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Abstract—Social data outsourcing is an emerging paradigm
for effective and efficient access to the social data. In such
a system, a third-party Social Data Provider (SDP) purchases
complete social datasets from Online Social Network (OSN)
operators and then resells them to data consumers who can
be any individuals or entities desiring the complete social data
satisfying some criteria. The SDP cannot be fully trusted and
may return wrong query results to data consumers by adding
fake data and deleting/modifying true data in favor of the
businesses willing to pay. In this paper, we initiate the study
on verifiable social data outsourcing whereby a data consumer
can verify the trustworthiness of the social data returned by
the SDP. We propose three schemes for verifiable queries over
outsourced social data. The three schemes all require the OSN
provider to generate some cryptographic auxiliary information,
based on which the SDP can construct a verification object for
the data consumer to verify the query-result trustworthiness.
They differ in how the auxiliary information is generated and
how the verification object is constructed and verified. Extensive
experiments based on a real Twitter dataset confirm the high
efficacy and efficiency of our schemes.

I. INTRODUCTION

Online social networks (OSNs) are pervasive. As three

exemplary popular OSNs, Twitter, Facebook, and Sina Weibo

have 310 million, 1.65 billion, and 261 million monthly

active users as of the first quarter of 2016, respectively. OSN

users produce information at an unprecedented rate and scale.

For example, there are about 3 million posts per minute on

Facebook and 500 million tweets on Twitter per day. Besides

facilitating social interactions, OSNs are increasingly used

in massive information campaigns, public relations, political

campaigns, pandemic and crisis situations, marketing, and

many other public/private contexts. For instance, over 76%

of businesses used social media to achieve their marketing

objectives in 2014; business retailers have seen 133% increases

in their revenues from social media marketing; about 71% of

the consumers respond to the feedbacks and recommendations

of social users regarding a particular product [1].
The traditional way to access the social data is via the public

APIs provided by each OSN itself, but the data obtained in

this way are often incomplete, biased, and even incorrect.

For example, Twitter provides the Filter API and Sample

API to access real-time tweets as well as the Search API to

retrieve historical tweets. These public APIs, however, often

have very limited functionalities. For example, the Filter API

and Sample API both return at most 1% random samples of all

the data satisfying the query condition [2]; the data returned

by the Filter API have been found strongly biased [2]; and the

crawling process of the Sample API can be easily manipulated

by attackers wishing to promote their social content [3]. In

addition, the Search API searches against a sampling of recent

tweets published in the past 7 days. There are also rate limits

imposed on these public APIs. For instance, no more than 180

calls per user and 450 calls per application for the Search API

can be made every 15 minutes. While the Twitter Firehose

API yields 100% of all public tweets, it incurs a prohibitive

monetary cost and very high server requirements to host and

process the real-time tweets. The public APIs of other OSNs

such as Facebook have similar constraints as well.

Social data outsourcing is an emerging paradigm for effec-

tive and efficient access to social data. A system built on this

paradigm consists of a third-party Social Data Provider (SDP),

many OSN operators, and numerous data consumers. The SDP

purchases complete data from OSN operators and offers paid

data services to data consumers who can be any individuals

or entities requiring the complete social data satisfying some

criteria. Some popular SDPs include DataSift, Gnip, NTT

Data, Brandwatch, Twazzup, CrowdEye, etc. For example,

DataSift has 20 data sources until now such as Facebook,

Instagram, Youtube, Tumblr, and Google+.

How much trust could a data consumer have in the data

offered by these SDPs? There have been too many stories

revealing the dark side of the web industry. For instance,

Yelp has “always had a complicated relationship with small

businesses” according to BusinessWeek [4], and there have

been wide allegations that Yelp has manipulated the online

reviews based on the participation in its advertising programs

[5]. As another famous example, the “death of Wei Zexi”

has resulted in the official investigation of Baidu—the biggest

search engine in China—which has been notoriously providing

highly skewed search results due to paid placement that are

unaware by the Internet users. In our context, a dishonest SDP

can return wrong query results to data consumers by adding

fake data and deleting/modifying true data in favor of the

businesses who would like to pay. An honest SDP may also

be hacked to return wrong query results.

In this paper, we coin the concept of verifiable social
data outsourcing whereby a data consumer can verify the

trustworthiness of the social data returned by the SDP before

making any critical business or personal decision. The data are

trustworthy if and only if two conditions are met. First, the data

are correct in the sense that they satisfy the query criteria and

were indeed generated by the purported OSN users. Second,
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the data are complete in the sense that all the data satisfying

the query criteria have been returned.

As the first work along this line, this paper tackles the

following specific problem and leaves the investigations of

other variations to future work. We view any specific OSN as

an undirected social graph, in which each node corresponds

to a unique OSN user and has a set of searchable attributes

(e.g., location, age, gender, and education level). An edge

exists between two nodes if the two users are mutual friends;

e.g., they are following each other on Twitter. We focus on

single-attribute queries on any node attribute, each of which

can be an equality query (e.g., age=“30”), a range query

(e.g., age=“[20, 30]”), or a subset query (e.g., age=“20,

25, 30”). The query result corresponds to a subgraph of the

original social graph. It is complete if containing all the nodes

satisfying the query and the associated edges among them,

and it is correct if none of the nodes and edges therein do not

satisfy the query or were illegally added by the SDP.

We propose three solutions to verifiable data queries over

outsourced social data. The basic solution requires each OSN

provider to generate some cryptographic auxiliary information

for its dataset, based on which the SDP can construct a

verification object that can be used by the data consumer to

verify the query-result trustworthiness. The enhanced solution

significantly reduces the computation, storage, and commu-

nication overhead of the basic solution by generating the

auxiliary information for grouped nodes with identical attribute

values. The advanced solution explores a memory-efficient

Bloom filter to further reduce the overhead.

