
Secure Crowdsourced Indoor Positioning Systems

Tao Li∗, Yimin Chen∗, Rui Zhang†, Yanchao Zhang∗, and Terri Hedgpeth∗
∗ Arizona State University, † University of Delaware

{tli, ymchen, yczhang, terrih}@asu.edu, ruizhang@udel.edu

Abstract—Indoor positioning systems (IPSes) can enable many
location-based services in large indoor environments where GPS
is not available or reliable. Mobile crowdsourcing is widely
advocated as an effective way to construct IPS maps. This paper
presents the first systematic study of security issues in crowd-
sourced WiFi-based IPSes to promote security considerations
in designing and deploying crowdsourced IPSes. We identify
three attacks on crowdsourced WiFi-based IPSes and propose
the corresponding countermeasures. The efficacy of the attacks
and also our countermeasures are experimentally validated on a
prototype system. The attacks and countermeasures can be easily
extended to other crowdsourced IPSes.

I. INTRODUCTION

Indoor positioning systems (IPSes) have received tremen-

dous attention from the academia and industry. IPSes target

large indoor environments where GPS signals are unavailable,

unreliable, or inadequate. They can actively locate mobile

users (devices), provide ambient location context, or navigate

them through an indoor venue of interest. They can also enable

many location-based services, e.g., location-based proximity

advertising inside a shopping mall. There are many compet-

ing IPS technologies with great commercial potential. For

example, WiFi-based IPS applications are expected to generate

revenues up to $2.5 billion by 2020 [1].

A typical WiFi-based IPS depends on the ubiquity of indoor

WiFi APs and works in three phases. In the training phase, the

IPS collects Received Signal Strength (RSS) fingerprints for

all possible indoor positions to build a fingerprint database. In

the operating phase, the IPS searches its fingerprint database

for the closest match to a submitted RSS fingerprint and then

returns the corresponding position to the requesting user. A

calibration phase is also needed for the IPS to dynamically

update its fingerprint database to deal with noisy WiFi signal

measurements and physical environment changes such as

indoor layout changes and additions/deletions of WiFi APs.

There is significant research on crowdsourced techniques

such as [2]–[5] to reduce the calibration effort in WiFi-based

IPSes. The common idea is to outsource the collection of

RSS fingerprints to indoor smartphone users. These techniques

combine the IMU sensor data and RSS fingerprints in various

ways and demonstrate significant success. The security issue,

however, is overlooked in existing studies. In particular, a

crowdsourcing worker can submit fake data to induce a low-

fidelity fingerprint database at the IPS for various motives.

For example, the worker may want to claim rewards without

actually collecting data, be hired by a malicious business

competitor of the IPS operator, or misbehave just for fun.

The goal of this work is to discover the vulnerabilities of

crowdsourced WiFi-based IPSes and present some counter-

measures. For this purpose, we prototype a WiFi-based IPS

to evaluate potential attacks and the corresponding defenses.

Although this study focuses on WiFi-based IPSes, the rationals

can easily extend to other types of crowdsourced IPSes. We

hope that our study can promote security considerations in the

early phase of designing and deploying crowdsourced IPSes.

We identify three attacks based on the information the

attackers have. In the first attack, the attackers know the indoor

floor plan but have no knowledge about real indoor APs. So

they can generate acceptable mobility traces fitting the floor

plan, which are submitted along with totally random fake RSS

fingerprints. In the second attack, the attackers know both the

indoor floor plan and legitimate RSS fingerprints, e.g., by

walking in the indoor environment. They add noise to RSS

fingerprints before submitting them. In the third attack, the

attackers have the same knowledge as in the second attack. But

they purposefully change the mappings between the floor plan

and RSS fingerprints instead of polluting RSS fingerprints.

We also propose the corresponding defenses based on the

observation that there are often some trusted indoor users

such as the employees in a shopping mall. Even if the IPS

operator cannot produce a high-fidelity fingerprint database

based on limited trusted users alone, their data are much more

trustworthy and can be used to verify the data from untrusted

crowdsourcing workers. We defend against the first attack by

comparing the set of APs in an untrusted submission with

those in a trusted submission for the same position. To deal

with the second and third attacks, we present two novel metrics

to evaluate the trustworthiness of data submissions from un-

trusted crowdsourcing workers. The first metric considers the

correlation between the RSS fingerprints for adjacent positions

in the same signal trace, while the second considers the

correlation between the RSS fingerprints for the same positions

in different signal traces. Finally, we combine the two metrics

and design an algorithm to build a high-fidelity fingerprint

database resilient to malicious crowdsourcing workers.

Our contributions can be summarized as follows.

• We are the first to study the security issues in crowd-

sourced WiFi-based IPSes. Our principles can be easily

extended to other crowdsourced IPSes.

• We present three attacks and evaluate their performance

in a prototype system. We show that the attacker can

induce a localization error up to 20m under the most

powerful attack.

• We propose the corresponding defenses that can safe-

guard a crowdsourced WiFi-based IPS from malicious

data injections. We experimentally show that our tech-

nique is highly resilient to the identified attacks even if

the majority of crowdsourcing workers are malicious.

The rest of the paper is organized as follows. Section II

introduces the background of crowdsourced WiFi-based IPSes.

Section III describes the prototype system we build. Section IV

presents the adversary model and experimentally evaluates

three possible attacks. Section V gives our countermeasures

against the identified attacks. Section VI experimentally eval-

uates the efficacy of our countermeasures. Section VII outlines

the related work. Section VIII concludes this paper.

