qualifying
data. For example, Twitter claims that their Search API only
“searches against a sampling of recent tweets published in the
past 7 days” [3]. If the criminals could access intact social
media data relevant to the target area, they can identify all
potential victims to plan large-scale break-ins. In addition,
social media mining applications are increasingly sophisticated
and powerful. If intact social media data are available, lots of
sensitive information the users do not explicitly disclose could
still be inferred, such as age [4], [5], location [6], [7], language
[8], and political preferences [9].

There is a natural conflict between data utility and user
privacy in social media data outsourcing. On the one hand,
data consumers want intact social media data to maximize the
data utility, which is also the most profitable case for social
media service providers. The maximum data utility is achieved
unfortunately at the biggest sacrifice of user privacy. On the
other hand, social media service providers are also motivated
to protect user privacy due to legal concerns, public relations,
and many other reasons. For example, they may intentionally
add random noise to the data before releasing. User privacy is
thus better protected but at the loss of data utility.

A growing body of work studies privacy-preserving out-
sourcing of social graphs and falls into two directions. The
first line of research [10], [11] aims at vertex privacy by
outsourcing social graphs with anonymous user IDs, and the
effort is to prevent the adversary from linking anonymous IDs
to corresponding users in the real social network. The other
line of research targets link privacy [12]–[14], and the main
effort is to outsource social graphs with real user IDs but
perturbed links by deleting real edges and adding fake ones.
Neither line of work considers the privacy of user data and
thus cannot be directly applied in our context.

In this paper, we propose a framework for privacy-
preserving social media data outsourcing. The framework
consists of a data service provider (DSP), numerous social
media users, and a lot of data consumers. The DSP can be
either a social media service provider itself such as Twitter
or Facebook, or a third-party data company such as Gnip and

DataSift which resells the data obtained from social media ser-
vice providers. Data consumers can be an arbitrary individual
or entity in public or private sectors. They are interested in
statistical information that can be mined from social media
data, rather than real user IDs. A data consumer submits a
data request to the DSP, which specifies the query conditions.
The DSP responds with social media data satisfying the query
conditions, in which each user is anonymized.

Although there can be various attacks on social media data
outsourcing, we consider a user-linkage attack as the first
effort along this line. In this attack, a malicious data consumer
attempts to link random or selected anonymous IDs in the
received data set to real IDs on the social media platform, so
he can obtain the latest social media data about the victims or
other sensitive information not covered by his previous query.
We assume that existing sophisticated techniques such as [10],
[12]–[14] are adopted to preserve both link privacy and vertex
privacy in the anonymized data set, so the attacker cannot
uncover real IDs based on either vertexes or edges.

Our defense against the user-linkage attack in this paper
consists of three steps. First, we map the intact data of all the
users into a high-dimensional user-keyword matrix. Second,
we add controlled noise to the user-keyword matrix to satisfy
differential privacy [15], the most popular privacy model lately.
Finally, the perturbed user-keyword matrix is disclosed to the
data consumer, where each user ID is anonymized. If the social
graph corresponding to the data set is also needed, existing
defenses such as [10], [12]–[14] should be adopted to preserve
both link privacy and vertex privacy. Our defense applies to
a wide range of social media applications. For example, the
data consumer can infer demographic information about the
target population from the perturbed data set.

Our contributions can be summarized as follows.
• We are the first to coin the problem of privacy-preserving

social media data outsourcing to the best of our knowl-
edge, for which a system model is also proposed.

• We propose a novel mechanism to guarantee differential
user privacy while maintaining high data utility in social
media data outsourcing. The popular Laplacian mecha-
nism to achieve differential privacy suffers from the curse
of dimensionality [16] and can bring huge noise to the
original dataset which significantly reduces data utility.
We define a new metric called ✏-text indistinguishability
whereby to design a mechanism to break this constraint.

• We thoroughly evaluate the proposed defense on a real-
world dataset with regard to user privacy and data utility.
Our results show that high-level privacy protection can
be achieved without significantly sacrificing data utility.
For example, we show that our mechnism can reduce the
privacy leakage by as much as 64.1% by reducing only
1.61% of utility in terms of classification accuracy.

II. PROBLEM STATEMENT

A. Social Media Data Outsourcing
We consider a system with three parties: social media users,

social media data service providers, and data consumers.

Social media users use the social media to connect with
their friends and/or ones they have followed and generate
the original texts which could be set either private or public.
Public users are searchable either directly via the social media
service provider’s website or APIs or from the external tool
such as Google. By setting his/her profile private, a private
user only allows the authenticated users to access the profile
and is not searchable from other users. However, the social
media service provider still has full access to all the private
and public data per user agreements.

The social media data service provider (or DSP for short)
hosts and provides most likely paid access to social media
data. A DSP can be a social media service provider such
as Twitter or Facebook itself. It can also be an emerging
third-party data company such as Gnip or DataSift, which
partners with social media service providers to provide social
media data services. For example, Gnip and DataSift both have
authorized access to Twitter’s Firehost engine whereby to have
access to complete, intact, and realtime Twitter data. The DSP
can outsource the data according to the privacy policies and
agreements which users consent to when signing up for using
social media services. Generally, the DSP has full rights to
use all the hosted data for their businesses and also share the
data with data consumers. For example, the DSP can sample
the whole user space according to data consumers’ requests,
assign an anonymous ID to each sampled user, process the
original data from each user according to data requests, and
finally deliver the processed data to data consumers.