We thoroughly evaluate the three solutions on a real Twitter

dataset with 1.5 million nodes and 50 million edges. Our

experiments show that our basic, enhanced, and advanced

schemes can generate the auxiliary information with the size

38.85%, 3.23%, and 0.14% the original social network data in

2973.96s and 204.33s and 211.7s, respectively. In addition, a

data consumer can verify a query result returned by the SDP

in 631.8ms and 25.3ms and 29.4ms with our basic, enhanced,

and advanced schemes, respectively. Our experiment results

confirm the efficacy and efficiency of our schemes.

The rest of this paper is outlined as follows. Section II

introduces the problem formulation. Section III details our

three schemes. Section IV-B analyzes the performance of the

three schemes. Section V evaluates the three schemes on a real

Twitter dataset. Section VI outlines additional related work.

Section VII concludes this paper.

II. PROBLEM FORMULATION

The system for social data outsourcing comprises a SDP,

many OSN operators, and numerous data consumers. The SDP

acquires the complete social data from each OSN operator and

profits by answering the data queries from data consumers. For

example, DataSift has the data from 20 OSNs such as Face-

book, Youtube, Tumblr, and Google+. For convenience only,

our subsequent illustrations focus on a single OSN operator,

but similar operations should be independently performed on

the data of each OSN operator.

We represent the social data of the OSN operator as an

undirected graph G with n nodes denoted by V={1, . . . , n},

where each node corresponds to a unique OSN user. We will

use nodes and users interchangeably hereafter. An undirected

edge ei,j (or equivalently ej,i) exists between nodes i and

j if and only if the two nodes (users) are mutual friends.

Such mutual friendships are natural in Facebook-like OSNs

where a friend request needs to be approved. In microblogging

systems such as Twitter, anyone can follow arbitrary users

(e.g., a pop star), and two users are mutual friends if they

follow each other. For the later case, we do not consider

unidirectional followings which are too arbitrary/random and

much less meaningful than mutual followings. How to extend

our work to directed social graphs can be further explored.

Each node has a profile corresponding to w universal

attributes specific to each OSN operator, such as location, age,

education level, and hobbies. The profile of node i is denoted

by (bi,1, bi,2, . . . , bi,w), where bi,j denote the j-th attribute

value for any j ∈ [1, w]. An attribute value can be specified

by the user him/herself and can also be inferred by the OSN

operator based on the user’s posts and online interactions

[6], [7]. Some attributes such as age have a numeric value

by nature, while others such as location and hobbies may

have non-numeric values. For the latter case, we assume that

the OSN operator has the rules for converting non-numeric

attribute values into numeric ones. For example, a location can

be converted into a unique sequence of digits like a telephone

number, and those in the same metropolitan area can have the

same prefix. Such conversions are done by the OSN operator in

the background and totally unaware to the user. For simplicity,

we assume that each attribute value bi,j in the social dataset

represents a unique numeric value (possibly after conversion)

in the range of the particular attribute. Each node is also

affiliated with the data content s/he has ever generated (e.g.,

original posts, replies, and comments).

We consider single-attribute queries on any node attribute,

each of which can be an equality query (e.g., age=“30”), a

range query (e.g., age=“[20, 30]”), or a subset query (e.g.,

age=“20, 25, 30”). The extension of our work to other query

types such as multi-attribute queries is left as future work.

If the queried attribute (e.g., location) has a non-numeric

value, the same rules used by the OSN operator are applied to

generate the corresponding numeric value. The data consumer

submits a query to the SDP, which specifies the query condi-

tion and the interested OSN as well. An appropriate payment

may also need to be submitted simultaneously or later.

The SDP processes the query on the specified OSN dataset.

The query result includes a subgraph G′ of G, consisting of

all the nodes whose attribute values satisfy the query and also

the edges among the nodes in G′. If needed, the posts for each

node in G′ need to be returned as well.

We adopt the following trust and adversary models. The

OSN operator is fully trusted and outsources the authentic

dataset to the SDP. In contrast, the SDP is untrusted and may

modify the query result by adding, deleting, or modifying

data for various malicious motives, e.g., in favor of the
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businesses who are willing to pay. We also assume that the

communications between the OSN operator and SDP and those

between the SDP and the data consumer are secured using

traditional mechanisms such as TLS (Transport Layer Secu-

rity). Therefore, a wrong query result can only be attributed to

the misbehavior of the SDP. Also note that the OSN operator

is highly motivated to help identify malicious SDPs, as data

consumers who make critical decisions based on manipulated

query results may eventually blame the OSN operator.

Under the above trust and adversary models, a query result

is said to be trustworthy if the following requirements are met.

• Social-graph correctness: All the nodes in G′ are indeed

in G and satisfy the query. In addition, all the edges in

G′ belong to G. Finally, all the attributes values of each

node in G′ are intact in contrast to G.

• Social-graph completeness: G′ contains all the nodes in

G that satisfy the query and also all the edges in G that

connect any two nodes in G′.
• Content authenticity: The data content returned for each

node in G′ is the same as that in G.

Content authenticity can be easily satisfied by letting the query

result include the OSN operator’s digital signature for each

node’s data content, which can then be verified by the data

consumer. So we subsequently focus on achieving social-graph

correctness and completeness.

III. VERIFIABLE SOCIAL DATA OUTSOURCING

In this section, we illustrate how to achieve verifiable social

data outsourcing by enabling social-graph correctness and

completeness verifications. A naı̈ve solution is for the OSN

operator to digitally sign the entire dataset, in which case the

SDP has to return the entire dataset and the OSN operator’s

digital signature for each data consumer to verify. This is

impractical because most data consumers are only interested in

a tiny fraction of the huge dataset. We propose three schemes

to enable efficient query processing and also the verifiability

of the query result. The three schemes all require the OSN

provider to generate some cryptographic auxiliary information,

based on which the SDP can construct a verification object for

the data consumer to verify the query-result trustworthiness.

