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Abstract—Database-driven Dynamic Spectrum Sharing (DSS)
is the de-facto technical paradigm adopted by Federal Commu-
nications Commission (FCC) for increasing spectrum efficiency.
In such a system, a geo-location database administrator (DBA)
maintains spectrum availability information over its service re-
gion whereby to determines whether a secondary user can access
a licensed spectrum band at his desired location and time. To
maintain spectrum availability in its service region, it is desirable
for the DBA to periodically collect spectrum measurements
whereby to construct and maintain a Radio Environment Map
(REM), where the received signal strength at every location
of interest is either directly measured or estimated via proper
statistical spatial interpolation techniques. Crowdsourcing-based
spectrum sensing is a promising approach for periodically collect-
ing spectrum measurements over a large geographic area, which
is, unfortunately, vulnerable to false spectrum measurements.
How to construct an accurate REM in the presence of false
measurements remains an open challenge. This paper introduces
SecREM, a novel scheme for securely constructing a REM in
the presence of false spectrum measurements. SecREM relies on
a small number of trusted spectrum measurements whereby to
evaluate the trustworthiness of the measurements from mobile
users and gradually incorporate the most trustworthy ones to
construct an accurate REM. Extensive simulation studies based
on a real spectrum measurement dataset confirm the efficacy and
efficiency of SecREM.

I. INTRODUCTION

Database-driven Dynamic Spectrum Sharing (DSS) [1], [2]

is the de-facto technical paradigm adopted by Federal Com-

munications Commission (FCC) for enhancing spectrum effi-

ciency. In such a system, a geo-location database administrator

(DBA) maintains the spectrum availability information in its

service region, and secondary users (SUs) are required to in-

quire the DBA about the availability of any interested spectrum

before using it. Current DBAs estimate spectrum availability

based on the registered locations and transmission schedules

of primary users (PUs) in combination with radio propagation

modeling, e.g., FCC Curves [3] based on the Longley-Rice

model [4]. Recent measurement studies [5]–[8], however, have

shown that such estimations are often inaccurate and tend to

be overly conservative for ignoring local environmental factors

(e.g., trees and high-rise buildings), resulting in a considerable

waste of valuable spectrum opportunities.

Spectrum sensing can effectively improve the spectrum-

estimation accuracy in database-driven DSS systems and is

demanded in FCC’s 2016 call for proposals for the 3.5 GHz

band [9]. In this approach, the DBAs explore a network

of spectrum sensors to determine spectrum availability by

detecting radio activities on licensed spectrum bands. Large-

scale sensor networks, however, are notoriously difficult and

expensive to deploy, operate, and maintain, especially in

urban areas where DSS is expected to have great potential.

Therefore, it has been widely advocated that the DBA only

needs to deploy a small number of dedicated spectrum sensors

at strategic locations [5], [6] and outsource the majority of

spectrum-sensing tasks to ubiquitous mobile users [10], [11].

The feasibility of this approach lies in the deep penetration

of mobile devices into everyday life and the wide expectation

that future mobile devices can perform spectrum sensing via

either internal spectrum sensors or external ones acquired from

other parties like the DBA [12]–[18]. With real-time spectrum

measurements from dedicated sensors and mobile users, the

DBA can construct and maintain a Radio Environmental Map

(REM) [19], [20] whereby to determine whether SUs can

transmit or not on specific bands at given times and locations.

Crowdsourcing-based REM construction is, unfortunately,

vulnerable to false spectrum measurements. In particular,

mobile users cannot be fully trusted and may submit false

spectrum measurements for various reasons such as faulty

spectrum sensors and malicious intents. Since most existing

techniques for constructing REM to date [10], [21]–[24] rely

on statistical interpolation techniques such as Ordinary Kriging

(OK) [25] that are known to be sensitive to outliers [26],

even a small number of false measurements can heavily distort

the REM, leading to either missed spectrum opportunities or

interference to PUs.

Despite the large body of work on secure cooperative

spectrum sensing against false spectrum measurements [12]–

[14], [27]–[32], how to combine possibly forged spectrum

measurements to construct an accurate REM poses unique

challenges and remains untouched. In particular, cooperative

sensing aims to decide whether a PU at a known location is

transmitting or not, whereas secure REM construction intends

to estimate the received signal strength (RSS) at every location978-1-5090-6501-1/17/$31.00 c©2017 IEEE



of interest from possibly forged local spectrum measurements

when the PUs’ locations and transmission activities are known.