Data consumers purchase social media data in the user-
keyword format from the DSP whereby to run various social
media mining algorithms for extracting useful information.
Other types of social media data such as timestamps are out
of this paper’s scope. A data consumer can be an individual, a
business, a government agency, a research institution, or any
other entity in public and private sectors who is aware of the
growing importance of social media data. A data consumer
typically sends to the DSP a request specifying its query
conditions, pays for the request, and then receives the user-
keyword data. For example, company A may request the data
of all the users in the west coast who have tweeted the keyword
“company A” in the past week. After receiving the data
from the DSP, it can explore advanced social media mining
algorithms to identify critical market trends and analyze the
users’ demographic information such as age, location, educa-
tion level, income level, marital status, occupation, religion,
and family size. Data consumer currently cannot obtain intact
social media data without the DSP’s support.

B. Adversary Model (User-Linkage Attack)
The DSP is assumed to be fully trusted by both social media

users and data consumers. Some advanced social media users
may be privacy-aware and have taken some actions to protect
their privacy. For example, the statistics in [17] and [18] show
that 11.84% of Twitter users and 52.8% of Facebook users set
their accounts private, respectively. As said, the DSP still has
access to the complete data despite the users’ privacy settings.

In addition, the users’ effort to protect their privacy fails in
the presence of the attack outlined below.

Our focus is to defend against the user-linkage attack, which
can be launched by a curious or even malicious data consumer.
Assume that the DSP has anonymized every user ID in the
dataset and also taken existing defenses such as [10], [12]–[14]
to guarantee link and vertex privacy. There are two possible
versions of the user-linkage attack. In the first version, the
attacker locates some target users by random browsing or
searching via public APIs on the social media platform. It
knows that these users must be in the received dataset under
anonymous IDs. Existing defenses only consider link and
vertex privacy via various obfuscation mechanisms, and no
attention has been paid to text data. Armed with the text data
of the target users with real IDs, the attacker can easily locate
the corresponding anonymous IDs in the dataset. In the same
way, the attacker can link the real IDs of the initial target
users’s friends to the corresponding anonymized IDs, and so
on. The attacker eventually can uncover all the mappings
between real and anonymous IDs in the dataset, despite the
DSP’s anonymization effort even based on existing advanced
defenses [10], [11]. In the second version, the attacker tries
to learn more beyond the received dataset. It starts by finding
some interesting posts/tweets in the anonymized dataset and
then easily locating the real users by performing simple text
matching on the social networks. Once the real users are
located, the attacker can learn their latest information.

C. Design Objectives

We consider the following problem within the aforemen-
tioned social media data outsourcing framework. After receiv-
ing a data query from the data consumer, the DSP searches
the entire social media database to generate a dataset D,
which contains all the users satisfying the query and their
outsourced texts (e.g., tweets, retweets, and replies) during
the period specified in the query. Each user in D is assigned
an anonymous ID to provide baseline user privacy. The data
consumer may also request the social graph associated with
D, in which case we assume that existing defenses such as
[10], [12]–[14] are adopted to preserve link and vertex privacy
such that it is infeasible to link an anonymous ID to the real
user based on his/her vertex’s graphical property in the social
graph. Our focus is to let the DSP transform the raw dataset
D into a new one D0 by perturbing the user texts according
to the following three requirements.

• Completeness: each data item in D can be mapped to a
unique item in D0, and vice versa. In other words, no
user is added to or deleted from D to create D0.

• Privacy Preservation: The user texts in D0 can be used to
link any anonymous ID in D0 to the real user with neg-
ligible probability, meaning that text-based user-linkage
attacks can be thwarted with overwhelming probability.

• High Utility: D0 and D should lead to comparable utility
at the data consumer on common data mining tasks such
as statistical aggregation, clustering, and classification.

III. DIFFERENTIALLY PRIVACY-PRESERVING SOCIAL
MEDIA DATA OUTSOURCING

In this section, we present a novel technique to achieve
differentially privacy-preserving social media data outsourc-
ing with the aforementioned design goals in mind. Inspired
by geo-indistinguishability from [19], which is proposed to
protect location privacy, we propose a novel notion of text-
indistinguishability as the foundation of our technique.

A. Text Modeling
As stated before, social media service providers such as

Facebook and Twitter currently outsource the original data
set D to the data consumer, which contains the intact user
texts. We assume that there are n users in D, each assigned an
anonymous ID. There are two obvious drawbacks here. First,
although this method can enable the maximum data utility, it
is vulnerable to the text-based user-linkage attack. Second, the
data consumer cannot directly use the original texts which are
highly unstructured and noisy, as mentioned in Section I. For
example, common machine learning algorithms such as SVM
and K-means require the input for each user to be a vector.
Therefore, from the perspectives of both privacy protection and
data usability, the DSP needs to transform each user’s texts
into a numerical vector. Here we introduce text modeling, a
standard process to achieve it.

We first remove stop words in a stop-word list,1 in which the
words such as “the” and “those” are considered more general
and meaningless. Then we conduct stemming [20] to reduce
inflected words to their stem forms such that the words with
different forms can be related to the same word. For example,
“play”, “playing”, and “played” are all reduced to “play”.

