
Information Sciences 479 (2019) 372–385

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Verifiable outsourced computation over encrypted data

Xixun Yu

a , Zheng Yan

a , b , ∗, Rui Zhang

c

a State Key Lab on Integrated Services Networks, School of Cyber Engineering, Xidian University, Xi’an, 710071, China
b Department of Communications and Networking, Aalto University, Espoo, 02150, Finland
c Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716, USA

a r t i c l e i n f o

Article history:

Received 15 July 2018

Revised 30 September 2018

Accepted 13 December 2018

Available online 17 December 2018

Keywords:

Outsourced computation

Verifiability

Privacy preservation

Fully homomorphic encryption

Polynomial factorization algorithm

a b s t r a c t

In recent years, cloud computing has become the most popular and promising service

platform. A cloud user can outsource its heavy computation overhead to a cloud service

provider (CSP) and let the CSP make the computation instead. In order to guarantee the

correctness of the outsourced processing (e.g., machine learning and data mining), a proof

should be provided by the CSP in order to make sure that the processing is carried out

properly. On the other hand, from the security and privacy points of view, users will al-

ways encrypt their sensitive data first before they are outsourced to the CSP rather than

sending the raw data directly. However, processing and verifying of encrypted data com-

putation has always been a challenging problem. Homomorphic Encryption (HE) has been

proposed to tackle this task on computations over encrypted data and ensure the confi-

dentiality of the data. However, original HE cannot provide an efficient approach to verify

the correctness of computation over encrypted data that is processed by CSP. In this pa-

per, we propose a verifiable outsourced computation scheme over encrypted data with the

help of fully homomorphic encryption and polynomial factorization algorithm. Our scheme

protects user data security in outsourced processing and allows public verification on the

computation result processed by CSP with zero knowledge. We then prove the security of

our scheme and analyze its performance by comparing it with some latest related works.

Performances analysis shows that our scheme reduces the overload of both the cloud users

and the verifier.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Recent years have witnessed the growing adoption of cloud computing, which allows cloud users to remotely store and

process their data in the cloud in order to reduce local storage and computational overhead [28,29] . Meanwhile, it has

become increasingly possible for sensitive data of the cloud users to be exposed to the cloud service provider (CSP) or the

attacker. Protecting the security and privacy of the users’ data normally requires the data be encrypted before being out-

sourced to the CSP [43–46,48] . Nevertheless, encrypted data makes their computation and processing in the cloud extremely

difficult. This fact retards the cloud computing to be widely applied into many applications, such as machine learning and

data mining that request privacy protection. Homomorphic Encryption (HE) mechanism was proposed to solve this problem

[18,19] . Schemes (such as RSA, ElGamal, Paillier, etc.) support either additive or multiplicative homomorphism, which can be

used to realize cloud computing in certain scenarios for some specific mathematical operations. However, in most general
∗ Corresponding author.

E-mail addresses: gabrielyu@126.com (X. Yu), zyan@xidian.edu.cn , zheng.yan@aalto.fi (Z. Yan), ruizhang@udel.edu (R. Zhang).

https://doi.org/10.1016/j.ins.2018.12.022

0020-0255/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ins.2018.12.022
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2018.12.022&domain=pdf
mailto:gabrielyu@126.com
mailto:zyan@xidian.edu.cn
mailto:zheng.yan@aalto.fi
mailto:ruizhang@udel.edu
https://doi.org/10.1016/j.ins.2018.12.022

X. Yu, Z. Yan and R. Zhang / Information Sciences 479 (2019) 372–385 373

scenarios, computations that are outsourced to the cloud consists of multiple mathematical operations instead of specific

single one. In order to carry out these computations in an encrypted form, the algorithms in the cloud should be fully ho-

momorphism, while many traditional encryption algorithms cannot support this property. Fully Homomorphic Encryption

(FHE) [24] provides a meaningful approach to this problem. It enables to carry out meaningful computations on polyno-

mials in the encrypted form. Although FHE seems theoretically perfect, it requests huge storage consumption and heavy

computation overhead and is thus not very efficient to be applied in many power-limited devices.

On the other hand, cloud users also have serious concerns about the correctness of the data computation results

[13,27,47] . To address such concerns, the users desire the CSP to provide a commitment for its computation result

whereby the users can verify the correctness of the result. In the area of verifiable computation, several solutions such

as [5,6,14,25,30,34,35,37,38,42,49] have been proposed to tackle this problem. In these schemes, a client user outsources

his computation task to a worker in the cloud, which in turn carries out the computations and generates a commitment to

the computation result at the same time. The users can then verify the result using the commitment to verify whether the

worker processes the computation properly. Unfortunately, all these schemes require the user’s private information (such

as secret keys, etc.) to perform the verification, which means that only the user himself can verify the result. In order to

improve the efficiency and transparency of verification, it is preferred that the users can also outsource the verification task

to a trusted third party or the public. In this situation, considering the security of users’ data, it requires that the com-

mitment should not contain any additional information other than what is required to verify the computation result. Along

with this direction, Setty et al. [38] propose a scheme to realize public verification by using Quadratic arithmetic program

and Elliptic curve encryption. Their scheme has the advantage that the commitment is of constant size no matter how many

computations are executed, but unfortunately cannot guarantee the security of user data.

Although various effort s have been made to tackle the above two challenges, they suffer from some inherent limitations.

First, most of the existing works are designed for specific frameworks and cannot be used in other scenarios. It means that

even a small change in the framework may cause a failure to the schemes owing to their specific designs. Second, most

of the works cannot support public verification, as they always require some users’ private information to carry out the

verification. Revealing such private information makes it possible for the attackers to launch various attacks on the users to

intrude their privacy.

In order to securely execute the computations in the cloud in a general scenario and guarantee the correctness of cloud

computing through public verification by preserving cloud user data privacy, we propose a verifiable outsourced computa-

tion scheme over encrypted data by utilizing a Trusted Authenticator (TA) and a Public Auditor Proxy (PAP). In our scheme,

the outsourced data are first encrypted using a fully homomorphic encryption scheme and then sent to the CSP for further

computation. Thanks to the participant of TA, the computation result is re-encrypted before it is sent to the requesting party

(RP) to reduce the computation overhead of the RP. During the audit of computation result, the PAP can verify the correct-

ness of the computation and issue the audit result to the RP by cooperating with the TA without disclosing the plaintext of

the outsourced data. Specifically, our contributions in this paper can be summarized as follows.