They differ in how the auxiliary information is generated and

how the verification object is constructed and verified.

A. The Basic Scheme
Recall that each node in G has a profile of w attributes,

each having a numeric value after possible conversion. The

basic scheme uses cryptographic methods to chain all the

nodes in G and also tie each node with its neighbors (friends)

in an ascending order of the attribute values. As long as

cryptographic primitives are non-breakable, any manipulated

query result can definitely be detected by the data consumer.
1) Generating auxiliary information: Before outsourcing

the dataset to the SDP, the OSN operator generates some

auxiliary information for each attribute and also for each node

to enable the trustworthiness verification of query results.

For each attribute k ∈ [1, w], the OSN operator creates an

array Ψk = {ψmin, ψ1, . . . , ψmax}, in which each element

consists of a prefix (denoted by .pre) and a suffix (denoted

by .suf). Each prefix corresponds to a unique attribute value,

while each suffix equals the XORs of hashed node IDs

with the corresponding attribute value. Specifically, let IDi

(∀i ∈ [1, n]) denote the ID of node i, which can be either a

real identifier or a pseudonym assigned by the OSN operator

for privacy concerns. Ψk initially contains two elements ψmin

and ψmax, where ψmin.pre and ψmax.pre equal the minimum

possible attribute value minus one and the maximum possible

attribute value plus one, respectively. In contrast, ψmin.suf and

ψmax.suf are both set to zero. Then the OSN operator checks

Ψk for the attribute value bi,k of each node i ∈ [1, n]. If there

is an element, say ψx with ψx.pre = bi,k, the OSN operator

updates ψx.suf := ψx.suf
⊕

h(IDi), where h(·) denotes a

cryptographic one-way hash function such as SHA. If bi,k does

not exist in Ψk, a new element, say ψx with ψx.pre = bi,k and

ψx.suf = h(IDi), is inserted into Ψk, of which the preceding

and subsequent elements have the prefix value smaller and

larger than bi,k, respectively.

The next step is to build a binary Merkle Hash Tree (MHT)

[8] over the elements in Ψk. The MHT is a commonly used

cryptographic data structure that supports very efficient and

secure verification of large-scale datasets. The OSN operator

first computes each leaf node as the hash of the concatenation

of the prefix and the suffix of a unique element in Ψk, and

the order of the leaf nodes corresponds to the element order in

Ψk. Each internal node of the MHT is then derived as the hash

of the concatenation of its two children nodes.1 Finally, the

OSN operator uses its private key to digitally sign the root of

the MHT. The auxiliary information for attribute k ∈ [1, w],
denoted by AUΨk

, consists of all the internal nodes of the

MHT and the signature as well. Later we will see that AUΨk

enables verifiable social-graph correctness and completeness

pertaining to each individual node.

The OSN operator also generates the auxiliary informa-

tion, denoted by AU i, for each node i ∈ [1, n] to ensure

the correctness and completeness verifications of the edges

(i.e., social links) in the query result. AU i contains w + 1
elements, denoted by AU i,k for k ∈ [0, w]. The first element

AU i,0 is simply the OSN operator’s digital signature over

h(bi,1 ‖ bi,2 ‖ · · · ‖ bi,w ‖ IDi), i.e., the hash of the

concatenation of node i’s w attribute values and ID. Each

other element AU i,k (∀k ∈ [1, w]) corresponds to the k-th

attribute. The OSN operator derives AU i,k in the same way

as computing AUΨk
with the exception that the operations

involve only node i and all its neighbors (friends) in G.

Finally, the OSN operator sends to the SDP its entire social

dataset and all the auxiliary information, i.e., {AUΨk
|k ∈

[1, w]} and {AU i,k|i ∈ [1, n], k ∈ [0, w]}.

2) Query Processing: We now illustrate how the SDP

processes a query. A subset query can be decomposed into

multiple equality queries, each of which can be considered

a special range query with just one queried attribute value.

1Note that if the number of leaf nodes is not power of two, some dummy
leaf nodes (e.g., ψmax) need be introduced for constructing the MHT.
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Fig. 1: Illustration of the basic scheme.

Our subsequent discussions thus focus on a range query

[δmin, δmax] over an arbitrary attribute k ∈ [1, w], where δmin

and δmax denote the minimum and maximum attribute values

of interest, respectively.

After receiving a data request 〈k, δmin, δmax〉 for a specific

OSN dataset, the SDP searches the corresponding social graph

G to locate all the nodes whose k-th attribute value belongs to

[δmin, δmax] and then constructs a subgraph G′ which consists

of all these qualified nodes and the edges among them in G.

The query result includes G′ as well as a verification object

the SDP constructs according to {AUΨk
|k ∈ [1, w]} and

{AU i,k|i ∈ [1, n], k ∈ [0, w]} as follows.

First, the SDP locates the maximum k-th attribute value

just below δmin (denoted by δ−min) and also the minimum k-th

attribute value just above δmax (denoted by δ+max). We refer to

δ−min and δ+max as boundary values. The SDP then determines

the unique attribute values falling into [δmin, δmax], as multiple

qualified nodes may have the same attribute value.