Next, we represent the keyword space for the cleansed texts
using a ⌧ -gram technique, which is widely used for statistical
text analysis. The ⌧ -gram technique splits a give message into
sequences of ⌧ contiguous words, each referred to as a ⌧ -gram
with ⌧ ranging from 1 to the message length. For example,
consider a tweet {“#SuperSunscreen is really useful, and I like
its smell”}. After removing stop words and performing stem-
ming, we have {“supersunscreen really useful like smell”}.
The corresponding 1-grams are {“supersunscreen”, “really”,
“useful”, “like”, “smell”}, and the corresponding 2-grams are
{“supersunscreen really”, “really useful”, “ useful like”, “like
smell”}. We let Ni denote the ⌧ -grams of tweet corpus for
each user i 2 [1, n] for all possible values of ⌧ . Then we
choose the top m most frequent ⌧ -grams in

S
1in Ni, each

of which is referred to as a keyword hereafter.
Finally, we use Term Frequency Inverse Document Fre-

quency (TF-IDF) [21] to derive each element Di,j in the
eventual dataset. Specifically, let �(j) be the number of
times a ⌧ -gram j appears in the ⌧ -gram list Ni of user i,
�⇤
i = maxj2Ni �(j), and �0(j) be the number of users whose

⌧ -gram lists contain j. We define

Di,j = (0.5 + 0.5 ⇤ �(j)

�⇤
i

) ⇤ log(n

�0(j)
) . (1)

1http://www.lextek.com/manuals/onix/

The above normalization is necessary because the users nor-
mally have very different tweet sets and thus different ⌧ -
gram lists. Interested readers are referred to [21] for more
details about TF-IDF. We abuse the notation by letting D =
[Di,j] 2 Rn⇥m denote the dataset after text modeling as well,
which is essentially an n ⇥m user-keyword matrix. We also
let Ui := hDi,1, . . . , Di,mi denote the text vector of user i

(i 2 [1, n]), i.e., the ith row in D.
It is a common practice to use 1-grams and 2-grams only for

high computational efficiency without significantly sacrificing
the analysis accuracy. So the keyword space and user-keyword
matrix can be constructed very quickly in practice. Also note
that the DSP needs to outsource the ⌧�gram name of each
column. Otherwise, the data consumer has no idea about the
physical meaning of the released data.

B. Why Differential Privacy?
The text model above has two important implications. First,

it makes the unstructured social media data structured by
reducing the keyword dimension from unlimited to m. Second,
since the keyword space is composed of the top m most
frequent ⌧ -grams, the users’ privacy has been largely improved
in contrast to the original intact text data. For example, when
a user has a tweet saying “The last class with students at
CSE561, #MIT”, the word “CSE561” or even “MIT” has
very low probability to be selected in the keyword space.
Therefore, this critical information has been hidden by the
text modeling process. The privacy threat, however, cannot
be completely eliminated. For instance, the 1-grams such as
“last”, “class”, and “student” may still be released. These
pieces of information can at least tell that the user is a
professor or teacher. By combining other text information such
as “computer” and “software,” the attacker can further link the
target user to a college professor teaching computer science.
Such inferences can be continued until the target is linked to
one or a few real IDs on the social media platform.

Differential privacy is a powerful technique to protect such
linkage attacks. Proposed by Dwork et al. [15], differential
privacy protects the individual user’s privacy during the sta-
tistical query over a database. If each user in the database
is independent, with any side information except the target
him/herself, the attacker cannot infer whether the target user is
in the database or which record is associated with him/her [22].
Providing arguably the strongest analytical protection for user
privacy, the differential privacy model can be more formally
defined as follows, which is tailored for our social media data
outsourcing framework.

Definition 1 (✏-Differential Privacy [15]). Given a query
function f(D) with an input dataset D 2 Rn⇥m and a
desirable output range, a mechanism K(·) with an output
range R satisfies ✏-differential privacy iff

Pr[K(f(D1)) = R 2 R]

Pr[K(f(D2)) = R 2 R]
 e

✏ (2)

for any datasets D1, D2 2 Rn⇥m that differ on only one row.

Here ✏ is the privacy budget. Large ✏ (e.g. 10) results in
large e

✏ and indicates that the DSP can tolerate large output
difference and hence large privacy loss (because the adversary
can infer the change of the database according to the large
change of the query function f(·). By comparison, small ✏

(e.g., 0.1, e0.1 = 1.1052) indicates that the DSP can tolerate
small privacy loss.

Differential privacy models can be interactive and non-
interactive. Assume that the data consumer intends to execute
a number of statistical queries on the same dataset. In the
interactive model, the data consumer submits to the DSP the
conditions for constructing the dataset D and also a desirable
statistical query function f . Instead of returning D to the user,
the DSP only responds with K(f(D)), where K(·) perturbs
the query result. In contrast, the DSP in the non-interactive
model designs a mechanism K(·) to transform the original
dataset D into a new dataset D0 = K(f(D)). Finally, D0

is returned to the data consumer which can execute arbitrary
statistical queries locally.

C. ✏-Text Indistinguishability: a New Notion
Our problem can be formulated according to a non-

interactive differential privacy model as follows. Let us use an
identity query fI(·) as the query function such that f(D) = D.
Our goal is to find a mechanism K(·) to transform the
original user-keyword matrix (or dataset) D into a new one
D0 = K(D) such that ✏-differential privacy can be achieved.
Instead of transforming the entire dataset D as a whole, a more
straightforward approach is to perform the transformation for
each row individually, i.e., adding noise to each row Ui 2 D
to produce a new row U

0
i 2 D0.

The Curse of Dimensionality. The Laplacian mechanism [15]
is a popular technique for providing ✏-differential privacy, but
it suffers from the curse of dimensionality. To see it more
clearly, recall that ✏-differential privacy is defined over the
query function f and unrelated to the dataset because Eq. (2)
holds for all possible datasets. What matters is the maximum
difference of f(D1) and f(D2) (8D1, D2 2 Rn⇥m), which is
called the sensitivity of the query function f defined as

S(f) = max kf(D1)� f(D2)k1 . (3)

As identity query fI(·) transforms each text vector in D to a
new vector in D0, the sensitivity can be further defined as

S(fI) = max kUi � Ujk1 (4)

where Ui 2 Rm and Uj 2 Rm are any two arbitrary vectors
based on TF-IDF (see Eq. 1).