• An end-to-end system for efficiently verifying computations performed by cloud service provider over encrypted data. It

includes a computation procedure that performs the computations in ciphertexts and a verification procedure that first

transforms the outsourced function into a verification function and then let the public verify the computations by this

function. Moreover, The privacy of the cloud users’ data is preserved against the public verifiers in our scheme.
• We formally prove the security of our scheme and evaluate the performance of our scheme and show its efficiency and

feasibility in cloud computing. The verification overhead of our system mainly depends on the number of variables in

the computation function.

The rest of the paper is organized as below. In Section 2 , we briefly discuss the related works in the research field of

verifiable computation. In Section 3 , we introduce the preliminaries of our scheme. In Section 4 , we formulate the problem

and introduce our design goals, followed by the detailed design of our proposed scheme. We present our proposed scheme

in detail in Section 5 . In Section 6 , we perform a comprehensive analysis and conduct performance evaluation. Finally, we

conclude our paper and suggest future work in the last section.

2. Related works

In this section, we discuss some work most germane to our work in verifiable computation and homomorphic computa-

tion.

2.1. Verifiable computation

2.1.1. Probabilistically checkable proofs (PCPs)

PCP-based schemes were first proposed to solve the problem of verifiable computation [37] . PCP-based schemes allow a

user to verify the computation result provided by the CSP, but the user has to store a large amount of information locally

to allow subsequent verification of the computation results. Although these schemes provide theoretical security guarantee,

they incur significant computational costs at the user side, which limits their applicability in practice. The follow-up work

[34,38] improves the original PCP scheme by reducing the computational cost. Taking advantage of parallel operations, these

374 X. Yu, Z. Yan and R. Zhang / Information Sciences 479 (2019) 372–385

Table 1

Scheme comparison.

Schemes PCPs[13] GGP[12] FHE[2] Our scheme

Computation confidentiality × × √ √

Public verifiability
√ √ × √

Note: × - not supported;
√

- supported.

schemes incur low computational cost for verification. However, the workload at the prover in these schemes is quadratic

to the size of the initial computation owing to the usage of Hadamard PCP [34] . Since these schemes require that the

computation be outsourced in batch, the verification process has to wait for all the batches to return before it can decide.

The verifiers are designated in the system so that one must have a secret key to verify the result. Furthermore, these

schemes cannot guarantee the correctness of computations over encrypted data.

2.1.2. Non-interactive verifiable computation (GGP)

Non-interactive verifiable computation is another approach for verifiable computation. It was first introduced by Gennaro

et al. [21] to allow a weak client to outsource its computation to a powerful worker, which computes the result and gener-

ates a commitment for its correctness. With the commitment, the clients can verify the correctness of the returned result.

Obviously, the schemes work on the condition that the computational cost of the verification and preparation should be

lower than carrying out the computation locally. A number of works were then proposed to increase the efficiency of the

scheme [6,7,16,21,26,31,41] , both in specific scenarios and a generic scenario. However, these schemes are still not practical

due to high computation complexity.

Quadratic Arithmetic Programs (QAPs) proposed by Parno et al. [33] and Thaler [40] is an efficient approach to verify

the computations processed by a third distrusted party. It can be easily used in a Ginger’s cryptographic framework [38] to

realize efficient verifiable computation. Taking advantage of both techniques, it is possible to adapt to the real world. How-

ever, it still has the security concern that the verifier has to know the secret key to conduct verification, which limits the

usage of the scheme due to privacy intrusion.

2.2. Homomorphic computation

2.2.1. Fully homomorphic encryption

Fully Homomorphic Encryption (FHE) [24] is a newly proposed cryptography algorithm that can increase the security

of outsourced computation. Its concept is to directly perform computations on ciphertext inputs, which can compute out

the encrypted version of the result computed on the same plaintext input corresponding to a function F . Obviously, this al-

gorithm can be used to construct privacy-preserving outsourced computation schemes and verifiable computation schemes.

While the computational complexity and storage consumption of these algorithms are heavy for it to be used in the real

world at its early research stage. In order to bring this technique into practice, many schemes [6,16,20,32] take place to ei-

ther increase the efficiency of the original schemes or construct FHE systems based on other simpler theories. Some schemes

[20] use parallel processing techniques (such as Map-reduce) to apportion the computational overhead of FHE.

2.2.2. Homomorphic authenticator

Homomorphic authenticator [12,16,22] is a concurrent work in the area of verifiable computation. Instead of making

calculations on initial input data. It first generates a tag on input data, and then use these tags as inputs to outsource to

the cloud workers, the workers can directly compute the outsourced function using these tags, and the result tag of the

computation is the one that authenticates the same computation result of the initial input data. Catalano and Fiore [11] first

introduced the concept of fully homomorphic Message authenticators (MACs) and they proposed a scheme to realize it.

However, the scheme is not secure if an adversary asks to query the verification. Canetti et al. [10] then proposed another

homomorphic MAC scheme to defend this kind of attacks, but their scheme can only be used in some specific classes of

computations.

Concepts and schemes such as multi-function verifiable computation [6,15,39] and multi-client verifiable computation

[23,25] were proposed as follow-up works in this area. They further increase the utility of verifiable computation in the

real world. However, most of these studies still cannot guarantee the security of the system if there happens to be collusion

between malicious servers and clients.

Notably, there are no existing schemes that can generically support both computation security and public verification in

this research field. As shown in Table 1 , we notice that PCPs and GGP only support verification, while FHE only supports

outsourced computation security. Although FHE has the potential to realize the expected properties, such as generality and

publicity. It seems inflexible and ineffective to reuse the scheme again as a manner of verification.

X. Yu, Z. Yan and R. Zhang / Information Sciences 479 (2019) 372–385 375

3. Preliminaries

3.1. Fully homomorphic encryption

The notion of fully homomorphic encryption was first introduced by Rivest et al. [36] . However, due to the technical

limitation of that time, a promising scheme on fully homomorphic encryption had not been proposed until 2009 by Gentry

[24] . He first proposed a scheme called somewhat homomorphic encryption (SHE) using ideal lattices to realize homomor-

phism that is able to compute only a limited depth of circuits. Then he and his team improved this work and successfully

constructed a fully homomorphic encryption scheme (FHE) based on ideal lattices [23] . After Gentry first brought this the-

ory in the real world, fully homomorphic encryption became a hot topic in the research area again. Among all of them,

there are three main branches: fully homomorphic encryption based on ideal lattices [23] , fully homomorphic encryption

based on integers [17] , and fully homomorphic encryption based on Learning with Errors (LWE) or Ring Learning with Er-

rors (RLWE) [9] . In this paper, we use BGV fully homomorphic encryption scheme [8] , which is based on RLWE to conduct

our simulation.