Second, the SDP checks AUΨk
to obtain the auxiliary

authentication information needed to reconstruct the MHT

root for the aforementioned array Ψk = {ψmin, ψ1, . . . , ψmax}
(see Section III-A1). Specifically, the qualified attribute values

and two boundary values each correspond to the prefix of a

unique element in Ψk, so each hash value of the concatenation

of the prefix and its corresponding suffix is a leaf node of

the MHT. The auxiliary authentication information for each

such leaf node includes the siblings of itself, its parent, its

parent’s parent, etc. Since these leaf nodes are adjacent in

the MHT, their auxiliary authentication information should be

combined to reduce the likely redundancy. The verification

object includes all the auxiliary authentication information and

related root signature.

Third, the SDP does the similar operations as above for each

qualified node i based on AU i,k. These operations involve

node i and its neighbors only (see Section III-A1). The

verification object additionally contains all the related auxil-

iary authentication information and signatures as well, which

includes AU i,0, i.e., the OSN operator’s digital signature over

h(bi,1 ‖ bi,2 ‖ · · · ‖ bi,w ‖ IDi) for each qualified node i.
3) Correctness and completeness verification: The data

consumer verifies the correctness and completeness of the

query result through the following operations in sequel.

First, the data consumer verifies that each node i in G′ has

the k-th attribute value in [δmin, δmax], and the signature AU i,0

is correct. This step ensures that G′ only contains qualified

nodes whose attribute values are authentic.

Second, the data consumer reconstructs the MHT root of Ψk

based on G′ and the auxiliary authentication information in the

verification object. The reconstructed MHT root should match

the signed one in the verification object. This step ensures that

G′ includes all the qualified nodes.

Finally, the data consumer uses the auxiliary authentication

information in the verification object to reconstruct the root

of the MHT for each node i and all its neighbors in G′. The

reconstructed MHT root should match the signed one in the

verification object. This step ensures that G′ contains all the

edges between each qualified node i and its qualified neighbors

in the original graph G but not any fake edge.

The query result is considered complete and correct if all

the verifications above succeed. The security of this basic

scheme relies on the unanimously assumed security of the

cryptographic hash function h(·) and the digital signature

scheme. In particular, the SDP cannot fabricate a query result

that can lead to valid MHT roots with correct signatures.
4) A working example: To better illustrate the basic

scheme, we show an example in Fig. 1 with n = 6 nodes

for a single attribute age, where the top-right and top-bottom

subfigures correspond to the MHTs for the entire graph and

for node 1 and its neighbors, respectively. Suppose that the

data consumer queries the nodes age 21 and the edges among

these nodes. The qualified nodes are {1, 2, 3, 4}, and the

edges are {e1,2, e1,4, e2,3}, respectively. Node 1 has two

neighbors (2 and 4) with age 21, and the boundary values

δ−min and δ+max are -1 and 24, respectively. The verification

object thus contains the following information for node 1,

{−1||0, 24||h(ID1)
⊕

h(ID6), 120||0, S(root1)}, where S(·)
denotes the OSN operator’s digital signature operation. Simi-

larly, we have {−1||0, 24||h(ID2)
⊕

h(ID5), 120||0, S(root2)},

{−1||0, 120||0, S(root3)} and {−1||0, 120||0, S(root4)} in the

verification object for nodes 2, 3 and 4, respectively. Besides,

the verification object contains {−1||0, 24||h(ID5)
⊕

h(ID6),

120||0, S(root)} for the array Ψ1 covering all the nodes.

After receiving the query result, the data consumer derives

N−1,21 and N24,120 whereby to compute the MHT root. If the

root hash equals the signed one in the verification object, the

query result is determined to contain all the qualified nodes.

Similarly, the data consumer derives candidate root1, root2,

root3, and root4. If they all match the signed counterpart in the

verification object, the query result contains all the qualified

edges. If the query result passes all the verifications, the data

consumer considers it correct and also complete.

B. The Enhanced Scheme
The basic scheme achieves deterministic detection of fake

query results at the cost of huge overhead. Consider the

generation of the auxiliary information {AU i,k|i ∈ [1, n], k ∈
[1, w]} as an example. The basic scheme requires the OSN

operator to construct a distinct MHT per attribute per node,

leading to nw MHTs in total. Each MHT involves the OSN op-

erator signing the root. Since n is extremely large in practice,

the computational overhead for signature generation can be

daunting especially given that the dataset needs to be updated

4



from time to time. Motivated by the observation that many

nodes have the same attribute value, we propose the enhanced

scheme to build an MHT for each unique attribute value

instead of each unique node. The OSN operator performs the

following steps in sequel to generate the auxiliary information

for its dataset.

First, the OSN operator computes AU i,0 as h(bi,1 ‖ bi,2 ‖
· · · ‖ bi,w ‖ IDi) for each node i ∈ [1, n], i.e., the hash of

the concatenation of node i’s w attribute values and ID. This

is the same as in the basic scheme except without signing.

Second, for each attribute k ∈ [1, w], the OSN operator

creates an array Ψ′
k = {ψ′

min, ψ
′
1, . . . , ψ

′
max}, in which each

element consists of a prefix (denoted by .pre), an infix

(denoted by .inf), and a suffix (denoted by .suf). As in the

basic scheme, Ψ′
k initially contains two elements ψ′

min and

ψ′
max, where ψ′

min.pre and ψ′
max.pre equal the minimum

possible attribute value minus one and the maximum possible

attribute value plus one, respectively. In contrast, ψ′
min.inf,

ψ′
min.suf, ψ′

max.inf, and ψ′
max.suf are all set to zero. Then

the OSN checks Ψ′
k for the attribute value bi,k of each node

i ∈ [1, n]. If there is an element, say ψ′
x with ψ′

x.pre = bi,k,

the OSN operator updates ψ′
x.inf := ψ′

x.inf
⊕AU i,0 and

ψ′
x.suf := ψ′

x.suf
⊕

h(IDi). If bi,k does not exist in Ψ′
k, a

new element, say ψ′
x with ψ′

x.pre = bi,k, ψ′
x.inf = AU i,0, and

ψ′
x.suf = h(IDi), is inserted into Ψ′

k, of which the preceding

and subsequent elements have the prefix value smaller and

larger than bi,k, respectively. Subsequently, the OSN operator

derives an MHT based on the concatenation of the prefix, the

infix and the suffix of each element in Ψ′
k, and it also signs

the MHT root.