The Laplacian mechanism can achieve ✏-differential privacy
by adding the Laplacian noise to the query result [15], i.e.,

KLp(fI(Ui)) = Ui + (Yi1, · · · , Yim), i = 1, . . . , n , (5)

where Yij are drawn i.i.d. from Lap(S(fI)/✏) / e
�✏|x|/S(fI).

The Laplacian mechanism unfortunately decreases the util-
ity of the transformed dataset. Specifically, the larger the
dimension m from the output of the identity query function
fI(·), the larger the sensitivity S(fI), the larger deviation of

the Laplacian noise. Moreover, the large noise accumulated
from the high dimension will be added to each single element
of KLp(fI(U)), leading to the so-called curse of dimension-
ality. Specifically, from the definition of the text vector Ui in
Eq. (1), the norm of each element in Ui should be less than
log(n)(⇡ 11.5 when n = 100000). When the dimension m

(e.g., 10000) is large enough, the added Laplacian noise has
deviation O(m), which can easily exceed the norm of original
text element (⇡ 11.5).
✏-Text Indistinguishability. The root cause of the curse of
dimensionality is that the noise added to a single element in
every text vector Ui (8i 2 [1, n]) is proportional with the L1-
sensitivity of Ui. To tackle this problem, we need to limit the
sensitivity of the whole text vector to the norm of the vector,
instead of the individual element.

To begin with, we need to generalize the concept of dif-
ferential privacy defined in Definition 1. The generalization
of differential privacy was first proposed by Andrés et al. for
location privacy [19], where the privacy budget is proportional
to the physical distance between any two users. They also
propose the concept of geo-indistinguishability such that the
service provider reports similar distribution with the difference
bounded by e

✏d(loc1,loc2) for any two users at locations loc1
and loc2, respectively. Inspired by this work, we let d(Ui, Uj)
denote the Euclidean distance between Ui and Uj , which are
any pair of text vectors in the user-keyword matrix D. We
further redefine the privacy budget as ✏d(Ui, Uj) and propose
the notion of ✏-text indistinguishability.

Definition 2 (✏-Text Indistinguishability). Given the user-
keyword matrix D = [Di,j] 2 Rn⇥m, a mechanism Kt(·)
satisfies ✏-Text Indistinguishability iff

Pr[Kt(Ui) = U
⇤ 2 Rm|Ui]

Pr[Kt(Uj) = U⇤ 2 Rm|Uj]
 e

✏d(Ui,Uj) , (6)

where Ui and Uj are any user text vector pair in D, and U
⇤

is a text vector in perturbed user-keyword matrix D0.

The above definition means that any two vectors Ui and
Uj in D can be transformed (or perturbed) by the mech-
anism Kt(·) into the same vector in D0 with probability
� e

�✏d(Ui,Uj). In other words, the more similar two text
vectors are, the more non-distinguishable they are after trans-
formation, and vice versa. The maximum privacy budget is
given by ✏rmax, where rmax denotes the maximum Euclidean
distance between two text vectors in D. As in the original ✏-
differential privacy mechanism, the larger the privacy budget,
the larger the privacy loss the DSP can tolerate, and vice versa.
Theorem 1 gives the upper bound of ✏rmax, based on which
the DSP can select ✏ to ensure an acceptable privacy budget.

Theorem 1. Given the user-keyword matrix D 2 Rn⇥m built
according to Eq. (1), the maximum Euclidean distance between
two text vectors is rmax

p
m log(n).

Proof. According to the definition in Eq. (1), a text vector U
has the maximum norm

p
m log(n) when each of its element

is equal to the maximum value log(n). It follows that rmax
kU1 � U2k kUk

p
m log(n).

The upper bound above is almost unreachable in practice, as
it requires that all the m keywords be used by only one user.
So rmax is far less than

p
m log(n). But if the DSP chooses ✏

according to
p
m log(n), the effective privacy budget for many

text-vector pairs is very small, implying that these text-vector
pairs are very likely to be indistinguishable after perturbation.

D. Achieving ✏-Text Indistinguishability

In this section, we propose a mechanism to achieve the ✏-
text indistinguishability. To this end, we first assume rmax to
be infinite and then finite.

1) Mechanism for Infinite rmax: The mechanism Kt(fI(·)),
designed for the identity query fI(·), maps each text vector
U 2 Rm of the dataset D to a new U

0 with the same dimension
m. To that end, we write the perturbed U

0 as:

U
0 = U + d⇥

where d is a random variable indicating the Euclidean distance
between U and U

0, and ⇥ is an m-dimensional random
vector drawn from the m-dimensional unit hypersphere. The
mechanism is then composed of two steps: the generation
of the magnitude and the direction. Since the drawing of ⇥
is straightforward, we focus on generating d. Similar to the
Laplacian mechanism [15], we let d deviate from the center
U by the Laplacian distribution,

g(d) = ✏e
�✏d (7)

where d ranges from zero to infinity. It is easy to check thatR +1
0 g(d) = 1.

The CDF of d is given by

C✏(d <= r) =

Z r

0
✏e

�✏x
dx = 1� e

�✏r
. (8)

The CDF above tells us how to generate a random d.
Specifically, given a user text vector U , we want to generate
a perturbed vector which has at most d Euclidean distance
from U . Since d follows the C DF defined in Eq. (8), given a
random probability p 2 [0, 1], we can obtain

d = C
�1
✏ (p) = � log(1� p)

✏
. (9)

We now show that the proposed mechanism satisfies ✏-text
indistinguishability.

Theorem 2. The mechanism Kt(fI(·)) defined above achieves
the ✏-text indistinguishability.