In this section, we briefly introduce the algorithms of fully homomorphic encryption that are used in the system we

proposed below. There are four algorithms in fully homomorphic encryption scheme: Key Generate (Keygen), Encrypt (Enc),

Decrypt (Dec), and Evaluate (Eval). The details are given below:

• Keygen (1 λ) → (pk, sk) : Given security parameter λ, the algorithm outputs a fully homomorphic public and private key

pair pk and sk .
• Enc (pk, m i) → ϕ i : Given public key pk and plaintext m i , the algorithm encrypts m and outputs a ciphertext ϕi , where m i

denotes the i th plaintext provided by the i th data provider (DP) DP i and ϕi denotes the corresponding ciphertext of m i .
• Dec (pk, ϕ i) → m i : Given secret key sk and the ciphertext ϕi , the algorithm decrypts ϕi and outputs a plaintext m i .
• Eval (pk, C, �) → ϕ: Given public key pk , evaluated circuit C , and a tuple of ciphertext � = 〈 ϕ 1 , . . . , ϕ i 〉) , the algorithm

outputs result ϕ which denotes a ciphertext computation result, where C(m 1 , . . . , m i) = Dec(sk, ϕ) .

The key algorithm of fully homomorphic encryption is Eval which computes the data in a ciphered form. Obviously, the

encryption of data protects them from composed to unexpected users. Only the party who owns the secret key sk can get

access to the plaintext result.

3.2. Polynomial factorization

We now briefly introduce the background of multivariate polynomials factorization which our scheme relies on.

3.2.1. Multivariate polynomials

We use a multiset where an element can take place more than once to present a multivariate polynomial. For example,

{1, 1, 2, 2, 3, 3} is a multiset. Formally, a function S → Z ≥ 0 denotes a map between a multiset S and the multiplicity of each

element in that multiset, i.e., S = { 1 , 1 , 2 , 3 , 3 , 3 } , we have S(1) = 2 , S(2) = 1 , S(3) = 3 . | S | denotes the degree of a multiset,

i.e. for a multiset {1, 1, 2, 3, 3, 3}, we have | S| = 6 . Finally, S d,n denotes a family of multisets which have the size of at

most d and different elements of at most n . Let f be an n -variable polynomial over, then f can be represented as f (x) =
f (x 1 , x 2 , . . . , x n) ∈ Z p[x] =

∑

S∈ S d,n
c S

∏

i ∈ S x
S(x i)

i
where c S denotes the coefficient of the corresponding monomial multivariate

polynomials. For example, the multiset {1, 1, 2, 5, 5, 5} is corresponding to the n -variable polynomials x 2
1
x 2 x

3
5
.

Especially, as to a multivariate polynomial, we use the maximum degree of the monomial contains in the polynomial to

denote the degree of that polynomial, e.g., 4 x 1 x 2 + 3 x 3
1
x 2

2
x 1 has the degree of 6.

3.2.2. Multivariate polynomials factorization

We have the following theorem regarding multivariate polynomials factorization.

Theorem 1. Let f (x) = f (x 1 , x 2 , . . . , x n) ∈ Z n p [x] be a n-variable polynomial. For all a ∈ Z n p there exists q i (x) ∈ Z n p [x] where f (x) −
f (a) can be represented as f (x) − f (a) =

∑ n
i =1 (x i − a i) q i (x) . Furthermore, there exists a polynomial-time algorithm to find these

q i (x) .

Proof. The proof of this factorization algorithm is straightforward. Given a n -variable polynomial f (x) − f (a) over, we use

x 1 − a 1 to divide this polynomial to get

f (x) − f (a) = (x 1 − a 1) q i (x 1 , x 2 , . . . , x n) + r 1 (x 2 , x 3 , . . . , x n) , (1)

where r 1 (x 2 , x 3 , . . . , x n) is the remainder term that does not contain variable x 1 . Continuously, divide the remainder with

(x 2 − a 2) , then with (x 3 − a 3) , and so on. Finally, f (x) − f (a) can be represented as

f (x) − f (a) =

n ∑

i =1

(x i − a i) q i (x 1 , x 2 , . . . , x n) + r n (2)

376 X. Yu, Z. Yan and R. Zhang / Information Sciences 479 (2019) 372–385

Fig. 1. System model.

where r n ∈ Z p . Since f (x) − f (a) = 0 when x = a, r n should be 0 as well. So, we have

f (x) − f (a) =

n ∑

i =1

(x i − a i) q i (x) . (3)

�

4. Problem statement

In this section, we first introduce the system model and our design goals and then provide some notations used in our

scheme.

4.1. System model

We assume a cloud computing system comprising data providers (DPs), a cloud service provider (CSP), requesting parties

(RPs), a trust authenticator (TA), and a public auditor proxy (PAP). In the system, the DP is a party who intends to outsource

its data computation to the cloud. Since its data may be highly sensitive, the DP wants to keep them from being exposed to

other parties. The CSP provides storage and computation services to the DPs. It is responsible for carrying out computations

according to the DP’s deamnd. Since CSP could be on getting to know the data of DPs and cannot be fully trusted, the DPs

prefer uploading encrypted data to the cloud. The TA is introduced as a semi-trusted party which acts like an authentication

center for generating system security keys for computation and checking the eligibility of RPs. The RP is a party that requests

for the final computation result processed by the CSP. As the cloud may possibly forge or provide wrong computation result

to the RP, we introduce the PAP as a party who helps the RP to verify the correctness of the computation result returned

by the CSP. PAP is only trusted for verification, which means that no private information, i.e. plaintext input and plaintext

output, should be exposed to the PAP. Fig. 1 shows the system model of our scheme.

We assume that the TA and the CSP do not collude with each other. In particular, the CSP cannot achieve the data

encryption secret keys of the DPs provided by the TA. It is thus impossible for the CSP to obtain any information of the

DPs’ original data, except executing computations on the ciphertext. The RP can only get access to the computation result

provided by CSP, even if it gets the chance to know the data input from DPs, it cannot decrypt these data to get the initial

information of the computation. TA may act as a middle party between CSP and RP in re-encrypting the computation result.

Since TA is semi-trusted, in this procedure, it is required that TA cannot get the plaintext computation result. Moreover, TA

and PAP do not collude. As the public, PAP cannot gain the data encrypted secret keys, otherwise, it will be aware of all the

plaintext input and output.