II. BASICS OF CROWDSOURCED WIFI-BASED IPS

In this section, we introduce the basic operations of a WiFi-

based IPS to help understand the proposed attacks and defens-

es. WiFi-based IPSes depend on the ubiquitous WiFi infras-

tructure in indoor environments and the penetration of WiFi-

capable smartphones into people’s everyday life. No additional

hardware is needed to augment the network infrastructure or

equip mobile users. When there is need for indoor positioning,

the user turns on the IPS app on his smartphone. Assume that

there are n APs in a given indoor environment, denoted by

AP1, . . . ,APn. At any specific indoor location, the smartphone

can detect n RSS values (denoted by rss1, . . . , rssn), one for

each AP. If some APs are not discoverable, the corresponding

RSS values are set to default system values. We refer to

〈rss1, . . . , rssn〉 as an RSS fingerprint (or just fingerprint for

short) for that position. Assume that the IPS operator has

maintained a fingerprint database composed of the mappings

between fingerprints and indoor locations. Upon receiving the

user’s fingerprint, the IPS operator finds the closest match

in its fingerprint database and then returns the corresponding

location to the user.

Radar [6] is the most classical WiFi-based indoor position-

ing method. It uses deterministic fingerprinting and matching

based on Euclidean distance. To find the closest match in the

database for a received fingerprint 〈rss1, . . . , rssn〉, Radar min-

imizes the distance
√
(rss′1 − rss1)2 + · · ·+ (rss′n − rssn)2 for

an arbitrary record 〈rss′1, . . . , rss′n〉 in the database.

Horus [7] improves Radar by employing probabilistic

techniques to find a maximum likelihood fingerprint in the

database. Given that RSS fingerprints are highly dependent on

time, locations, and even devices, Horus maintains the RSS

fingerprint distribution at every position xi as

P (〈rss1, . . . , rssn〉|x = xi) =

n∏

k=1

P (rssk|x = xi) .

Based on Bayesian inference, Horus derives the maximum

likelihood location for each received fingerprint.

Traditional WiFi-based IPSes face two key challenges. First,

it is very time-consuming and labor-intensive for the IPS oper-

ator to record the RSS fingerprints at every position in such a

large indoor environment as a shopping mall. Second, dynamic

N

Fig. 1. Only one trace exists in the floor plan.

Accelerometer
Compass
Gyroscope

Step Counter
Heading
Ranging

Motion Estimator

Particle
Filter

FloorMap WiFi
Scanner

Fingerprint
Database

Fig. 2. The architecture of our prototype system.

calibration is needed to update the fingerprint database to deal

with noisy WiFi signals, physical environment changes, and

AP additions/deletions.

III. A PROTOTYPE FOR CROWDSOURED WIFI-BASED IPS

Mobile crowdsourcing has great potential to facilitate the

construction of fingerprint databases in WiFi-based IPSes. The

key idea is to leverage the sensors (e.g., accelerometer, gyro-

scope, and magnetometer) embedded in today’s smartphones

in a crowdsourcing manner to automatically construct/update

the fingerprint database. In such a system, a crowdsourcing

worker submits the RSS fingerprints and corresponding IMU

sensor data at unknown locations to the IPS operator. Different

techniques such as [2]–[5] have been proposed to explore the

IMU sensor data to map the fingerprints collected at unknown

locations to the correct locations.

We build a prototype system based on Zee [2], a rep-

resentative crowdsourced WiFi-based IPS, to illustrate the

proposed attacks and defenses. Our attacks and defenses can

easily extend to other systems after simple adaptations. The

prototype system explores the fact that the indoor layout

imposes constraints on the human mobility. For example, the

user has to walk along the corridor and cannot walk through

the walls or other barriers. When the user’s mobility trace is

known (e.g., a zigzag path), we may find only one pathway in

the floor plan to accommodate the mobility trace. The more the

user walks, the higher probability a single possible pathway

exists. As illustrated in Fig. 1, the user walks east, turns left,

turns right, and walks to the end. There is only one pathway

which can accommodate such a mobility trace. If the user’s

mobility trace can be mapped uniquely to the floor plan, the

fingerprints collected when the user walks can also be mapped

to the floor plan based on timestamps.

Fig. 2 illustrates the architecture of our prototype system.

The system first estimates the user motion (mobility trace)

from accelerometer, compass, and gyroscope data. Then the

particle filter explores the mobility trace to eliminate the par-

ticles that violate the floor constraints (e.g., it is impossible for

a bc d

N

Fig. 3. Indoor floor plan for the experiment.

the user to walk through the wall). Finally, the system uniquely

maps the mobility trace and associated RSS fingerprints to the

floor plan. The fingerprint database is built and dynamically

updated in this way. In the operating phase, the prototype

system uses Horus [7] for fingerprint matching.

We implement our prototype in Google Nexus 6 based on

Java. The Google Nexus 6 phone has a Quad-core 2.7 GHz

Krait 450 CPU, 3 GB RAM, a 5.96-inch display, and four

relevant IMU sensors (magnetometer, compass, accelerometer,

and gyroscope). The sampling frequency for IMU sensors and

the WiFi module are about 16.7 Hz and 0.67 Hz, respectively.

We deploy the prototype on a rectangular 135m-by-35m floor

of a university building with the floor plan shown in Fig. 3.

To validate the fidelity of our prototype system, we let

two trusted users walk 20 times to form the initial fingerprint

database with walking traces ranging between 96m to 110m

long. Each user walks arbitrarily in the floor plan while

carrying the smartphone in any way and orientation. In some

cases, users prefer to carry the smartphone in the pocket for

convenience. The sensor and RSS data are collected in two

weeks to capture the RSS variations due to time. Based on

the initial database, we emulate location queries at 11 random

positions in the floor plan and get an average error of 2.48m

and a median error of 1.72m. These results are quite consistent

with the results in Zee [2].

IV. ADVERSARY MODEL AND ATTACKS

In this section, we first outline the adversary model. Then

we present three attacks and report their efficacy with experi-

mental results in our prototype system.