Proof. Given two user text vectors Ui and Uj , the probability
quotient of being perturbed to the same vector U⇤ is

Pr[U = U
⇤|Ui]

Pr[U = U⇤|Uj]
=

Pr[d(U⇤
, Ui)]⇥1

Pr[d(U⇤, Uj)]⇥2

= e
✏(d(U⇤,Ui)�d(U⇤,Uj)) e

✏(d(Ui,Uj)).

(10)

0 20 40 60 80 100
r

0

0.2

0.4

0.6

0.8

1
C

D
F

 = 0.8
 = 0.1
 = 0.08

Fig. 1: The CDF of d with
different ✏s.

0
104

1

100

rmax

102

2

10-10
100 10-20

Fig. 2: Determine ✏ by � and
rmax.

Here ⇥1 and ⇥2 can be canceled because both are drawn from
the m-dimensional unit hypersphere with the same probability,
and the inequity holds because of the triangle inequity.

2) Mechanism for Limited rmax: The mechanism Kt(fI(·))
in last section maps the user text vector U to U

0 with
potentially infinite distance. However, we have demonstrated
in Theorem 1 that any text vector pair have the Euclidean
distance bounded by rmax. Here we present how to truncate
the mapping into a specific rmax. We denote the corresponding
mechanism as Kr(fI(·)).

As we can see from Fig. 1, C✏(d = r) will approach to one
quickly as r increases.

Therefore, we define a tolerance parameter � to indicate
how much of CDF will be outside rmax. In other words,

1� � = C✏(d <= rmax) = 1� e
�✏rmax) ✏ = � log(�)

rmax
.

(11)
The algorithm of Kr(fI(·)) is listed in Alg. 1. Given the

tolerance parameter � and rmax, Line 1 computes the ✏ by
Eq. 11. Then for each Ui in the dataset D, we draw the noise
vector d⇥ by two steps: (1) obtain the magnitude in Line 3
by r = C

�1
✏ (p), and (2) compute the direction ⇥ in Line

4 by drawing a random vector from the unit m-dimensional
hypersphere. Line 5 adds the noise to get U 0.

Algorithm 1: Perturbation alg. for mechanism Kr(fI(·))
Input : rmax, �,D = {U1, . . . , Un}
Output: Perturbed dataset D0 = {U 0

1, . . . , U
0
n}

1 Compute ✏ according to Eq. (11);
2 For each Ui, i = 1, . . . , n ;
3 Select a random number p 2 [0, 1], and compute the

radius d according to Eq. (9) ;
4 Select a random vector N 2 Rm, and normalized it

to have unit L2 norm, i.e., ⇥ = N/kNk2 ;
5 U

0
i = Ui + d⇥ ;

We also show that the mechanism Kr(fI(·)) achieves the
✏-text indistinguishability.

Theorem 3. The mechanism Kr(fI(·)) defined above achieves
the ✏-text indistinguishability within rmax.

Proof. For each text vector U , with the probability of 1� �,
the perturbed text vector U

0 has the Euclidean distance less

or equal to rmax from U . The rest steps follow the proof of
Theorem 2, and the conclusion holds.

E. Performance Analysis
1) Privacy budget: As shown in Eq. (11), ✏, which is the

constant scale of the privacy budget ✏d, can be determined
by � and rmax, as shown in Fig. 2. As we can see, for rmax

from 1 to 104 and � from 1 to 10�16, ✏ is always less than 2.
Moreover, since ✏ is reversely proportional to rmax, the whole
privacy budget ✏d is less than � log(�) (because d rmax),
which is relatively small. The small privacy budget is critical
for differential privacy mechanisms because a large budget
result in a large privacy loss.

2) Break the Curse of Dimensionality: As stated in Sec-
tion III-C, the original ✏-differential privacy notion and the
corresponding Laplacian mechanism suffer from the curse of
dimensionality. The reason is that the noise strength added to
each element in the text vector has a scale of S(fI)/✏, where
S(fI) is the L1 sensitivity of the text vector and proportional
to the dimension m. We now estimate the scale of the noise
strength for the mechanism Kr(fI(·)).

Theorem 4. Given a text vector U 2 Rm, by applying the
mechanism Kr(fI(·)), the expected noise strength for each
element in U is unrelated to the dimension m.

Proof. Please check our full version [23].

Moreover, by setting the � to extremely small (e.g., 10�16),
the upper bound approaches 1. Note that according to Theo-
rem 1, this upper bound is rather loose. Therefore, the expected
noise strength for each element is far less.

3) (↵, �)-usefulness: The mechanism Kr(fI(·)) also satis-
fies (↵, �)-usefulness defined by [24].

Definition 3 ((↵, �)-usefulness). A ✏-text indistinguishability
mechanism K satisfies (↵, �)-usefulness iff for every user text
vector U , with the probability at least �, the perturbed text
vector U

0 satisfies d ↵.

Theorem 5. The mechanism Kr(fI(·)) defined above achieves
the (↵, �)-usefulness.

Proof. It can be easily seen from the CDF of d in Eq. (8).

IV. EVALUATION

In this section, we use both a real-world dataset and
simulations to evaluate the proposed ✏-text indistinguishability
mechanism Kr(fI(·)) in three aspects: the privacy and useful-
ness, the utility on a typical ML task, and the defense against
user-linkage attacks.

A. Dataset
As stated before, the data consumer aims to use the social

media data to do the demographics analysis. Here we use a
ground truth Twitter user dataset with known age information
similar to [5]. Specifically, a user A has age x if one of
his friends has posted a tweet with the format “Happy x-
birthday to A”. We used Twitter Streaming API to monitor

0 5000 10000
m

200

400

600

800

1000
r m

ax
 lo

os
e

bo
un

d

Fig. 3: The loose upper bound
of rmax.