In our scheme, the data provider outsources all its data set { D 1 , . . . , D i } , where D i ∈ Z p to the cloud to calculate a polyno-

mial function F ∈ Z n p [x] . With the help of the Trusted Anthenticator (TA), the scheme enables public auditor proxy to verify

the computation result DM ∈ Z n p provided by the cloud service provider (CSP) and issue the result to the requesting parties

(RPs).

4.2. Design goals

We design our scheme with the following goals in mind.

X. Yu, Z. Yan and R. Zhang / Information Sciences 479 (2019) 372–385 377

Table 2

Notations.

Symbols Description Remark

PK H The FHE public key generated by TA We use this notation to denote various public keys generate by TA

SK H The FHE private key generated by TA We use this notation to denote various secret keys generate by TA

PK x The public key of entity x

SK x The secret key of entity x

{ D i } n i =1
The input data to F

F The function to evaluate

{ ED i } n i =1
The homomorphically encrypted data of D i

DM The homomorphically encrypted function evaluation result

E (PK x , X) The encryption of X with PK x
RD i The random data chosen by DP in the same form of D i RD i should be refreshed periodically

RDM i The homomorphically encrypted function evaluation result of

RD i with the same function F .

• Data confidentiality : As the semi-trusted-but-curious CSP may snoop the information of the DPs’ outsourced data, which

break the confidentiality of DPs’ data. Our scheme should be equipped with an encryption mechanism to guarantee the

computation confidentiality.
• Public verifiability : As the CSP may provide fake results due to some financial or other reasons, the scheme should be

able to let the result be verified by any PAP to guarantee the correctness of the computation.
• Efficiency and feasibility : To support the cloud computing scenario, the power of each entity should be considered.

Thus, the computation complexity and storage consumption of different entity should be restricted respectively.

4.3. Notation

Table 2 summarizes the notation used in our scheme.

5. The proposed scheme

In this section, we first give an overview of our scheme and then describe the concrete construction of our scheme in

detail.

5.1. Overview

Our scheme consists of the following six procedures.

1. System setup : The TA generate the system’s fully homomorphic secret key pairs. Each entity generates its public and

private key pair and broadcasts its public key to the whole system.

2. Data outsourcing : The DP encrypts the his data, signs them together with the function to be evaluated, and sends

them to the CSP for processing.

3. Function evaluation : The CSP evaluates the function over received data and then randomly perturbs the computation

result.

4. Data request and response : The RP requests for the computation result from the TA. The TA verifies the eligibility of

the request, re-encrypts the computation result, and sends it to the RP.

5. Audit preparation : The DP transforms the outsourced function into an equation via polynomial factorization, gener-

ates parameters for subsequent verification.

6. Result audit and decryption : The PAP retrives the encrypted data and the verification function from the DP and

encrypted computation result from the TA. The RAP then verifies the computation result and sends the result to the

RP if deemed correct. The RP decrypts the computation result.

5.2. Detailed construction

In this section, we detail the construction of our scheme. The following procedures show how the DP outsources its data

to the CSP and the RP receives the result along with the proof of correctness.

System setup : Given security parameter λ, the TA executes Keygen (1 λ) to generate a FHE public and private key pair

PK H and SK H and send them to DPs. Each entity generates its public and private key pairs and broadcast its public key to

every other party in the system.

Data outsourcing : DP provides its data set { D i } n i =1
w.r.t. function F . To prevent the CSP from learning original data { D i } n i =1

,

the DP encrypts each data item D i with PK H provided by the TA to generate an encrypted data ED i = Enc (P K H , D i) and signs

{ ED i } n i =1
with its private key SK DP . This signature allows other party to verify that ED i was indeed generated by DP .

378 X. Yu, Z. Yan and R. Zhang / Information Sciences 479 (2019) 372–385

Fig. 2. Computation phase.

Function evaluation : On receiving data { ED i } n i =1
and corresponding signature, the CSP first verifies the signature to check

if { ED i } n i =1
was indeed sent by DP . If the verification succeeds, the CSP evaluates function F over { ED i } n i =1

in a fully homomor-

phic way to obtain Enc (P K H , DM) = E v al({ E D 1 , . . . , E D n } , C) , where C is the evaluated circuit corresponding to function F . The

CSP then perturbs the encrypted result Enc (P K H , DM) by multiplying it with a random number r a to get Enc (P K H , DM ∗ r a) .

Data request and response : Suppose that requesting party RP requests for the function evaluation result from the CSP. It

first sends a request containing F along with its signature to the CSP. On receiving the request, the CSP first forwards it to the

TA to check the eligibility of RP . If RP is deemed eligible, the TA requests the CSP for the perturbed result Enc (P K H , DM ∗ r a) .

It then decrypts Enc (P K H , DM ∗ r a) using private key SK H to obtain DM

∗r a and re-encrypts DM

∗r a with RP ’s public key to

obtain E (PK RP , DM

∗r a). The TA then sends E (PK RP , DM

∗r a) along with its signature back to the CSP. After verifying the TA’s

signature, the CSP computes E (PK RP , r a) and sends E (PK RP , r a), E (PK RK , DM

∗r a) along with its signature to the requesting party

RP .

Audit preparation : According to the polynomial factorization formula f (x) − f (a) =

∑ n
i =1 (x i − a i) q i (x) , DP decomposes

F ′ (x) = F (x) − F (D 1 , . . . , D n) into
∑ n

i =1 (x i − D i) q i (x) , where x ∈ Z n p and { q i (x) } n
i =1

are the polynomials generated by mul-

tivariate polynomial factorization. Meanwhile, DP chooses a set of random data { RD 1 , ���, RD n } and computes RDM =
F (RD 1 , . . . , RD n) and { q i (RD) } n

i =1
.

For the first time when the PAP is required to audit the data processing result provided by CSP w.r.t. func-

tion F from RP , the PAP forwards the request to DP along with its signature. When receiving this request, DP sends

〈 Enc (P K H , { q i (RD) } n
i =1

) , Enc (P K H , RDM) , F 〉 to the PAP. The PAP then stores the information for any subsequent audit w.r.t.

function F until DP refreshes { RD i } n i =1
.

Result audit and decryption : The key operation of the audit process is to evaluate the polynomial factorization formula

in a fully homomorphic manner. Specifically, the PAP first retrieves { ED i } i ∈ I w.r.t. F fr om the CSP. The PAP then checks if the

following equation holds.