Third, the OSN operator creates an array Ψi,k (∀k ∈ [1, w])
for each node i ∈ [1, n] and its neighbors in the graph G. Each

element in Ψi,k consists of a prefix equal to a unique value in

attribute k and also a suffix equal to the concatenation of the

ID hashes of the nodes with the corresponding attribute value.

Each Ψi,k is the same as that in the basic scheme, where the

prefix values are ranked in the ascending order.

Fourth, the OSN operator constructs another array for each

unique value in attribute k (∀k ∈ [1, w]), in which each

element is composed of a prefix (denoted by .pre) and

a suffix (denoted by .suf). Let mk denote the number of

unique values in attribute k and Φj,k denote the j-th array

(∀j ∈ [1,mk]). Φj,k is also initialized with two dummy

elements corresponding to the minimum attribute value minus

one and the maximum attribute value plus one, respectively.

Fifth, for each node i ∈ [1, n], the OSN operator finds

the corresponding array corresponding to bi,k, say Φx,k. Each

element in the array Ψi,k is then traversed. If its prefix value

can be found in Φx,k, its suffix is appended to that of the

corresponding element in Φx,k; otherwise, it is inserted into

Φx,k in the ascending order of the attribute value.

Finally, the OSN operator generates an MHT for each Φj,k

(∀j ∈ [1,mk], k ∈ [1, w]) based on its concatenation values

in the similar way as before, and also signs the root of each

MHT tree.

As in the basic scheme, the auxiliary information includes

the internal nodes of all the MHT trees and also all the

signatures. It is sent along with the dataset to the SDP. In

addition, the enhanced and basic schemes use almost the same

processes to process a query and verify a query result. The

only exception is that the verification object should contain the

auxiliary authentication information necessary to reconstruct

and verify the roots of the MHTs whose corresponding at-

tribute values satisfy the query. We do not repeat the redundant

operations due to space constraints.
We continue with the example in Fig. 1. The data con-

sumer also queries the nodes age 21 and their edges. The

verification information for the attribute value 21 includes {-

1||0, 24||h(ID2)
⊕

h(ID5)||h(ID1)
⊕

h(ID6), 120||0, S(root21)}.

Based on this verification information, the data consumer

can ensure the completeness of edges among qualified nodes

in G′. Moreover, the verification information from the array

Ψ′
k is {−1||0||0, 24||h(24||ID5)

⊕
h(24||ID6)||h(ID5)

⊕
h(ID6),

120||0||0, S(root)}. Based on this verification information, the

data consumer can guarantee the completeness of attribute

values and nodes.

C. The Advanced Scheme
The advanced scheme further reduces the signature opera-

tions by constructing a Bloom filter instead of an MHT for

each Φj,k (∀j ∈ [1,mk], k ∈ [1, w]), where mk again denotes

the number of unique values in attribute k.
A Bloom Filter [9] is a space-efficient probabilistic data

structure for set-membership testing and many other applica-

tions [10], [11]. Assume that we want to use an α-bit Bloom

filter for a data set {di}βi=1, which has every bit initialized to

bit-0. Let {hj(·)}τj=1 denote τ different hash functions, each

with output in [1, α]. Every element di is added into the Bloom

filter by setting all bits at positions {hj(di)}τj=1 to bit-1. To

check the membership of an arbitrary element e in the given

data set, we can simply verify whether all the bits at positions

{hj(e)}τj=1 have been set. If not, e is certainly not in the data

set; otherwise, it is in the data set with some probability jointly

determined by α, β, and τ .
In the advanced scheme, the OSN operator generates Φj,k

(∀j ∈ [1,mk], k ∈ [1, w]) as in the enhanced scheme and

then initializes the corresponding Bloom filter BF j,k. The

prefix and suffix of each element in Φj,k (except the dummy

elements) are both inserted into BF j,k. Finally, the OSN

operator signs BF j,k.
The auxiliary information is now composed of all the inter-

nal nodes of the MHT for Ψ′
k, the Bloom filters {BF j,k|j ∈

[1,mk], k ∈ [1, w]}, and all the related signatures. In addition,

the advanced scheme uses the almost identical processes

for query processing and query-result verification to those

in the basic and enhanced schemes. The only exception is

that the verification object should contain the signed Bloom

filters whose corresponding attribute values satisfy the query.

Therefore, the data consumer can construct an array like Φj,k

for each unique attribute value in the query result and check

whether all the array elements are in the corresponding signed

Bloom filter. If not, the query result is untrustworthy. Other

operations are omitted here for lack of space.
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Let us continue the example in Fig. 1. Given the

same query for age 21, the verification information

from the array Ψ′
k is identical with that in the enhanced

scheme. However, the verification information for the

attribute value 21 changes to {BF21,1, S(BF21,1)}.

The data consumer first matches the Bloom filter

BF21,1 with the OSN operator’s signature S(BF21,1).

Subsequently, it verifies whether the two values, h(21)

and h(h(ID1)
⊕

h(ID2)
⊕

h(ID4)||h(ID2)
⊕

h(ID1)
⊕

h(ID3)||
h(ID3)

⊕
h(ID2)||h(ID4)

⊕
h(ID1)), are both in the Bloom

filter BF21,1. If the query result passes these verification, the

data consumer considers it correct and complete.