The unique challenges brought by REM construction render

prior solutions [12]–[14], [27]–[32] inapplicable. These situa-

tions call for sound solutions to construct REM with sufficient

accuracy in the presence of false spectrum measurements.

This paper introduces the design and evaluation of SecREM,

a novel framework for secure crowdsourced REM construction

in the presence of false spectrum measurements. Inspired by

the self-labeled techniques [33] proposed for semi-supervised

learning, SecREM constructs highly accurate REMs from a

small number of trusted measurements and many more untrust-

ed measurements via iterative statistical spatial interpolation.

Specifically, an initial REM is constructed using only the

trusted measurements, and the resulting REM is then used to

evaluate the trustworthiness of the untrusted measurements by

comparing predicted RSSs and reported RSSs. In each subse-

quent iteration, a certain number of remaining measurements

deemed most trustworthy are incorporated to refine the REM.

This process is repeated until certain terminal condition is

met, at which point all remaining untrusted measurements are

discarded and the final REM is produced. Our contributions

in this paper can be summarized as follows.

• To the best of our knowledge, we are the first to study

secure crowdsourced REM construction in the presence

of false spectrum measurements.

• We propose SecREM, a novel framework for constructing

REM from a small number of trusted measurements and

many more untrusted spectrum measurements.

• We confirm the efficacy and efficiency of SecREM via

extensive simulation studies using a real spectrum mea-

surement dataset. For example, our simulation results

show that even when twenty percent of the measurements

are false, SecREM can produce an REM with mean

absolute error (MAE) of 2.92 dB which is only 3.62%

higher than that of the ideal case as if all the false

measurements are known in advance and excluded by the

DBA. In contrast, using only trusted measurements and

blindly using all spectrum measurements result in MAEs

of 3.99 dB and 4.85 dB or 41.6% and 72.1% higher than

that of the ideal case, respectively.

The rest of this paper is structured as follows. Related work

is discussed in Section II. The system and adversary models

along with our design goals are introduced in Section III.

The detail design of SecREM is presented in Section IV.

We evaluate the performance of SecREM in Section V and

conclude this paper in Section VI.

II. RELATED WORK

In this section, we discuss the work most germane to the

proposed research.

A. Augmenting Geo-location Database with Spectrum Sensing

Several recent studies [5]–[8] have shown that spectrum

availability determined by radio propagation modeling are

inaccurate and tend to be overly conservative. Several efforts

have been made to augment geo-location database with spec-

trum sensing. The first line of research is to construct Radio

Environmental Map or detailed PU coverage map from local

spectrum measurements, where received PU signal strength at

every location of interest is either directly measured or esti-

mated via spatial interpolation techniques. Various statistical

interpolation methods have been proposed to construct REM

for which a recent survey can be found at [34]. Commonly

used spatial interpolation techniques include Ordinary Kriging

[10], [21]–[24], Universal Kriging [35], Delaunay triangulation

[36], spatial simulated annealing [37], and their combination

[38]. In [24], [39], [40], Kriging is used to determine the

coverage of wireless networks. All these work assume that

all the measurements are trusted, while it is well known that

these statistical spatial interpolation techniques are sensitive to

outliers due to the well-known masking and swamping effects.

For example, it was shown in [26] that even a small number of

false measurements could significantly affect the predictions

at unobserved locations.

B. Secure Cooperative Spectrum Sensing

Tremendous efforts have been made to secure cooperative

spectrum sensing, which aims at determining PU activity

based on potentially forged spectrum measurements. Proposed

approaches include identifying false spectrum measurements

via statistical anomaly detection [12], [14], [27]–[29], differ-

entiating malicious spectrum sensors from legitimate ones by

tracking their long term behaviors using reputation systems

[27], [30], or relying on some trusted nodes [13], [31], [32].

As we discussed in Section I, none of these solutions can be

applied to the problem of secure REM construction, in which

the PU’s location and transmission activity are known, but

its signal strength needs to be estimated at every location of

interest.

III. SYSTEM AND ADVERSARY MODELS AND DESIGNED

GOALS

In this section, we introduce our system and adversary

models as well as our design goals.

A. System Model

We consider a DSS system shown in Fig. 1, in which a

DBA provides spectrum service to SUs in its service region

D. The service region D is divided into N non-overlapping

cells of equal size. We assume that there is one PU in D whose

location and transmission schedule are known to the DBA.