Ev al{ Enc (P K H , RDM) − Enc (P K H , DM) } ? = Ev al{ ∑ n
i =1 (Enc (P K H , RD i) − ED i)

Enc (P K H , q i (RD)) } . (4)

If the verification succeeds, then the computation result is considered correct and incorrect otherwise. Finally, the PAP sends

the auditing result to RP . After confirming that the audit result is valid, RP finally gets the result by first decrypting E (PK RP ,

DM

∗r a) and E (PK RP , r a) with its secret key SK RP to get DM

∗r a and r a whereby to recover the result DM .

Figs. 1 and 2 show the whole procedure of our proposed scheme by computation phase and verification phase, respec-

tively.

X. Yu, Z. Yan and R. Zhang / Information Sciences 479 (2019) 372–385 379

Fig. 3. Verification phase.

Fig. 4. Time consumption of addition.

6. Security analysis and performance evaluation

In this section, we analyze the security and performance of the proposed scheme. In order to evaluate the performance

of our verifiable outsourced computation scheme, we have implemented our system using libraries NTL [4] , GMP [2] , and

FHE [1] to realize the virtual execution of each entity of the system. We run our scheme on a workstation with Intel(R)

CoreTM i7 4710HQ CPU and 8-GB RAM running Ubuntu 14.04 to virtually execute the functions of DP, CSP, TA, PAP, and RP.

In our implementation, we applied BGV fully homomorphic encryption [36], RSA for Public Key Cryptosystem (PKC), and

SHA-1 hash function.

We first prove the security of our scheme. Then we analyze the performance of our protocol in the aspects of computa-

tion complexity and communication cost. Next, we test the operation time of the scheme and analyze the scalability. Finally,

comparing with our previous work, we further show the improvement and the advantages of our new scheme.

380 X. Yu, Z. Yan and R. Zhang / Information Sciences 479 (2019) 372–385

6.1. Security analysis

We first prove the security guarantee of the proposed system.

Theorem 2. The computation confidentiality is guaranteed against the CSP.

Proof. We prove this theorem through the following game. Suppose that an adversary A can attack our system with non-

negligible advantage. It conducts the attack by the following steps.

First, the challenger C runs the algorithm and generate the public key PK H to the adversary and keeps the private key SK H

to itself. Then the adversary A randomly generates two equal-length messages m 0 and m 1 and send them to C. Randomly

flipping a coin b , C encrypts the message m b using public key PK H to generate a ciphertext C and sends the ciphertext to A .

Finally, A makes a guess on b ′ ∈ (0, 1) for b . A wins the game if b = b ′ .
The security of our scheme relies on Ring-Learning With Error (RLWE). Assuming RLWE, if m 0 and m 1 are randomly

chosen by the challenger C, the ciphertexts C 0 and C 1 are pseudorandom. Thus, when C flipping a coin b and encrypt the

message m b using public key PK H to generate a ciphertext C , it is impossible for the adversary A to guess a valid b ′ such

that b = b ′ with a probability of higher than 1/2. �

Theorem 3. The verification information is confidential against detection of PAP.

Proof. We prove this theorem by the following game. Suppose that an adversary can attack our scheme by generating a

cheating result that can pass the verification with non-negligible advantage. It should conduct the attack by following steps.

First, the challenger C randomly selects a plaintext set M = (m 0 , . . . , m n) . He then runs the algorithm to encrypt this

data set to get the ciphertext set C = (c 1 , . . . , c n) and send it to the adversary A to compute the outsourced function F . To

cheat the challenger C, A uses a subset C ′ ⊂ C for the function F and computes C T ′ = F (C ′) , where CT ′ � = CT . Assume that

A sends CT ′ to the challenger C. To win the game, challenger C need find F ′ (CT ′) =

∑ n
i =1 (x i − D i) q i (x) , which means that

F (x) − F (DM

′) =

∑ n
i =1 (x i − D i) q i (x) , where DM

′ = D (SK H , CT ′) . Since the function holds the property of homomorphism, it

equals to the function that DM

′ = f (M) = DM, which contradicts with CT ′ � = CT . Thus, A cannot win the game with non-

negligible advantage. �

6.2. Performance evaluation

6.2.1. Computation complexity analysis

We now analyze the computation complexity of the proposed scheme. The DP encrypts the outsourced data itself and

generates the audit preparation data. Since we only need to generate the preparation data set for each function once during

the audit setup procedure and it is computed over plaintext, we ignore the computation of audit preparation. Considering

encryption, the computation complexity is proportional to the security parameter λ2 , thus the computational complexity at

the DP is ˜ O (λ2) . As to the CSP that is responsible for ciphertext computation, since we use fully homomorphic encryption

as our tools to compute the ciphertext, the computational complexity for each input data item is ˜ O (λ × L 3) , where λ is the

security parameter and L is the depth of the circuit, which is proportional to the degree of function F . Since our scheme

allows the CSP to deal with n input at one time, the total computational complexity at the CSP is also proportional to n . The

computational complexity at the CSP is thus ˜ O (n × λ × L 3) . The TA needs to re-encrypt the computation result, which needs

to first decrypts the ciphertext result using the fully homomorphic secret key and then encrypts that message using the RP’s

public key. The complexity of both operations are both proportional to the security parameter λ and the length poly (L) of

the ciphertext. The computational complexity at the TA is thus O (λ× poly (L)). Moreover, the RP is responsible for decrypting

the final ciphertext result, whose complexity is also proportional to the security parameter λ of the system and the length

of the ciphertext. The computational complexity at the RP is thus O (λ× poly (L)). Finally, the PAP is in charge of verifying the

correctness of the computation result, which needs to use fully homomorphic encryption algorithms to execute computation.

Therefore, its computational complexity is ˜ O (n ′ × λ × L ′ 3) , where L ′ is the depth of the circuit proportional to the function∑ n
i =1 (x i − D i) q i (x) and n ′ is the number of variables of the function. Table 2 shows the computational complexity of different

procedures at each entity in our system.

Table 4 compares the computation complexity of the proposed scheme with some latest related works. We can see that

by adding a light result re-encryption algorithm to the scheme, our scheme significantly reduces the computation overhead

on the RP’s side. Meanwhile, under the new verification phase, the computation complexity at the verifier is also reduced

to only depending on the number of variables.

6.2.2. Communication cost

We now analyze the communication cost of the proposed scheme. Since the system setup and the audit preparation

procedure only take place in the scheme once, we ignore the communication costs of these two phases and analyze the

communication cost of the proposed scheme with regard to the following communication channel:

DP to CSP : Encrypted data are signed and sent from the DP to the CSP. Our implementation shows that the length of

the ciphertext is 68 bytes while that of plaintext is 8 bytes. The length of an RSA signature is 256 bytes. In other words, for

every data item sent from the DP to the CSP, the communication cost is 68 + 256 = 324 bytes. The communication cost is

proportional to the number of data items n .