IV. SECURITY AND OVERHEAD ANALYSIS

In this section, we briefly analyze the security and overhead

of the proposed schemes.

A. Security Analysis

The basic and enhanced schemes both enable a data con-

sumer to detect an incorrect and/or incomplete query result in a

deterministic fashion. The reason is that the auxiliary informa-

tion amounts to chaining the authentic nodes, attribute values,

and edges with cryptographic methods. As long as the hash

function and digital signature scheme used for constructing

the MHTs are secure, the SDP cannot modify the authentic

query result without failing the signature verification.

In contrast, the advanced scheme detects an incorrect and/or

incomplete query result with overwhelming probability. On

the one hand, the signed MHT can effectively prevent the

SDP from inserting/delecting nodes or modifying any attribute

value in the query result while escaping the detection. On

the other hand, the signed Bloom filters may not reveal all

the illegitimate edge insertions or deletions by the SDP. In

particular, assume that the SDP deletes (or adds) one edge

between nodes i and l from the query result for attribute

k. In the query-result verification phase, the data consumer

derives many array elements and then check whether each

of them is indeed in the corresponding Bloom filter. An edge

deletion (or addition) results in two new array elements related

to nodes i and l, respectively. If both of them are found in

the corresponding Bloom filter (i.e., two false positives), the

SDP escapes the detection. The false-positive probability of a

Bloom filter with parameters 〈α, β, τ〉 can be easily estimated

as 0.6185α/β , for which τ is set as α
β × ln 2 to minimize the

false-positive rate [9]. So the SDP can escape the detection

with probability (0.6185α/β)2χ for adding (or deleting) χ ≥ 1
edges from the query result.

B. Overhead Analysis
Now we analyze the computation, communication, and stor-

age overhead our schemes incur to enable the correctness and

completeness verifications of the query results. The overhead

that exists with or without our schemes is ignored here (e.g.,

the time to search for qualified nodes).

1) Computation overhead: All our schemes involve digital

signature generations, verifications, and hash operations. The

computation overhead is dominated by signature generations

and verifications (especially, the former), so we can safely

ignore the hash operations for simplicity.

First, we estimate the computation overhead at the OSN

operator for generating the auxiliary information. The OSN

operator needs 2·n+1 signature operations for attribute k in

the basic scheme, thus the complexity of signature operations

is O(n). The OSN operator takes mk+1 signature operations

for attribute k in the enhanced scheme. Hence, the complexity

of signature operations in the enhanced scheme is O(mk).

In the advanced scheme, the OSN operator also takes mk+1

signature operations, so the complexity is O(mk).

Next, we discuss the computation overhead at the data

consumer for verifying a query result. Suppose that the number

of nodes in the query result is z. In the basic scheme, the

data consumer performs up to 2·z+1 signature verifications,

leading to the complexity of O(z). Assume that the number

of unique attribute values in the query result is m′
k. In the

enhanced scheme, the data consumer performs up to m′
k+1

signature verifications, resulting in the complexity of O(m′
k).

As well, the advanced scheme requires the data consumer to

verify no more than m′
k+1 signatures, meaning the complexity

of O(m′
k).

2) Communication and storage Overhead: We first discuss

the communication overhead for transmitting the auxiliary

information from the OSN operator to the SDP, which is

the same as the storage overhead at the SDP for storing the

auxiliary information. For convenience, only a single attribute

k is considered, and the overall overhead can simply be scaled

by a factor of w for all w attributes. Let lhash and lsig denote

the lengths of a hash value and a digital signature, respectively.

Assume that node i and its neighbors have θi,k unique values

for attribute k. In the basic scheme, the communication over-

head includes (2·n+1)·lsig and (
∑n

i=1(2log2�θi,k�-2)+2log2�mk�-

2)·lhash. Since θi,k is no more than mk, the communication

complexity of the basic scheme is O(n ·2log2�mk�) hash values

and O(n) signatures. Let ρj,k denote the number of unique

attribute values of neighbors for nodes with each unique

value in attribute k. In the enhanced scheme, the communica-

tion overhead consists of (mk+1)·lsig and (
∑mk

i=1(2log2�ρj,k�-

2)+2log2�mk�-2)·lhash. Likewise, the worst case for ρj,k is also

mk, the enhanced scheme incurs the communication complex-

ity of O(mk · 2log2�mk�) hash values and O(mk) signatures.

Finally, the communication overhead of the advanced scheme

is composed of (mk+1)·lsig, (mk-2)·lhash, and
∑mk

j=1 lBFj,k
,

where lBFj,k
denotes the length of the Bloom filter BF j,k. So

the advanced scheme incurs the communication complexity

of O(mk) signatures, O(mk) hash values, and O(mk) Bloom

filters.

The three schemes also incur the communication overhead

for transmitting the verification object from the SDP to the

data consumer, which depends on the particular query that

determines how many nodes and edges are in the query

result. Since it is difficult to give a meaningful, generic
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TABLE I: Computation overhead

Basic Enhanced Advanced
hash XOR sign hash XOR sign hash XOR sign

S-100K 4.92M 3.47M 192.28K 3.71M 3.13M 1.2K 3.38M 3.13M 1.2K
S-1M 50.5M 35.5M 1.98M 35.9M 34.2M 3.49K 34.5M 34.2M 3.49K
S-1.5M 76.0M 53.5M 2.98M 53.74M 51.87M 4.07K 52.06M 51.87M 4.07K

estimation, we omit it here which is considerably smaller

than the communication overhead for transmitting the auxiliary

information from the OSN operator to the SDP.