A. Adversary Model

Crowdsourced WiFi-based IPSes depend on the voluntary

participation of many mobile users that can be recruited in

various channels such as Amazon Mechanical Turk. Each

crowdsourcing worker submits timestamped RSS fingerprints

and concurrent IMU sensor data via an app from the IPS

operator, which can be part of the actual IPS app. The

IPS operator may be offering indoor positioning services for

many indoor venues. In this case, it can easily associate

crowdsourced data with the correct indoor venue, e.g., by

checking the GPS location of the crowdsourcing worker before

he enters the indoor venue. Crowdsourcing workers normally

receive some rewards for their participation.

Crowdsourcing workers can misbehave for various reasons.

For example, he may submit fake sensor/RSS data to claim

rewards without performing the actual WiFi sensing which

can be time-consuming or quickly drain his phone battery. Or

he can be hired by a malicious competitor to ruin the business

of the IPS operator, and such instances are not uncommon in

the business world. He may also extort the IPS operator or

misbehave just for fun.

The adversary can control many crowdsourcing workers,

e.g., by registering many sybil accounts, teaming up with other

attackers, or compromising many smartphones via malware.

We are aware of the rich literature on sybil defenses which,

however, still cannot eliminate fake accounts in practice. We

also assume that the adversary knows our defenses.

As the first work on securing crowdsourcing-based IPSes,

this paper does not have the ambition to thwart the attacks

other than fake data injection. For example, one may deploy

fake APs to interrupt the IPS operations or other common

attacks against mobile crowdsourcing systems. These attacks

deserve serious treatment in separate work.

B. Attacks

We first consider the naive attack that the attacker has no

knowledge about the indoor floor plan and submits fake IMU

sensor and RSS data. The mobility trace generated from fake

IMU sensor data can hardly fit the floor plan, so the system

can easily detect and reject the fake IMU sensor and RSS data.

Then we consider an attacker who knows the floor plan and

thus can generate IMU sensor data resulting in a valid mobility

trace fitting the floor plan. So the attacker merely needs to

generate fake RSS fingerprints associated with valid mobility

traces. Consider the floor plan in Fig. 3. We first emulate the

attacker to generate a list of mobile traces which range from

40m to 400m long and can fit the floor plan (e.g., traces a and

b). The starting position of each trace is random in the floor

plan. As in [2]–[5], the traces that have ambiguous fittings in

the floor plan (e.g., traces c and d) are not considered. We

consider the following three scenarios in which the attacker

tries to generate fake RSS fingerprints in different ways.

Attack-I: the attacker does not know genuine RSS finger-
prints and generates fake RSS traces purely at random.

In this attack, the attacker knows neither the true RSS

fingerprints for any valid mobile trace nor available APs in

the indoor venue. So the attacker submits the RSS fingerprints

corresponding to fake APs for each valid mobile trace. In

a large indoor environment such as the shopping mall, the

APs are controlled by different parties who can add, remove,

replace, or move their owned APs. The IPS operator can

only learn available APs from crowdsourced RSS reports

and accordingly adjust the length and format of the RSS

fingerprint. Specifically, the IPS operator always maintains

an ordered list of APs, appends to the list any new AP

learned from crowdsourced RSS fingerprints, and also removes

any AP that is not seen in the RSS fingerprints from either

0 50 100 150 200
Number of fake traces

2

4

6

8

10

Er
ro

r (
m

)

of fake APs=1
of fake APs=5
of fake APs=9

Fig. 4. Localization errors induced by Attack-I.

0 100 200 300 400
Number of fake traces

5

10

15

20

Er
ro

r (
m

)

Noise=4dBm
Noise=8dBm
Noise=16dBm

Fig. 5. Localization errors induced by Attack-II with
constant noise.

0 100 200 300 400
Number of fake traces

5

10

15

20

Er
ro

r (
m

)

Noise=4dBm
Noise=8dBm
Noise=16dBm

Fig. 6. Localization errors induced by Attack-II with
alternating noise.

crowdsourcing workers or IPS users for a while. For example,

when a new AP is discovered, the IPS operator increases the

fingerprint length by one by appending a default value (say,

0) to each existing fingerprint. Therefore, the RSS fingerprints

the attacker submits for fake APs will be accepted by the IPS

operator and used to update the fingerprint database.

Fig. 4 illustrates the localization errors induced by Attack-I.

We have about 10 genuine RSS fingerprints for each position

in the database before the attack. When fake fingerprints are

inserted into the database, the fingerprint distribution changes

at the positions covered by fake fingerprints, so the maximum

likelihood location derived by the system changes as well

(see Section II). Therefore, the localization error changes

dramatically with the increase of fake traces. The attacker

cannot exactly control the induced errors without knowing the

fingerprint database, and he can only cause random changes

to the existing fingerprint distribution. As a result, we can

see some temporary error fluctuations especially for the traces

with more fake APs.

Attack-II: the attacker knows legitimate RSS fingerprints
and adds noise to them.

In this attack, the attacker knows legitimate RSS finger-

prints, e.g., by visiting the indoor venue in person or getting

them from an accomplice. He then submits them after adding

noise. Fig. 5 shows the localization error when a constant noise

(in dBm) is added to each RSS value which ranges from -50

dBm to -90 dBm in our experiments. Again, the localization

errors dramatically increase with the number of fake traces

and noise strength. The errors stop quickly increasing when

there are too many fake traces that start to dominate the

fingerprint distribution. The attacker can also add random

noise to legitimate RSS fingerprints. Fig. 6 shows a simple

example, where +r dBm and −r dBm noises are alternately

added to adjacent RSS values in a fingerprint. We can clearly

see larger localization errors due to larger changes in the

fingerprint distribution.

Attack-III: The attacker changes the mappings between
fingerprints and indoor locations.

In this attack, the attacker knows genuine RSS fingerprints.