X. Yu, Z. Yan and R. Zhang / Information Sciences 479 (2019) 372–385 381

CSP to TA : The CSP needs to request the TA to execute the re-encryption when the RP requests for the final result,

it needs to send 68 bytes of encrypted data alongside with its 256 bytes signature. The total communication cost of this

procedure is thus 256 + 68 = 324 bytes.

CSP to RP : In our scheme, we use RSA algorithm to re-encrypt the final processing result. To recover the final plaintext

result, another auxiliary encrypted version of ra is also sent to the RP with the signature. Since all the three pieces of data

are encrypted by RSA, the total communication cost incurred is 256 ∗3 = 768 bytes.

TA to CSP : After re-encrypting the ciphertext result by RSA, the TA issues the 256 bytes final result along with its

signature to the CSP. Since they are encrypted using the RSA algorithm, the total communication cost of this procedure is

256 ∗2 = 512 bytes.

RP to PAP : The RP sends 3 pieces of data to the PAP to request of the final processing result, which is 68 bytes

Enc (P K H , DM) , and two 256 bytes signatures are generated via RSA. Thus, the total communication cost of this procedure is

68 + 256 ∗2 = 532 bytes.

Other communication costs of the scheme are introduced by queries or requests, they are all consists of commands, keys,

and signatures which have fixed size. In practice, they do not incur much communication cost into the system. Table 4 shows

the main communication costs of these channels in our scheme.

Remark 1. First, our scheme allows the DP to outsource its computation to the CSP. Although the computational complex-

ity and the communication cost of computing ciphertext using fully homomorphic encryption are non-trivial, the CSP with

adequate computation and storage resources can handle this kind of computations. Second, when there exists many RPs to

request for the computation result provided by the CSP, each RP can issue its public key and its corresponding required

function F to CSP. Then the CSP checks each RP’s eligibility and respond to RP’s request using each RP’s public key indi-

vidually and returns the computation result to the corresponding RP. The propose scheme thus supports multiple outputs.

Finally, when each PAP asks to verify the computation result, according to function F requested by the PAP, the CSP can

provide the necessary information to allow individual verification. Knowing that each PAP only responds to its part of the

computation, we reduce the depth of the computation circuit, this computation consumption is reduced a lot. As a result,

this scheme also supports big data verification.

6.2.3. Experiment results

We simulated our system in a workstation running Ubuntu by applying HElib library [3] and tested the operation time

of our scheme. In the simulation, we randomly selected N numbers as values of the input variables of a polynomial function

F and ran the function F homomorphically to test the computation phase of our system. In order to test the verification

phase of our system, we transform function F based on our designed verification algorithm and ran the transformed func-

tion homomorphically according to HElib. With the input length of 8 bytes, each homomorphic encryption, homomorphic

decryption, addition, and multiplication take 120 0 ms, 60 0 ms, 4 ms, and 10 4 ms, respectively. Figs. 4 and 5 show the

simulation results on different numbers of data inputs.

By analyzing the audit algorithm of our scheme, it shows that the consumption of the auditing procedure is not affected

by the degree of the outsourced function F , so our scheme can support functions with high degree. It also shows that the

computation time of the auditing procedure is proportional to the number of variables in the function, which has a fixed

time of 2 × 10 4 ms per variable. Fig. 6 shows the computation time of the verification of functions with a different number

of variables. Since no matter how complex the outsourced function is, the time consumption of the verification function

only depends on the number of variables, our scheme is very efficient in dealing with multi-user computation.

6.3. Comparison with existing work

We further compare our proposed scheme with some latest work based on different techniques: FHE [24] and GGP

[21] with respect to verification for a polynomial function with degree L and N variables. Especially, these schemes also sup-

port encrypted computation with guarantee of confidentiality of users’ data. Fig. 7 shows the performance of our scheme in

comparison with the previous systems. We use a polynomial function with L degree and N variables as our test application.

Comparing with FHE and GGP, Fig. 7 shows that the verification consumption of our scheme only depends on the number

of variables implied into the computation procedure. However, FHE and GGP depend on the degree of the computation

function, which is always larger than the number of variables. Thus, at most time, our scheme has a better performance on

the verification than that of these schemes and reduce the workload of the verifier. Comparing with some other latest work

(such as PCPs, Pinocchio), Table 5 shows that although these schemes have a great performance at verifying the computation

result of the CSP and may support public verification, they did not consider the problem of how to guarantee the security

of the outsourced data.

In comparison with above prior work, our scheme supports computation confidentiality, public verification, and fast ver-

ification. In order to securely computation and verify the outsourced function, our scheme introduces a method to compute

the outsourced function and verify the computation result of the CSP both over ciphertexts. Moreover, our proposed audit

procedure enables the public to verify the computation result. Finally, the verification consumption of our scheme only de-

pends on the number of variables used in the computation function. That increases the efficiency of the verification. Fig. 7 ,

Tables 4 and 6 .

382 X. Yu, Z. Yan and R. Zhang / Information Sciences 479 (2019) 372–385

Fig. 5. Time consumption of multiplication.

Fig. 6. Time consumption of the verification.

X. Yu, Z. Yan and R. Zhang / Information Sciences 479 (2019) 372–385 383

Fig. 7. Performance relative to prior schemes. Note: Since multiplication algorithm is always the largest consumption in verification both in our scheme

and the prior work, we focus on the multiplication of different variables, so that L > N at all time. Here L = 50 , the result is similar chosen different L .

Table 3

Computational complexity at different entities.

Entity Procedure Computation complexity

DP Data outsourced ˜ O (λ2)

CSP Outsourced computation ˜ O (n × λ × L 3)

TA Result re-encryption O (λ× poly (L))

PAP Result verification ˜ O (n ′ × λ × L ′ 3)
RP Result decryption O (λ× poly (L))

Table 4

Computational complexity comparison.

Scheme procedure FHE GGP Our scheme

Data outsourced ˜ O (lambda 2) ˜ O (λ2) ˜ O (λ2)

Outsourced computation ˜ O (n × λ × L 3) ˜ O (n × λ × L 3) ˜ O (n × λ × L 3)

Result re-encryption O (λ× poly (L))

Result verification ˜ O (n × λ × L 3) ˜ O (n ′ × λ × L 3) ˜ O (n ′ × λ × L ′ 3)
Result decryption ˜ O (λ2) ˜ O (λ2) O (λ× poly (L))

Note: O (n) � ˜ O (n) , n ′ < n, L ′ < L .