V. EXPERIMENTAL RESULTS

In this section, we experimentally evaluate the three

schemes using experiments with real datasets. We implement

all three schemes using Python 2.7 with totally 1800+ lines of

codes. All the experiments are carried out on a commodity PC,

with 3.4 GHz Intel-i7 3770 CPU, 16 GB memory, a 7200 RPM

hard disk, and Windows 10 OS. The false positive probability

of the Bloom filter in the advanced scheme is set to 0.001

unless mentioned otherwise.

A. Datasets

We use a real-world Twitter dataset that we collected

in March 2016. Specifically, we randomly selected 100,000

Twitter users as seeds. For each seed user, we crawled his

attribute, followers and friends, and obtained nearly 4M users’

attributes and the corresponding social graph. Our subsequent

experiments focus on location attribute. For our purpose, we

extracted location with city-level labels in the form of “city-

Name,stateName” or “cityName,stateAbbreviation”, where we

considered all cities in the “List of Valid U.S. cities” 2. Among

all the crawled users, we found 1.6M users with valid location

attribute and more than 50M edges among them.

To evaluate the performance of our schemes for datasets

with different sizes, we randomly sampled three groups of

users (S-100K, S-1M, S-1.5M) from the above dataset, i.e.,

100K, 1M, 1.5M users and their corresponding social graphs.

The sizes of three sampled datasets S-100K, S-1M and S-1.5M

are 315.58MB (10.95MB users’ attribute, 304.63MB social

network), 3.13GB (109.57MB users’ attribute, 3.02GB social

network), 4.71GB (164.36MB users’ attribute, 4.54GB social

network), respectively.

B. Generating Auxiliary Information
We now evaluate the computation and storage overhead

incurred by generating auxiliary information in the basic,

enhanced, and advanced schemes.

Computation overhead. We compare the three schemes in

terms of the number of hash, XOR, and signature operations,

and computation time. Table I lists the numbers of hash, XOR,

and sign operations for all three schemes and all three datasets.

We can see from Table I that (1) The basic scheme requires the

highest number of hash operations, followed by the enhanced

scheme and the advanced scheme; (2) all three schemes require

similar numbers of XOR operations; and (3) the number of

2https://www.whitehouse.gov/sites/default/files/
omb/assets/procurement_fair/usps_city_state_list.xls

TABLE II: Computation time.

Basic Enhanced Advanced
S-100K 192.69s 16.33s 16.88s
S-1M 2111.46s 139.91s 143.23s

S-1.5M 2973.96s 204.33s 211.7s

TABLE III: Storage overhead.

Basic Enhanced Advanced
S-100K 121.22MB(38.41%) 31.16MB(9.87%) 1.44MB(0.45%)
S-1M 1.22GB(38.98%) 125.42MB(3.91%) 5.49MB(0.17%)

S-1.5M 1.83GB(38.85%) 155.8MB(3.23%) 6.76MB(0.14%)

signature operations in the advanced scheme and enhanced

schemes are significantly lower than that of the basic scheme.

For example, and the number of signature operations in the

advanced and enhanced schemes are only 0.13% of that in the

basic scheme for S-1.5M, respectively. This is expected, as the

complexity of signature operations in our three schemes are

O(n), O(mk) and O(mk), respectively. Finally, Table II shows

the total computation time of generating auxiliary information

for three datasets. We can see the advanced scheme and the

enhanced scheme almost take the same time for generating

auxiliary information, and shorter time than the basic scheme.

For example, the computation time in the basic scheme is

14.04× of that in the advanced scheme for S-1.5M.

Storage overhead. Table III shows the storage overhead of

auxiliary information, i.e., the total size of signatures, internal

nodes of MHTs, and Bloom filters, in the basic, enhanced,

and advanced schemes in bits. We can see from Table III

that the basic scheme incurs the highest storage overhead,

followed by the enhanced scheme and the advanced scheme.

Consider S-1.5M as an example, the storage overhead of the

basic, enhanced or advanced scheme are 1.83GB, 155.8MB or

6.76MB, respectively. This is of no surprise, as the complexi-

ties of storage overhead for signatures and hash values in the

basic and enhanced schemes are 〈O(n), O(n · 2log2�mk�)〉 and

〈O(mk), O(mk ·2log2�mk�)〉, and the advanced scheme utilizes

space-efficient data structure (Bloom filter) to further reduce

the storage overhead. Table III also shows the ratio between

the the size of the auxiliary information and that of original

user data. It is clear that the advanced scheme incurs very

small additional storage overhead for auxiliary information.

C. Query Processing
To evaluate the computation overhead incurred by query

processing, we generate three types of queries: Q̃10, Q̃50, and

Q̃100, where the query Q̃x means randomly choosing x cities

as the query condition for x = 10, 50 and 100. Fig. 3a, 3b

and 3c show the query processing times of three schemes for

the three types of queries for all three datasets, where each

point represents the average of 100 runs, each with a random

seed. We can see that the query processing time of the basic
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Fig. 2: Comparison of query processing time.
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Fig. 3: Comparison of query-result verification time.
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Fig. 4: Impact of Bloom filter size on false positive probability

and storage overhead.

scheme is the longest and that of the enhanced and advanced

schemes are similar. For S-1.5M, it takes the SDP only 807ms

to process 100 queries under the advanced scheme.

D. Query-Result Verification

Figs. 3a to 3c compare the time for query-result verification

under three proposed schemes for three datasets. We can

see that the verification time in the advanced and enhanced

schemes are almost the same, followed by the basic schemes.

This is expected, as the complexities of signature verification

in three schemes are O(z · m′
k), O(m′

k) and O(m′
k), respec-

tively. Moreover, the average verification time in the advanced

scheme is 29.4ms for the dataset S-1.5M, which clearly shows

its high efficiency for real application.