Instead of adding noise, the attacker changes the mappings

between RSS fingerprints and indoor locations. For example,

let 〈p1, . . . , pα〉 denote the valid mobility trace that can

be inferred from the attacker’s IMU sensor data, where pi
(∀i ∈ [1, α]) denotes the ith position. Also assume that the

genuine RSS trace corresponding to 〈p1, . . . , pα〉 is denoted

by 〈f1, . . . , fα〉, where fi is the RSS fingerprint for position

pi (∀i ∈ [1, α]). In the simplest case, the attacker maps fi to

position pi+k mod α, where k ∈ [1, α−1] denotes an arbitrary

offset. So the attacker submits 〈fα−k+1, . . . fα, f1, . . . , fα−k〉
along with his IMU sensor data (or equivalently the mobility

trace 〈p1, . . . , pα〉) to the IPS operator. Fig. 7 shows that the

average localization error under Attack-III increases dramat-

ically with the number of fake traces for three position off-

sets. An IPS normally has discretized locations with constant

distance (2m in our experiments) between adjacent positions.

The integer-valued offset k thus has been translated into the

corresponding physical distance in Fig. 7.

Attack-III is much more powerful than the previous two

attacks due to its more organized nature, as it purposefully

misleads existing fingerprints towards the offset direction. As

we can see in Fig. 7, the attacker just needs to inject about 40

fake traces to attain the maximum localization error achievable

under Attack 1 or Attack 2. In addition, Fig. 8 shows that the

localization error increases linearly with the offset for a fixed

number of traces, which is quite expected.

Summary of Attacks: The three attacks above are all in their

basic forms. The adversary can conceive many variations of

each attack or an arbitrary combination of the three attacks

to disrupt the IPS operations. There is thus a pressing need

to develop sound defenses to safeguard crowdsourced WiFi-

based IPSes from these attacks.

V. DEFENSES

In this section, we present some effective defenses against

the three attacks reported above. Our defenses depend on the

observation that there are always some trusted users in many

indoor environments (e.g., the employees in a shopping mall)

who can act as trustworthy crowdsourcing workers for the

IPS operator. Even though these trusted users are far from

enough to build a high-fidelity fingerprint database, their data

can be explored to infer the trustworthiness of RSS fingerprints

submitted by unknown crowdsourcing workers.

0 10 20 30 40 50
Number of fake traces

5

10

15
Er

ro
r (

m
)

Offset=10
Offset=20
Offset=30

Fig. 7. Localization errors induced by Attack-III.

0 5 10 15 20 25 30
Offset (m)

5

10

15

Er
ro

r (
m

)

ake trace =20
=30
=40

Fig. 8. Localization errors induced by Attack-III.

-68 -66 -64 -62 -60 -58 -56
RSS (dBm)

0

10

20

30

40

50

60

N
um

be
r o

f s
am

pl
es

Fig. 9. Histogram of RSS values collected from an
AP when the user is static for about 5 minutes.

A naive idea is to directly compare the fingerprints from

unknown workers with those from trusted users for the same

positions. However, wireless signal variations make such di-

rect comparisons unreliable. For example, Fig. 9 shows the

histogram of RSS values collected from an AP when the user

is static for about 5 minutes. The histogram covers a large

range of 11 dBm. In the crowdsourcing scenario, the histogram

range can be even larger because of user mobility, inaccurate

mapping from fingerprints to positions, and so on. An effective

defense thus must tolerate RSS variations.

In what follows, we first present a simple method in data

preprocessing to defend against Attack-I. Then we present

two metrics to evaluate the trustworthiness of RSS traces

from crowdsourcing workers. Finally, we present an itera-

tive algorithm based on the two metrics to build a high-

fidelity fingerprint database even in the presence of attacks.

Throughout the discussion, we consider a candidate RSS trace

〈f1, . . . , fn〉, where fi = (xi1, xi2, ..., xim) is the fingerprint

at position i (∀i ∈ [1, n]), and xij is the RSS value from APj

(∀j ∈ [1,m]) collected at position i.

A. Preprocessing against Attack-I

The AP set sensed by different users in the same position

should not differ too much in a short time window, or most

IPSes would not work. To defend against Attack-I, we compare

the APs detected by an unknown worker and a trusted user

in the same position. For example, consider a worker who

submitted an RSS trace 〈f1, . . . , fn〉 for n positions. Let Ai

and A
′
i denote the APs detected by the trusted user and the

worker at position i, respectively, for which the detection-time

difference is smaller than a system threshold (say, 24 hours).

The IPS operator computes the average intersection ratio

δ =
1

n

n∑

i=1

|Ai

⋂
A

′
i|

|Ai|
.

If δ is larger than a system threshold, the trace 〈f1, . . . , fn〉
is temporarily considered trustworthy for further processing.

B. Metric 1: Temporal Correlation within an RSS Trace

We also observe that fingerprints collected by different

users tend to exhibit a similar RSS trend. For example, when

0 10 20 30 40
Distance (m)

-90

-85

-80

-75

-70

-65

-60

-55

R
SS

 (d
Bm

)

Fig. 10. RSS values collected by five users when passing the same AP.

the user walks towards an AP, the RSS increases gradually;

when the user walks away from the AP, the RSS decreases

gradually. Fig. 10 exemplifies this observation with the RSS

trends collected by five different users when passing by the

same AP in our prototype system. A fake trace with totally

random RSS fingerprints will not be consistent with genuine

traces related to the same AP. In other words, the attacker will

be forced to generate fake traces with RSS trends similar to

those of genuine traces.

Based on this observation, we design a temporal likelihood

metric to evaluate the temporal correlation between trusted

traces and crowdsourced traces. Consider a candidate RSS

trace 〈f1, . . . , fn〉, where fi = (xi1, xi2, ..., xim). When

deriving the likelihood of observing the whole trace, we should

take into account the temporal correlations among adjacent

RSS fingerprints in the trace. For example, when xij is known,

the range of x(i+1)j is largely determined because of the RSS

trends illustrated in Fig. 10.