Table 5

Main communication costs between each entity in our system.

Communication channel Communication package length (byte) Communication cost

DP to CSP 68 + 256 = 324 O (n)

RP to CSP 256 ∗2 = 512 O (1)

CSP to TA 26 + 68 = 324 O (1)

CSP to RP 256 ∗3 = 768 O (1)

TA to CSP 256 ∗2 = 512 O (1)

RP to PAP 68 + 256 ∗2 = 532 O (1)

384 X. Yu, Z. Yan and R. Zhang / Information Sciences 479 (2019) 372–385

Table 6

Scheme comparison.

Schemes PCPs[13] GGP[12] FHE[2] Pinocchio[22] Our scheme

Confidentiality × √ √ × √

Public verification × × × √ √

Efficient verification
√ × × √ √

Note: × - not supported;
√

- supported.

7. Conclusion

In this paper, we have proposed a novel scheme for verifiable computation over encrypted data to ensure trusted cloud

computing. By introducing a semi-trusted entity TA and a limited trusted entity PAP, our scheme enables outsourced func-

tion evaluation over ciphertexts and supports the public to verify the computation result. It also ensures outsourced data

confidentiality during computation verification. We thoroughly evaluate the performance of the proposed scheme with re-

gard to security, computation cost, and communication cost. The evaluation results confirm the efficacy and efficiency of our

scheme.

Regarding future work, we will further try other light encryption algorithms instead of fully homomorphic encryption

to increase the efficiency of the encrypted data computation part of the scheme. How to perform computing audit in an

encrypted form is an interesting and challenging research topic worth our further investigation.

Acknowledgments

This work is sponsored by NSFC (grants 61672410 and U1536202), Academy of Finland (grant No. 308087), the Project

Supported by Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2016ZDJC-06), the Key Lab

of Information Network Security, Ministry of Public Security (grant No. C18614) and the 111 project (grants B08038 and

B16037), as well as the China Scholarship Council for two years study at University of Delaware.

References

[1] Fhe library, 2017,.
[2] Gmp library, 2017,.

[3] Helib, 2017.
[4] Ntl library, 2017.

[5] C. Asmuth , J. Bloom , A modular approach to key safeguarding, IEEE Trans. Inf. Theor. 29 (2006) 208–210 .
[6] M. Backes , D. Fiore , R.M. Reischuk , Verifiable delegation of computation on outsourced data, 2013, pp. 863–874 .

[7] D. Boneh , D.M. Freeman , Homomorphic signatures for polynomial functions, in: Cryptology- EUROCRYPT, Springer, 2011, pp. 14 9–16 8 .

[8] Z. Brakerski , C. Gentry , V. Vaikuntanathan , (leveled) F0ully homo-morphic encryption without bootstrapping, in: ACM 3rd Innov. Theor. Comput. Sci.
Conf., 2012, pp. 1–25 .

[9] Z. Brakerski , V. Vaikuntanathan , Efficient fully homomorphic encryption from (standard) lwe, SIAM J. Comput. 43 (2) (2014) 831–871 .
[10] R. Canetti , B. Riva , G.N. Rothblum , Two protocols for delegation of computation, in: the 6th international conference on information theoretic security,

ICITS’12, ICITS’12. Springer-Verlag, Berlin ser, 2012, pp. 37–61 .
[11] D. Catalano , D. Fiore , Practical homomorphic macs for arithmetic circuits., in: EUROCRYPT 2013, 7881, 2013, pp. 336–352 .

[12] D. Catalano , A. Marcedone , O. Puglisi , Linearly homomorphic structure preserving signatures: new methodologies and applications, IACR Cryptology

ePrint Archive (2013) .
[13] X. Chen , J. Li , X. Huang , J. Ma , W. Lou , New publicly verifiable databases with efficient updates, IEEE Trans. Dependable Secure Comput. 12 (5) (2015)

546–556 .
[14] X.F. Chen , J. Li , J.F. Ma , J. Weng , W. Lou , Verifiable computation over large database with incremental updates, IEEE Trans. Comput. 65 (10) (2016)

3184–3195 .
[15] S.G. Choi , J. Katz , R. Kumaresan , C. Cid , Multi-client non-interactive verifiable computation, in: the 10th theory of cryptography conference on Theory

of Cryptography (TCC’13), 2013, pp. 499–518 .

[16] K.M. Chung , Y. Kalai , S. Vadhan , Improved delegation of computation using fully homomorphic encryption, in: Cryptology-CRYPTO, 2010, pp. 483–501 .
[17] M.V. Dijk , C. Gentry , S. Halevi , V. Vaikuntanathan , Fully homomorphic encryption over the integers, in: Advances in Cryptology- EUROCRYPT, Springer,

2010, pp. 24–43 .
[18] W. Ding , Z. Yan , R.H. Deng , Encrypted data processing with homomorphic re-encryption, Inf. Sci. 409–410 (2017) 35–55 .

[19] W. Ding, Z. Yan, R.H. Deng, Privacy-preserving data processing with flexible access control, IEEE Trans. Dependable Secure Comput. (2017), doi: 10.1109/
TDSC.2017.2786247 .

[20] D. Fiore , R. Gennaro , Publicly verifiable delegation of large polynomials and matrix computations, with applications, in: ACM conference on Computer

and communications security, 2012, pp. 501–512 .
[21] R. Gennaro , C. Gentry , B. Parno , Non-interactive verifiable computation: outsourcing computation to untrusted workers, 2010, pp. 465–482 .

[22] R. Gennaro , D. Wichs , Fully homomorphic message authenticators., in: ASIACRYPT 2013, Part II. LNCS, 8270, 2013, pp. 301–320 .
[23] C. Genrty , Fully homomorphic encryption using ideal lattice, in: the forty-first annual AMC symp. on Theory of computing, C. Genrty, 2009,

pp. 169–178 .
[24] C. Gentry, A fully homomorphic encryption scheme, 2009,

[25] S. Goldwasser , Y.T. Kalai , G.N. Rothblum , Delegating computation: interactive proofs for muggles, in: ACM Symp. Theory Comput., 2008, pp. 113–122 .

[26] S. Hohenberger, L. A, How to securely outsource cryptographic computations, in: Second international conference on Theory of Cryptography (TCC’05),
pp. 264–282.