0 5000 10000
m

10

20

30

40

50

60

r m
ax

0

0.01

0.02

0.03

N
oi

se
 s

tre
ng

th

Fig. 4: The real rmax and the
noise strength for each ele-
ment.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

rmax = 50
rmax = 100
rmax = 150

(a) � = 10�8

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

 = 10-16

 = 10-8

 = 10-4

(b) rmax = 100

Fig. 5: The usefulness of the mechanism.

10-1610-1310-1010-710-410-1
0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy Original

rmax = 50
rmax = 100
rmax = 150

(a) m = 1000

102 104

rmax

0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy Original

 = 10-16

 = 10-8

 = 10-4

(b) m = 1000

10-1610-1310-1010-710-410-1
0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy Original

rmax = 50
rmax = 100
rmax = 150

(c) m = 5000

102 104

rmax

0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy Original

 = 10-16

 = 10-8

 = 10-4

(d) m = 5000

Fig. 6: The performance of classification.

these tweets and the ground-truth users. We then manually
check the consistency between the claimed age information
and the tweets they have posted to. Finally, we found 5,710
users, which consist of 2,855 users who are at least and less
than 25 years old, respectively. We crawled one year of their
recent tweets and obtained 3,363,706 tweets. We then removed
the stopping words and conducted the stemming as stated in
Section III-A, and built the TF-IDF matrix according to Eq. (1)
for the following experiments. Because of the randomness
during the noise generation, we run each of the experiment
100 times and report the average results.

B. Privacy and Usefulness

We first check rmax in the real-world dataset above. Fig. 3
shows the loose upper bound with different dimension m

stated in Theorem 1. We set the number of users n = 5710.
The upper bound is a sublinear function with m, and increases
from 200 to 1000 when m ranges from 1000 to 10000.

We also measure rmax in the dataset as shown in Fig. 4.
Specifically, we compute rmax as the maximum L2 norm of
each row vector from the dataset D. As we can see, although
the rmax increases sublinearly with m, it is much less than the
upper bound in Fig. 3. The reason is twofold. First, as we built
the TF-IDF dataset by choosing the most m frequent grams,
the IDF term in Eq.(1) is much less than log(n). Second, the
TF part is less than

p
m as the text vector is sparse (each user

has only used limited grams when m is large).
Given rmax, Fig. 4 demonstrates that the expected noise

strength added for each single element in the text vector is
fairly stable with the dimension m, which is consistent with
Theorem 4. Moreover, the expected noise strength ranges from
0.02 to 0.03, and is comparable to the original data. Therefore,

the proposed mechanism can tolerate an arbitrary dimension,
i.e., breaking the curse of dimensionality.

Fig. 5a and Fig. 5b show the (↵, �)-usefulness of the
mechanism at different rmax and �, respectively. As we
can see, with probability �, the distance of the original and
perturbed text vector is within ↵, which verifies Theorem 5.

C. Performance on Classification

We evaluate the mechanism on classification, one of the
typical applications from the machine learning community. As
stated before, each user has the ground-truth age information.
We can then build a binary classifier to determine whether a
user is younger than 25 years old or not. We use the SVM
algorithm to evaluate the performance on both the original and
the perturbed datasets by ten-fold cross validation.

Fig. 6a demonstrate the accuracy with �. The straight and
crooked lines represent the original and perturbed datasets,
respectively. As we can see, the smaller �, the higher the
performance for the perturbation mechanism. This result is
expected as Theorem 4 indicates that the smaller �, the less
the noise added to the original dataset. However, small � will
increase the privacy budget scale ✏ and hence the privacy loss.

Fig. 6b demonstrates the accuracy of the original dataset
(straight line) and the perturbed datasets with rmax (crooked
curves). It shows that the smaller rmax, the better the accuracy
because smaller rmax will incur less noise. However, less noise
will cause a high privacy loss because the attacker can infer
the victim given the huge difference of two perturbed vectors.

Fig. 6c and Fig. 6d show the classification performance on
m = 5000. As we can see, both figures show the similar trend
for m = 1000, meaning that the mechanism works well at
various dimensions. Moreover, the performance when m =

0 200 400 600 800 1000
disclosed keywords

0

0.2

0.4

0.6

0.8

1

In
fe

re
nc

e
ra

te

Original
Perturbed

(a) K = 1, rmax = 100

0 200 400 600 800 1000
disclosed keywords

0

0.2

0.4

0.6

0.8

1

In
fe

re
nc

e
ra

te

Original
Perturbed

(b) K = 10, rmax = 100

0 200 400 600 800 1000
disclosed keywords

0

0.2

0.4

0.6

0.8

1

In
fe

re
nc

e
ra

te

Original
Perturbed

(c) K = 1, rmax = 200

0 200 400 600 800 1000
disclosed keywords

0

0.2

0.4

0.6

0.8

1

In
fe

re
nc

e
ra

te

Original
Perturbed

(d) K = 10, rmax = 200

Fig. 7: The performance of inference attack I.

0 4 8 12 16 20
s: the reverse attack strength

0

0.2

0.4

0.6

0.8

1

In
fe

re
nc

e
ra

te

Original
Perturbed

(a) K = 1, rmax = 100

0 4 8 12 16 20
s: the reverse attack strength

0

0.2

0.4

0.6

0.8

1

In
fe

re
nc

e
ra

te

Original
Perturbed

(b) K = 10, rmax = 100

4 8 12 16 20
s: the reverse attack strength

0

0.2

0.4

0.6

0.8

1

In
fe

re
nc

e
ra

te

Original
Perturbed

(c) K = 1, rmax = 200

4 8 12 16 20
s: the reverse attack strength

0

0.2

0.4

0.6

0.8

1

In
fe

re
nc

e
ra

te

Original
Perturbed

(d) K = 10, rmax = 200

Fig. 8: The performance of inference attack II.