As a result, we can calculate the likelihood of observing

x(i+1)j from APj as

L(x(i+1)j) = L(x(i+1)j |xij)L(xij) ,

where L(x(i+1)j |xij) is the likelihood of observing x(i+1)j

given that xij is observed from APj . We can extract a

distribution for adjacent RSS variations from trusted traces

and then easily compute L(x(i+1)j |xij). It is also fairly easy

to calculate L(x1j) based on the distribution extracted from the

RSS values in trusted traces. So we can compute the likelihood

for observing a sequence of RSS values (x1j , x2j , . . . , xnj)
from APj as

L(x1j , x2j , . . . , xnj) = L(x1j)L(x2j |x1j) . . .L(xnj |x(n−1)j) .

The temporal likelihood for the whole trace can then be

computed as

Ltemporal(〈f1, . . . , fn〉) =
m∏

j=1

L(x1j , x2j , . . . , xnj),

which is normalized as 1
n

∑m
j=1 logL(x1j , x2j , . . . , xnj).

C. Metric 2: Spatial Correlation with Other Traces

Although the RSS data collected by different users may

differ because of many reasons such as channel variations,

phone orientation, and phone model, they generally follow

a Gaussian Distribution which is exemplified in Fig. 9. We

can use the distribution formed by trusted users to infer the

likelihood of the RSS submitted by a crowdsourcing worker.

The second metric (called spatial likelihood) is designed to

capture the spatial RSS correlation between the fingerprints

from the same position in different traces. According to [7],

the RSS values from different APs collected in the same

position are independent from each other. So we can estimate

the likelihood of the fingerprint in position i as

L(fi) = L(xi1, xi2, ..., xim) =

m∏

j=1

L(xij),

where L(xij) refers to the likelihood of observing the RSS

value xij from APj at position i. The spatial likelihood of the

trace 〈f1, . . . , fn〉 is represented as the product of likelihood

in every position as

Lspatial(〈f1, . . . , fn〉) =
n∏

i=1

L(fi) =
n∏

i=1

m∏

j=1

L(xij).

After normalization for different trace lengths, we can rewrite

Lspatial(〈f1, . . . , fn〉) =
1

n

n∑

i=1

m∑

j=1

logL(xij) .

D. Iterative Fingerprint-Database Construction

It is well known that the RSS fingerprint database in a

WiFi-based IPS needs to be periodically calibrated to deal

with wireless channel variations, indoor layout changes, AP

changes, and many dynamic factors in a large, complex indoor

environment [2], [3]. So we present an iterative algorithm

to build and maintain the RSS fingerprint database. In each

updating interval (say, daily or weekly or biweekly), the IPS

server always accepts new RSS traces from the trusted users

first and then uses them to evaluate the trustworthiness of the

RSS traces from crowdsourcing workers.

Our algorithm treats each crowdsourcing worker with equal

suspicion in each updating interval. Specifically, a crowd-

sourcing worker may exhibit dynamic behavior by alternating

Algorithm 1: Iterative Fingerprint-Database Construction

input : Fingerprint database F , traces T submitted by

trusted users, traces U submitted by

crowdsourcing workers.

output: Updated fingerprint database F .

1 Fit all the traces in T to the floor plan and add the

corresponding fingerprints to F ;

2 if No fingerprint distribution has major change then
3 return F ;

4 Calculate RSS distribution Ni and the set Ai of APs for

every position i in the floor plan;

5 foreach trace U in U do
6 if U does not fit the floor plan then
7 U ←− U \ {U};

8 else
9 Calculate A

′
i for every position i in trace U ;

10 r ←− 1
n

∑n
i=1

|Ai
⋂

A
′
i|

|Ai| ;

11 lU ←− αLtemporal(U) + (1− α)Lspatial(U);
12 if r < θ or lU < η then
13 U ←− U \ {U};

14 Rank all the traces in U according to lU ;

15 Add the K most trustworthy traces to F ;

16 return F ;

between “good” and “bad” states. Reputation systems are

traditional defenses against such dynamic behavior, but there

are also well-documented attacks on reputation systems. For

lack of space, we leave the integration of a sound reputation

system in our algorithm to future work. Our algorithm applies

equally to each received RSS trace without considering the

past behavior of the crowdsourcing worker.

Our algorithm is designed to work even if the majority

of crowdsourcing workers in a given updating interval are

malicious. In particular, we rank each crowdsourced RSS trace

with the two metrics above, and higher ranks indicate more

trustworthiness. Only the traces with sufficient trustworthiness

are added and used to update the database.

Algorithm 1 summarizes the main steps the IPS server

takes in each updating interval. The IPS server first adds

the traces from trusted users in the current updating interval

and checks if these new trusted traces indicate any major

change in the indoor environment. Specifically, the IPS server

updates the fingerprint distribution for each AP at every

position and compares it with the previous distribution. If

the mean of any fingerprint distribution changes more than

ε1 or its variance changes more than ε2, we consider that

the distribution has significantly changed since last updating

interval, where ε1 and ε2 are two system parameters. If none

of the fingerprint distribution has changed, then there is no

need to add additional unknown traces.

If the IPS server determines that there has been any sig-

0 5 10 15 20
Noise level (dBm)

-70

-60

-50

-40

-30

-20

-10
Tr

us
tw

or
th

in
es

s
(in

 lo
g

sc
al

e)

Temporal
Spatial

Fig. 11. Temporal and spatial trustworthiness of fake
traces under Attack-II with equal noise.