[27] J. Li , X. Huang , J.W. Li , X.F. Chen , Y. Xiang , Securely outsourcing attribute-based encryption with checkability, IEEE Trans. Parallel Distrib. Syst. 25 (8)
(2014) 2201–2210 .

[28] J. Li , J.W. Li , X.F. Chen , C.F. Jia , W. j. Lou , Identity-based encryption with outsourced revocation in cloud computing, IEEE Trans. Comput. 64 (2) (2015)
425–437 .

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100002341
https://doi.org/10.13039/501100010868
https://doi.org/10.13039/501100004543
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0001
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0002
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0003
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0004
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0005
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0006
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0007
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0008
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0009
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0010
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0011
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0012
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0013
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0014
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0014
https://doi.org/10.1109/TDSC.2017.2786247
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0016
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0017
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0018
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0019
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0020
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0021
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0022
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0022

X. Yu, Z. Yan and R. Zhang / Information Sciences 479 (2019) 372–385 385

[29] J. Li , Y. Li , X.F. Chen , P. Lee , W.J. Lou , A hybrid cloud approach for secure authorized deduplication, IEEE Trans. Parallel Distrib.Syst. 26 (25) (2015)
1206–1216 .

[30] J. Li , Y. Li , X.F. Chen , P. Lee , W.J. Lou , A hybrid cloud approach for secure authorized deduplication, IEEE Trans. Parallel Distrib. Syst. 26 (5) (2015)
1206–1216 .

[31] W. Li , K. Xue , Y. Xue , J. Hong , Tmacs: a robust and verifiable threshold multi-authority access control system in public cloud storage, IEEE Trans.
Parallel Distrib. Syst. 27 (5) (2016) 1484–1496 .

[32] C. Papamanthou , E. Shi , R. Tamassia , Signatures of correct computation, in: the 10th theory of cryptography conference on Theory of Cryptography

(TCC’13), 2013, pp. 222–242 .
[33] B. Parno , J. Howell , C. Gentry , M. Raykova , Pinocchio: nearly practical verifiable computation, in: IEEE Symposium on Security and Privacy, 2013,

pp. 238–252 .
[34] B. Parno , M. Raykova , V. Vaikuntanathan , How to delegate and verify in public: verifiable computation from attribute-based encryption, in: 9th inter-

national conference on Theory of Cryptography (TCC’12), Springer Berlin, Heidelberg, 2012, pp. 422–439 .
[35] P. Renjith , S. Sabitha , Verifiable el-gamal re-encryption with authenticity in cloud, in: Computing, communications and networking technologies (ICC-

CNT), 4–6, 2013, pp. 1–5 .
[36] R.L. Rivest , L. Adleman , N.L. Dertouzos , On data banks and privacy homomorphisms, Found. Secure Comput. (1978) 169–180 .

[37] S. Setty , R. McPherson , A.J. Blumberg , M. Walfish , Making argument systems for outsourced computation practical (sometimes), 2012 .

[38] S. Setty , V. Vu , N. Panpalia , B. Braun , A.J. Blumberg , M. Walfish , Taking proof-based verified computation a few steps closer to practicality, 2012 .
[39] E. Shi , T.H. Chan , E.G. Rieffel , R. Chow , D. Song , Privacy-preserving aggregation of time-series data, NDSS 2011, the internet society, 2011 .

[40] J.R. Thaler, Practical verified computation with streaming interactive proofs, 2013,
[41] V. Vu , S. Setty , A.J. Blumbery , M. Walfish , A hybrid architecture for interactive verifiable computation., in: Security and privacy (SP), 19–22, 2013,

pp. 223–237 .
[42] Z. Wen , J. Luo , H. Chen , J. Meng , X. Li , J. Li , A verifiable data deduplication scheme in cloud computing, 2014, pp. 85–90 .

[43] Z. Yan , W. Ding , X. Yu , H. Zhu , R.H. Deng , Deduplication on encrypted big data in cloud, IEEE Trans. Big Data 2 (2) (2016) 138–150 .

[44] Z. Yan , X. Li , R. Kantola , Controlling cloud data access based on reputation, Mobile Netw. Appl. 20 (6) (2015) 4 828–4 839 .
[45] Z. Yan , X. Li , M. Wang , A. Vasilakos , Flexible data access control based on trust and reputation in cloud computing, IEEE Trans. Cloud Comput. (2017)

4 85–4 98 .
[46] Z. Yan , W. Shi , Cloudfile: a cloud data access control system based on mobile social trust, J. Netw. Comput. Appl. 86 (2016) 46–58 .

[47] Z. Yan , X. Yu , W. Ding , Context-aware verifiable cloud computing, IEEE Access 5 (2017) 2211–2227 .
[48] Z. Yan, L. Zhang, W. Ding, Q. Zheng, Heterogeneous data storage management with deduplication in cloud computing, IEEE Trans. Big Data (2017),

doi: 10.1109/TBDATA.2017.2701352 .

[49] X.X. Yu , Z. Yan , V.V. Athanasios , A survey of verifiable computation, Mobile Netw. Appl. 22 (3) (2017) 438–453 .

http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0023
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0024
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0025
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0026
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0027
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0028
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0029
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0030
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0031
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0032
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0033
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0034
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0035
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0036
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0037
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0037
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0037
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0037
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0038
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0039
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0039
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0039
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0040
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0040
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0040
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0040
https://doi.org/10.1109/TBDATA.2017.2701352
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0042
http://refhub.elsevier.com/S0020-0255(18)30972-1/sbref0042

	Verifiable outsourced computation over encrypted data
	1 Introduction
	2 Related works
	2.1 Verifiable computation
	2.1.1 Probabilistically checkable proofs (PCPs)
	2.1.2 Non-interactive verifiable computation (GGP)

	2.2 Homomorphic computation
	2.2.1 Fully homomorphic encryption
	2.2.2 Homomorphic authenticator

	3 Preliminaries
	3.1 Fully homomorphic encryption
	3.2 Polynomial factorization
	3.2.1 Multivariate polynomials
	3.2.2 Multivariate polynomials factorization

	4 Problem statement
	4.1 System model
	4.2 Design goals
	4.3 Notation

	5 The proposed scheme
	5.1 Overview
	5.2 Detailed construction

	6 Security analysis and performance evaluation
	6.1 Security analysis
	6.2 Performance evaluation
	6.2.1 Computation complexity analysis
	6.2.2 Communication cost
	6.2.3 Experiment results

	6.3 Comparison with existing work

	7 Conclusion
	Acknowledgments
	References