5000 is slightly better than that when m = 1000. The reason
is that more keywords lead to better classification.

D. Defense Against User-Linkage Attacks

Our mechanism is designed to defend against the user-
linkage attack. The definition of ✏-text indistinguishability
in Definition 2 and the corresponding mechanism in Alg. 1
show that any user can be perturbed to other text vector with
certain probability. Therefore, the perturbation can make the
user-linkage attack more difficult to conduct. To evaluate the
effectiveness of our mechanism, we need to model the strength
of the attacker in terms of user inference. We consider two
attack models here.

In inference attack I, we assume that the attack knows t

elements of the victim’s text vector, and t vary from 0 to
m. We then build an estimated vector U

0 by keeping these
t elements and setting other unknown elements to zero, and
check whether the estimated vector U

0 is in the K-nearest
vector set in both the original D and the perturbed D0. It
is expected that the larger the t, the stronger the attack, the
higher the inference rate. We set m = 1000 and � = 10�8. We
conduct the experiment by 1000 times and report the average.

Fig. 7 shows the inference rate among the 1-nearest and
10-nearest vectors for rmax = 100 and 200. We can make
two observations. First, all the four curves show that the
perturbation makes the user linkage attack much more difficult.
Specifically, when the t increase from 300 to 600, the inference
rate increase quickly from 0 to 100% for the original dataset.
The inference rate then stay at approximate 100% when t

is larger than 600. By comparison, the inference rate for
the perturbed dataset is at most 68.8% for rmax = 100
(K = 10) and 44.6% for rmax = 200 (K = 10), respectively.

Second, Fig. 7 demonstrate the tradeoff between the privacy
and usefulness for rmax. Specifically, on the one hand, the
mechanism’s inference rate for rmax = 200 is less than the
rate for rmax = 100 because larger rmax results in larger
noise and hence higher-level privacy protection. On the other
hand, larger rmax results in lower classification performance
as indicated in Fig. 6. The tradeoff also holds for �.

Moreover, users’ privacy has not largely sacrifice the utility.
For example, as a typical setting, when rmax = 100 and
� = 10�8, the inference rate with t = 600 and K = 10
is 35.9%, and the classification accuracy is reduced by only
1.61%. Therefore, the mechanism can achieve high privacy
with little utility loss.

In inference attack II, we assume that the attack knows the
noisy but the whole text vector of the victim. To that end, we
randomly select a victim vector U⇤ from D, add a noise vector
N with the magnitude s where 1/s is the attack strength, and
then check whether the noisy vector Ũ = U

⇤ + N is in the
K-nearest vector set in both the original D and the perturbed
D0. We use the Euclidean distance to represent the difference
between any vector pair. Obviously, it is expected that the
weaker the attack strength, the higher the inference rate.

Fig. 8 show the inference rate among the 1-nearest and 10-
nearest vectors for rmax = 100 and 200. We can make the
similar observations as in the inference attack I. First, the
perturbation algorithm makes the user linkage attack much
more difficult. Specifically, when the reverse attack strength s

increases, the inference rate for the perturbed dataset decreases
to about 30% for K = 1 and 40% for K = 10, meaning
that the attacker has limited power to infer the victim. By
comparison, the inference rate for the original dataset is always
100% when s is less than 17. The reason is each user text

vector is very distinguishable. When s > 17, the inference
for the original dataset decreases dramatically because the
measured rmax for this dataset is 15.1 for m = 1000, as
indicated in Fig. 4. Second, Fig. 7 demonstrate the tradeoff
between the privacy and usefulness in terms of rmax, and
users’ privacy has not largely sacrifice the utility. For example,
as a typical setting, when rmax = 100 and � = 10�8, the
inference rate with s = 15 and K = 10 is 47.7%, and the
classification accuracy is reduced by only 1.61%.

Note that there is a peak point for the inference rate on
the perturbed dataset in Fig. 8. This is because that the
perturbation also adds the noise vector in the similar way as
in the inference attack II. For different rmax, the perturbed
vectors have different Euclidean distance from the original
vectors. Recall that U

0 and Ũ are the perturbed vector and
the estimated vector from the attacker for the victim U

⇤,
respectively. When the difference of d(U⇤

, Ũ) and d(U⇤
, U

0)
is small, the inference rate will increase. However, in reality,
the attacker has little knowledge on the whole text vector for
the victim, and it is difficult to conduct this type of inference.

V. RELATED WORK

Social media platforms host both network and text infor-
mation, of which the privacy threats both have been widely
studied. For the privacy threat from network information,
existing results show that an anonymous social graph can
be de-anonymized by seed information [25], [26], knowledge
graph [27], and the community structures [28]. As for the
privacy threat from text information, sophisticated machine
learning algorithms can be used to infer a lot of sensitive
information, such as age [4], [5], location [6], [7], language
[8], and political preference [9].

On the defense side, the research community only attempts
to protect user privacy from the perspective of network infor-
mation. The research efforts fall into two directions. The first
line of research [10], [11] aims at protecting vertex privacy
by outsourcing social graphs with anonymized user IDs, and
the research effort is to prevent the adversary from linking
anonymized IDs to corresponding real IDs in the real social
network. The other line of research targets link/edge privacy,
and the research effort is to outsource social graphs with real
user IDs but perturbed edges by outsourcing an obfuscated
social network to protect users’ privacy [12]–[14]. Our paper
is the first to protect the privacy from the text information and
is complementary to these efforts.