0 5 10 15 20
Noise level (dBm)

-70

-60

-50

-40

-30

-20

-10

Tr
us

tw
or

th
in

es
s

(in
 lo

g
sc

al
e) Temporal

Spatial

Fig. 12. Temporal and spatial trustworthiness of fake
traces under Attack-II with alternating noise.

0 10 20 30 40
Offset (m)

-100

-80

-60

-40

-20

Tr
us

tw
or

th
in

es
s

(in
 lo

g
sc

al
e) Temporal

Spatial

Fig. 13. Temporal and spatial trustworthiness of fake
traces under Attack-III vs. offset

nificant change to any fingerprint distribution from the last

updating interval, it selects more trustworthy traces to add to

the database. The traces which cannot fit the floor plan will

be discarded before the likelihood (trustworthiness) evaluation.

Then the IPS server discards the traces subject to Attack I

by checking whether the traces contain sufficiently common

APs to those of trusted traces. Next, the IPS server evaluates

the trustworthiness of each remaining trace by combining

its temporal and spatial likelihoods in a weighted fashion.

Finally, the IPS server discards all the traces with combined

trustworthiness (i.e., lU) lower than η and uses the remaining

top-K trustworthy traces to update the database. The impacts

of system parameters such as η and K are evaluated in

Section VI.

Alternatively, the IPS operator can iteratively integrate the

remaining traces into the database in the descending order of

their trustworthiness until the database quality is sufficient or

all the traces are used up. We ignore this option in this paper

for lack of space.

VI. COUNTERMEASURE EVALUATION

In this section, we report the experimental performance of

our countermeasures in the prototype system. In our exper-

iments, no fake trace generated under Attack-I passes the

AP-correlation test in trace preprocessing. So we focus on

the resilience of our countermeasures against Attack-II and

Attack-III in this section. The floor plan for all the experiments

remains the same as Fig. 3.

A. Evaluation of Metrics

In this subsection, we evaluate the two metrics on Attack-

II and Attack-III, respectively. The evaluation is based on the

database we build in Section III which contains 20 walking

traces from trusted users. The attacker walks in the floor plan

for 200m and then generates all kinds of fake traces from the

learned legitimate trace.

Resilience to Attack-II. We first evaluate the performance

of the temporal and spatial trustworthiness metrics under

Attack-II. Fig. 11 shows the temporal and spatial trustworthi-

ness varying with the amount of the noise added to each RSS

value. As we can see, the temporal trustworthiness is relatively

insensitive to the change in the amount of the noise added.

This is because adding equal amount of noise to every RSS

does not change the RSS trend across adjacent fingerprints for

the same APs. For example, if a sequence of RSS values for

the same AP in a genuine trace exhibit an ascending trend,

we can still observe the same trend after the same amount

of noise is added to each RSS value. In contrast, the spatial

trustworthiness decreases with the increase in the noise added,

as larger noise induces larger deviations of the fake fingerprints

from genuine ones, and vice versa.

Fig. 12 shows the temporal and spatial trustworthiness when

the attacker adds +r dBm and −r dBm noise alternately to

adjacent RSS values in a fingerprint. As we can see, both

temporal and spatial trustworthiness decrease as the amount

of noise added increases, which is expected. In addition, the

temporal trustworthiness decreases more rapidly than spatial

trustworthiness as the amount of noise increases because the

fake trace exhibits a very different temporal pattern (trend)

from trusted traces considering the alternating noise added to

adjacent RSS values.

Resilience to Attack-III. Fig. 13 compares the temporal

and spatial trustworthiness of fake traces generated under

Attack-III, where the attacker introduces different position

offsets. As we can see, both metrics can provide good discrim-

ination between fake and legitimate traces. Attack III induces

dramatic differences between the fake and legitimate traces

for the same positions. In contrast, the temporal trend in a

legitimate trace can still be preserved to some extent in a fake

trace. So we can see that the spatial trustworthiness metric

outperforms the temporal one.

B. Evaluation of Fingerprint-Database Updating Algorithm

We now evaluate our fingerprint-database updating algorith-

m when both temporal and spatial trustworthiness metrics are

employed under the following settings. In the initial phase,

the database only contains four traces submitted by trusted

users. The IPS server receives two legitimate traces and 40

fake traces in each updating period, as well as one trusted trace

every two updating periods. The algorithm is executed in each

updating period, in which the IPS server relies on the trusted

traces to evaluate the trustworthiness of each unknown trace

initial 1 2 3 4 5 6
Updating period

1.5

2

2.5

3

3.5

4

4.5

5
Er

ro
r (

m
)

Noise=6dBm, =-30, K=2
Noise=6dBm, =-40, K=5
Noise=6dBm, =-50, K=8

Fig. 14. Average localization error under Attack-II
with 6 dBm equal noise.

initial 1 2 3 4 5 6
Updating period

1.5

2

2.5

3

3.5

4

4.5

5

Er
ro

r (
m

) Offset=4m, =-30, K=2
Offset=4m, =-40, K=5
Offset=4m, =-50, K=8

Fig. 15. Average localization error under Attack-III
with 4m offset.

initial 1 2 3 4 5 6
Updating period

2

3

4

5

6

7

8

Er
ro

r (
m

)

Offset=10m, =-30, K=2
Offset=10m, =-40, K=5
Offset=10m, =-50, K=8

Fig. 16. Average localization error under Attack-III
with 10m offset.

to distinguish legitimate traces from fake ones. Experiments

for all parameter scenarios below use the same list of (trusted,

legitimate, and fake) walking traces which we generate in the

same way we talked in Section III.