E. Impact of Bloom Filter on the Advanced Scheme
Fig. 4a shows the false-positive probability of a Bloom

filter varying with its length, where the number of elements

β=100, 300, 500, and 1,000. We can see that the lower the

false positive probability we desire, the larger the Bloom filter

needs to be. In addition, the more elements inserted into the

Bloom filter, the higher the false positive probability, and

vice versa. These results coincide with the property of Bloom

filter. Fig. 4b shows the storage overhead incurred by all the

Bloom filters for S-100K, S-1M and S-1.5M with false positive

probability varying from 10−1 to 10−4. We can see that if

we reduce false positive probability from 10−3 to 10−4, the

storage overhead incurred by all the Bloom filters for S-1.5M

increases by only 2MB. Recall that Table III that the total

storage overhead of the advanced scheme is 6.76MB for S-

1.5M when f =10−3, so the total storage overhead is 8.76MB

for S-1.5M when f =10−4, which is still significant lower than

that of the basic and the enhanced schemes.

VI. RELATED WORK

Our work is mostly close to data outsourcing [12] paradigm,

in which the data owner outsources its dataset to a third party

service provider, which in turn answers data queries from

either the data owner or other users.

A major security challenge in data outsourcing is to ensure

the integrity of the query results [13]. A common solution is

to let the data owner outsource both its dataset and also some

auxiliary information over the data to the service provider

which returns both the query result and a verification object

computed from the auxiliary information for the querying user
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to verify query integrity. Many techniques based on signature

chaining were proposed for auxiliary information and VO
generations. Narasimha et al. [14] proposed an approach DSAC
based on signature chain to verify the integrity of dynamic

databases. Pang et al. [15] proposed a novel signature caching

scheme SigCache to reduce the overhead of DSAC. In [16], the

authors proposed efficient authentication schemes for single-

and multi-attribute range aggregate queries. There are also

some schemes based on Merkle Hash Tree (MHT) [17] or

its variants proposed for authenticating aggregation queries

[18], kNN queries [19], [20], top-k spatial keyword queries

[21], [22], and location-based skyline queries [23]. However,

none of these schemes consider query over graph data, so they

cannot be applied to our problem.

Another line of research has been devoted to ensure the

integrity of outsourced query over graph data. Goodrich et
al. [24] proposed a scheme to verify whether two nodes are

connected in the graph. Yiu et al. [25] proposed a landmark-

based verification method to verify shortest-path query results.

Moreover, Fan et al. [26] proposed a technique to authenticate

subgraph query. Nevertheless, none of these schemes can be

applied to verifiable range queries over social graph.

Authenticating outsourced query processing has also been

studied in other contexts. Zhang et al. [22] presented sev-

eral techniques to enable efficient verification of location-

based top-k query results returned by untrusted location-based

service providers. Besides, the techniques in [27]–[30] allow

a sensor network owner to verify range-query results over

encrypted data stored inside the network. These schemes target

different scenarios and are orthogonal to our work here.

VII. CONCLUSIONS

In this paper, we initiated the study of verifiable social data

outsourcing to allow a data consumer to verify the trustwor-

thiness of the social data returned by the SDP. Specifically, we

have proposed three solutions to allow the data consumer to

verify the social-graph correctness, social-graph completeness,

and content authenticity of any query result returned by an

untrusted SDP. The efficacy and efficiency of our solutions

have been confirmed by extensive experiments based on real

Twitter dataset.

ACKNOWLEDGMENT

This work was partially supported by US Army Research

Office through grant W911NF-15-1-0328, US National Sci-

ence Foundation through grants CNS-1700032 and CNS-

1700039, and National Natural Science Foundation of China

through grants 61472125 and 61402161.

REFERENCES

[1] B. Jason, “The impact of social media marketing trends on digital mar-
keting,” Mar. 2014. [Online]. Available: http://www.socialmediatoday.
com/content/impact-social-media-marketing-trends-digital-marketing

[2] F. Morstatter, J. Pfeffer, H. Liu, and K. M. Carley, “Is the Sample Good
Enough? Comparing Data from Twitter’s Streaming API with Twitter’s
Firehose,” in ICWSM’13, Boston, MA, Jul. 2013.

[3] F. Morstatter, H. Dani, J. Sampson, and H. Liu, “Can One Tamper
with the Sample API?: Toward Neutralizing Bias from Spam and Bot
Content,” in WWW’16, Montreal, Canada, Apr. 2016.

[4] C. Patrick, “Yelp’s newest weapon against fake reviews: Lawsuits,”
Jul. 2014. [Online]. Available: http://www.bloomberg.com/news/articles/
2013-09-09/yelps-newest-weapon-against-fake-reviews-lawsuits

[5] A. Chang, “Tempers flare at yelp’s town hall for small business owners
in l.a.” Aug. 2013. [Online]. Available: http://articles.latimes.com/2013/
aug/21/business/la-fi-tn-yelp-town-hall-reviews-20130820

[6] J. Zhang, J. Sun, R. Zhang, and Y. Zhang, “Your age is no secret:
Inferring microbloggers’ ages via content and interaction analysis,” in
IEEE CNS’15, Florence, Italy, Sept. 2015.

[7] J. Zhang, X. Hu, Y. Zhang, and H. Liu, “Your age is no secret: Inferring
microbloggers’ ages via content and interaction analysis,” in ICWSM’16,
Cologne, Germany, May 2016.

[8] P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine, “Authentic data
publication over the internet,” Journal of Computer Security, vol. 11,
no. 3, pp. 291 – 314, Jan. 2003.

[9] B. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[10] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” pp. 636–646, 2002.

[11] Y. Zhao and J. Wu, “B-SUB: A practical bloom-filter-based publish-
subscribe system for human networks,” in ICDCS’10, Genoa, Italy, June
2010.
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