Privacy-preserving data outsourcing has been thoroughly
studied and surveyed in [29]. These techniques such as such as
k-anonymity and l-diversity focus on the traditional database
and cannot handle unstructured social media data.

ACKNOWLEDGEMENT

This work was supported by US Army Research Office
(W911NF-15-1-0328), Defense Advanced Research Projects
Agency (N66001-17-2-4031) and National Science Foun-
dation (CNS-1619251, CNS-1514381, CNS-1421999, CNS-

1320906, CNS-1700032, CNS-1700039, CNS-1651954 (CA-
REER), CNS-1718078, IIS-1657196, IIS-1718840).

REFERENCES

[1] P. Gadkari, “How does twitter make money?” Nov. 2013. [Online].
Available: http://www.bbc.com/news/business-24397472

[2] H. Mao, X. Shuai, and A. Kapadia, “Loose tweets: An analysis of
privacy leaks on twitter,” in WPES, Chicago, IL, Octo. 2011.

[3] Twitter, “Twitter api.” [Online]. Available: https://dev.twitter.com/rest/
public

[4] R. Dey, C. T., K. R., and N. S., “Estimating age privacy leakage in
online social networks,” in INFOCOM, 2012.

[5] J. Zhang, X. Hu, Y. Zhang, and H. Liu, “Your age is no secret: Inferring
microbloggers’ ages via content and interaction analysis,” in ICWSM,
Cologne, Germany, May 2016.

[6] R. Li, S. Wang, H. Deng, R. Wang, and K. Chang, “Towards social user
profiling: Unified and discriminative influence model for inferring home
locations,” in KDD, Beijing, China, Aug. 2012.

[7] J. Zhang, J. Sun, R. Zhang, and Y. Zhang, “Your actions tell where
you are: Uncovering twitter users in a metropolitan area,” in IEEE CNS,
Florence, Italy, Sep. 2015.

[8] D. Nguyen, R. Gravel, D. Trieschnigg, and T. Meder, “”how old do
you think i am?”; a study of language and age in twitter,” in ICWSM,
Boston, IL, Jul. 2013.

[9] X. Chen, Y. Wang, E. Agichtein, and F. Wang, “A comparative study of
demographic attribute inference in twitter,” in ICWSM, Oxford, England,
May 2015.

[10] C.-H. Tai, P.-J. Tseng, P. S. Yu, and M.-S. Chen, “Identities anonymiza-
tion in dynamic social networks,” in ICDM.

[11] G. Wang, Q. Liu, F. Li, S. Yang, and J. Wu, “Outsourcing privacy-
preserving social networks to a cloud,” in INFOCOM, 2013.

[12] P. Mittal, C. Papamanthou, and D. Song, “Preserving link privacy in
social network based systems,” in NDSS, San Diago, CA, Feb. 2013.

[13] C. Liu and P. Mittal, “Linkmirage: How to anonymize links in dynamic
social systems,” in NDSS, San Diago, CA, Feb. 2016.

[14] F. Ahmed, A. X. Liu, and R. Jin, “Social graph publishing with privacy
guarantees,” in ICDCS, 2016.

[15] C. Dwork, “Differential privacy,” in Automata, languages and program-
ming.

[16] R. Bellman, Dynamic Programming. Dover Publications, 2003.
[17] “An exhaustive study of twitter users across the world,” Oct. 2012.

[Online]. Available: http://temp.beevolve.com/twitter-statistics/
[18] R. Dey, Z. Jelveh, and K. Ross, “Facebook users have become much

more private: A large-scale study,” in IEEE PERCOM Workshops, 2012.
[19] M. Andrés, N. Bordenabe, K. Chatzikokolakis, and C. Palamidessi,

“Geo-indistinguishability: Differential privacy for location-based sys-
tems,” in CCS, Berlin, Germany, 2013.

[20] M. Porter, Readings in information retrieval. Morgan Kaufmann
Publishers Inc., 1997, ch. An algorithm for suffix stripping, pp. 313–316.

[21] J. Leskovec, A. Rajaraman, and J. Ullman, Mining Massive Datasets.
Cambridge University Press, 2014, ch. Data Mining, pp. 7–9.

[22] C. Liu, S. Chakraborty, and P. Mittal, “Dependence makes you vulnera-
ble: Differential privacy under dependent tuples,” in NDSS, San Diego,
CA, Feb. 2016.

[23] J. Zhang, J. Sun, R. Zhang, Y. Zhang, and X. Hu, “Privacy-
preserving social media data outsourcing.” [Online]. Available:
http://cnsg.asu.edu/papers/jxzhangINFOCOM18Full.pdf

[24] A. Blum, K. Ligett, and A. Roth, “A learning theory approach to
non-interactive database privacy,” in STOC, Victoria, British Columbia,
Canada, 2008.

[25] A. Narayanan and V. Shmatikov, “De-anonymizing social networks,” in
SP, 2009.

[26] S. Ji, W. Li, N. Z. Gong, P. Mittal, and R. Beyah, “On your social
network de-anonymizablity: Quantification and large scale evaluation
with seed knowledge.” in NDSS, San Diago, CA, Feb. 2015.

[27] J. Qian, X. Y. Li, C. Zhang, and L. Chen, “De-anonymizing social
networks and inferring private attributes using knowledge graphs,” in
INFOCOM, 2016.

[28] S. Nilizadeh, A. Kapadia, and Y.-Y. Ahn, “Community-enhanced de-
anonymization of online social networks,” in CCS, Scottsdale, AZ, 2014.

[29] B. Fung, K. Wang, R. Chen, and P. Yu, “Privacy-preserving data
publishing: A survey of recent developments,” ACM Computing Surveys
(CSUR), vol. 42, no. 4, pp. 14:1–14:52, 2010.