In our experiments, we set θ = 0.7, corresponding to the

assumption that the APs detected by legitimate users cannot

differ by more than 70% in a short time window. We also set

α = 0.4, indicating the better overall performance of spatial

trustworthiness over temporal trustworthiness. In addition,

we set η = −30 (log scale), because the trustworthiness

(likelihood) of over 90% legitimate traces is over -30. These

parameters (θ, α, and η) can be learned in practice through

machine learning. The IPS server only accepts the top-K
trustworthy RSS traces, where K can be estimated based on

the number of trusted users and indoor traffic volume. Larger

K can accelerate the convergence of database construction but

also increase the vulnerability to fake traces, and vice versa.

Fig. 14 shows how the average localization error changes

under Attack-II when an equal noise of 6 dBm is added to

every RSS value. Our algorithm updates the database based

on the top-K trustworthy traces, each with a trustworthy value

≥ η. In our experiments, the two legitimate traces always have

higher trustworthiness than the fake traces and are always in

the top-K list for different K. The remaining K − 2 traces

in the top-K list are filled with fake traces only when there

are fake traces with an trustworthy value higher than η. In

general, the smaller K is, the fewer fake traces (K−2) added

to the database, the lower the localization error, and vice versa.

This trend is clearly seen in Fig. 14. When we enforce a strict

criterion (η = −30 and K = 2), no fake trace can achieve

trustworthiness equal to or over η, so only the two legitimate

traces are accepted; the localization error keeps decreasing as

more legitimate and trusted traces are added to the database

in each updating interval and then becomes stable around the

performance limit of the IPS. If we relax the criterion (e.g.,

η = −50 and K = 8), more and more fake traces are accepted,

leading to increasing localization errors as time goes by.

Fig. 15 shows the average distance error under Attack-III

when the attacker adds an offset of 4m to the traces. When the

most restricted parameters (η = −30 and K = 2) are used, no

fake trace is accepted in any updating interval. The average

distance error keeps decreasing as more legitimate and trusted

traces are included until reaching the system limit. When we

relax the criteria by using smaller η or larger K, more fake

traces are inserted into the database, leading to the increase in

the distance errors before it becomes stable around the 4m.

Fig. 16 shows the average distance error under Attack-

III when the attacker increases the offset to 10m. Under

such larger offset, none of the fake traces can achieve a

trustworthiness value greater than -40, so all fake traces are

rejected by the IPS operator. Therefore, we can see the lines

corresponding to (η = −40,K = 5) and (η = −30,K = 2)

overlap with each other. On the other hand, if we decrease η
to -50 and increase K to 8, some fake traces will be accepted

by the database, leading to gradual increase in distance errors.

VII. RELATED WORK

This section discusses some most germane work.

Fingerprint-based indoor positioning techniques are the

most popular approaches for indoor positioning. As probably

the first work along this line, Radar [6] is a deterministic

localization method that employs RSS for indoor localization.

Horus [7] improves Radar by keeping a fingerprint distribu-

tion for every position in the floor plan and then finding a

maximum likelihood match in the database. The work [8]

introduces Channel Frequency Response as a new feature for

localization. SurroundSense [9] introduces more indoor fea-

tures (such as light and sound) in addition to RSS fingerprints.

All these methods rely on labor-intensive calibration where the

IPS operator has to collect and update fingerprints for every

position in the floor plan.

Model-based indoor positioning techniques estimate indoor

locations using statistic models. A popular approach is to build

a relation between RSS and signal propagation distance based

on the RF propagation model (e.g., the log-distance path loss

(LDPL)) [10], [11]. Model-based methods can dramatically

decrease the need for RSS measurements but at the cost of

accuracy. For example, the work in [12] evaluates some self-

calibrating algorithms in office environments and finds that

the median errors are consistently greater than 5m. In addition

to LDPL-based schemes, there are other techniques based on

Angle of Arrival (AoA) [13], [14], Time of Arrival (ToA) [15],

and Time Difference of Arrival (TDoA) [16].

More recently, researchers start to explore visible light for

indoor positioning. Most such techniques [17]–[21] rely on

customized smart LEDs which send identification beacons

for localization. Although some techniques can achieve sub-

meter precision [21], it incurs significant cost to retrofit

current illuminating systems. LiTell [22] first enables visible

light localization on unmodified existing light hardware, but

the method only applies to tube lights and the camera of

smartphone must be held flat.
Simultaneous Localization and Mapping (SLAM) is a tech-

nique originating from the robotics community. SLAM relies

on a robot to explore the space of interest with discrete land-

marks or obstacles. Based on the laser ranging and cameras

in the robot, we can determine the relative locations of the

landmarks, and the robot can infer its relative location. WiFi-

SLAM [23] uses a Gaussian process to model the relation of

WiFi signal strengths. With more sensors embedded in the

smartphone, many techniques combine IMU sensor data with

human movements to realize SLAM. For example, Unloc [3]

uses smartphones to sense the natural landmarks in the floor

plan such as elevators and stairs, which are then connected

via dead reckoning. Similar to our prototype system, Zee

[2] uses the indoor constraints to map crowdsourced human

mobility traces to the floor plan and then generates the

fingerprint database. LiFS [4] maps fingerprints by comparing

the similarity between the high-dimensional fingerprint space

and the stress-free floor plan. Walkie-markie [5] presents a

method for generating the floor plan based on the RSS trend

when the user passes the AP.
There are also some studies on the false data injection

attack in other crowdsourcing systems. For example, Zhang

et al. [24] studies false spectrum report injection attack in

crowdsourcing-based spectrum sensing. More recently, the

work in [25] introduces a mechanism that explores user

proximity to detect false data submitted by sybil users in

crowdsourced map systems. These techniques do not consider

the unique features of RSS-fingerprint-based IPSes and are not

applicable to the attacks identified in this paper.

VIII. CONCLUSION

In this paper, we presented the first systematic study about

the security issues in crowdsourced WiFi-based IPSes. We

presented three attacks and evaluated their performance in a

prototype system. We also designed an algorithm based on

novel temporal and spatial trustworthiness metrics to generate

high-fidelity fingerprint databases even if most crowdsourced

RSS traces are fake. Thorough experiments confirmed that our

algorithm has strong resilience to the reported attacks. Both

the attacks and defenses developed in this paper can be easily

extended to other crowdsourced IPSes.

IX. ACKNOWLEDGEMENT

This work was supported in part by the US National Science

Foundation under grants CNS-1619251, CNS-1514381, CNS-

1421999, CNS-1320906, CNS-1700032, CNS-1700039, CNS-

1651954 (CAREER), and CNS-1718078.

REFERENCES

[1] “Wi-fi indoor location in retail worth $2.5 billion by
2020.” [Online]. Available: https://www.abiresearch.com/press/
wi-fi-indoor-location-retail-worth-25-billion-2020

[2] A. Rai, K. Chintalapudi, V. Padmanabhan, and R. Sen, “Zee: Zero-effort
crowdsourcing for indoor localization,” in ACM MobiCom’12, Istanbul,
Turkey, Aug. 2012.

[3] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. Choudhury,
“No need to war-drive: Unsupervised indoor localization,” in ACM
MobiSys’12, Low Wood Bay, UK, June 2012.

[4] Z. Yang, C. Wu, and Y. Liu, “Locating in fingerprint space: wireless in-
door localization with little human intervention,” in ACM MobiCom’12,
Istanbul, Turkey, Aug. 2012.

[5] G. Shen, Z. Chen, P. Zhang, T. Moscibroda, and Y. Zhang, “Walkie-
markie: indoor pathway mapping made easy,” in USENIX NSDI’13,
Lombard, IL, Apr. 2013.

[6] P. Bahl and V. Padmanabhan, “Radar: An in-building rf-based user
location and tracking system,” in IEEE INFOCOM’00, Tel Aviv, Israel,
Mar. 2000.

[7] M. Youssef and A. Agrawala, “The horus WLAN location determination
system,” in ACM MobiSys’05, Seattle, WA, June 2005.

[8] S. Sen, B. Radunovic, R. Choudhury, and T. Minka, “You are facing
the mona lisa: spot localization using phy layer information,” in ACM
MobiSys’12, Low Wood Bay, UK, June 2012.

[9] M. Azizyan, I. Constandache, and R. Choudhury, “Surroundsense:
mobile phone localization via ambience fingerprinting,” in ACM Mo-
biCom’09, Beijing, China, Sep. 2009.

[10] H. Lim, L. Kung, J. Hou, and H. Luo, “Zero-configuration indoor
localization over ieee 802.11 wireless infrastructure,” Wireless Networks,
vol. 16, no. 2, pp. 405–420, 2010.

[11] K. Chintalapudi, A. Iyer, and V. Padmanabhan, “Indoor localization
without the pain,” in ACM MobiCom’10, Chicago, IL, Sep. 2010.

[12] D. Turner, S. Savage, and A. Snoeren, “On the empirical performance
of self-calibrating wifi location systems,” in IEEE LCN’11, Oct. 2011.

[13] J. Xiong and K. Jamieson, “Arraytrack: A fine-grained indoor location
system,” in USENIX NSDI’13, Lombard, IL, Apr. 2013.

[14] Z. Zhang, X. Zhou, W. Zhang, Y. Zhang, G. Wang, B. Zhao, and
H. Zheng, “I am the antenna: accurate outdoor ap location using
smartphones,” in ACM MobiCom’11, Las Vegas, NV, Sep. 2011.

[15] M. Youssef, A. Youssef, C. Rieger, U. Shankar, and A. Agrawala,
“Pinpoint: An asynchronous time-based location determination system,”
in ACM MobiSys’06, Uppsala, Sweden, June 2006.

[16] N. Priyantha, A. Chakraborty, and H. Balakrishnan, “The cricket
location-support system,” in ACM MobiCom’00, Boston, MA, Aug.
2000.

[17] B. Xie, K. Chen, G. Tan, M. Lu, Y. Liu, J. Wu, and T. He, “Lips: A
light intensity–based positioning system for indoor environments,” ACM
Transactions on Sensor Networks, vol. 12, no. 4, p. 28, 2016.

[18] B. Xie, G. Tan, and T. He, “Spinlight: A high accuracy and robust light
positioning system for indoor applications,” in ACM SenSys’15, Seoul,
South Korea, Nov. 2015.

[19] N. Rajagopal, P. Lazik, and A. Rowe, “Visual light landmarks for mobile
devices,” in ACM/IEEE IPSN’14, Apr. 2014.

[20] Y. Kuo, P. Pannuto, K. Hsiao, and P. Dutta, “Luxapose: Indoor position-
ing with mobile phones and visible light,” in ACM MobiCom’14, Maui,
Ha, Sep. 2014.

[21] Z. Yang, Z. Wang, J. Zhang, C. Huang, and Q. Zhang, “Wearables
can afford: Light-weight indoor positioning with visible light,” in ACM
MobiSys’15, Paris, France, Sep. 2015.

[22] C. Zhang and X. Zhang, “Litell: Robust indoor localization using
unmodified light fixtures,” in ACM MobiCom’16, New York City, NY,
Oct. 2016.

[23] B. Ferris, D. Fox, and N. Lawrence, “Wifi-slam using gaussian process
latent variable models,” in IJCAI’07, Hyderabad, India, Jan. 2007.

[24] R. Zhang, J. Zhang, Y. Zhang, and C. Zhang, “Secure crowdsourcing-
based cooperative spectrum sensing,” in INFOCOM’13, Turin, Italy, Apr.
2013.

[25] G. Wang, B. Wang, T. Wang, A. Nika, H. Zheng, and B. Zhao,
“Defending against sybil devices in crowdsourced mapping services,”
in ACM MobiSys’16, Singapore, Singapore, June 2016.