The DBA estimates spectrum availability through spectrum

sensing by constructing and periodically updating an REM

over D. As in [13], [32], we assume that the DBA deploys

a small number of stationary spectrum sensors at strategic

locations, referred to as anchor sensors hereafter. Anchor

sensors can be remotely attested by the DBA and excluded

if they are detected as compromised. Due to cost constraints,

the DBA cannot afford to deploy too many anchor sensors to

cover the entire service region and still relies on the spectrum

measurements from the majority of mobile users to ensure the



Fig. 1. An exemplary database-driven DSS system.

accuracy of the REM. We hereafter denote by Θa the set of

anchor sensors and Θm the set of mobile sensors.

We assume that the time is divided into epochs of equal

length. During each epoch, each sensor i ∈ Θa

⋃
Θm submits

a spectrum measurement Ri = (Zi,xi), where Zi is the

measured RSS (in dBm) at location xi. Some cells may not

have any measurement taken, and some measurements may be

taken at locations other than the center of any cell. Given the

set of spectrum measurements R = {Ri|i ∈ Θa

⋃
Θm}, the

DBA intends to build an REM by estimating the RSS at the

center of every cell.

B. Adversary Model

We assume that the DBA is trusted to perform all system

operations faithfully and that the spectrum measurements

submitted by anchor sensors are trusted. In contrast, mobile

sensors may submit false spectrum measurements due to faulty

spectrum sensors, intentionally forging spectrum measure-

ments to claim the reward at the DBA without actual sensing,

or being hired by the DBA’s business competitor to damage its

reputation. We assume that false spectrum measurements may

be arbitrarily different from the true ones and that the number

of false measurements is unknown to the DBA in advance. We

do not consider spectrum measurements with forged locations

because such measurements are equivalent to the ones with

false RSSs at the claimed locations.

Our subsequent discussion focuses on REM construction in

the presence of false spectrum measurements. We assume that

communications between anchor/mobile sensors and the DBA

are properly secured via standard cryptographic techniques

such as TLS [41]. Moreover, we do not consider other attacks

targeting DSS systems such as primary user emulation attack

for which we resort to existing rich literature, e.g., [42].

C. Designed Goals

We design SecREM with the following goals in mind.

• Resilience to false measurements: SecREM should pro-

duce an REM in the presence of a unknown number

of false spectrum measurements with sufficient accuracy.

Specifically, SecREM should be able to produce an REM

close to the one constructed from all good measurements

with an accuracy much higher than either using only trust-

ed spectrum measurements or blindly using all spectrum

measurements.

• Low cost: SecREM should only need a small number of

anchor sensors to achieve high accuracy of the resulting

REM.

IV. SECREM DESIGN

In this section, we first give an overview of SecREM and

then detail its design.

A. Overview
SecREM is inspired by the self-labeled techniques develope-

d for semi-supervised classification, for which a recent survey

can be found at [33]. Self-labeled techniques are proposed to

explore a small amount of labeled data with a large amount

of unlabeled data for classification. In self-labeled techniques,

a classifier is trained based on the labeled data only, which

is then applied to the unlabeled data to generate more labeled

samples as additional input to refine the classifier. Self-labeled

techniques have been shown to surpass the classification

performance obtained either by supervised learning with the

unlabeled data discarded or by unsupervised learning with the

label information discarded.
As an analog to the self-labeled techniques, SecREM con-

structs an REM by building an initial REM with only trusted

measurements. The initial REM is then used to evaluate the

trustworthiness of other measurements according to the differ-

ences between the estimated RSSs and corresponding reported

RSSs. The smaller the difference is, the more trustworthy of

the measurement, and vice versa. The DBA then incorporate

a fixed number of measurements deemed most trustworthy to

refine the initial REM. This process continues until a certain

terminal condition is met, and the remaining measurements are

discarded. The DBA then uses all the remaining measurements

to construct a final REM by predicting the RSS at every other

unmeasured location of interest.
SecREM is a general framework that can be integrated with

different statistical interpolation techniques. In what follows,

we first briefly introduce the background of Ordinary Kriging

(OK) [25] and then detail the design of SecREM by taking OK

as an example for its overwhelming popularity and satisfactory

performance in REM construction [10], [21]–[24], [39], [40].

B. Background on Ordinary Kriging
Kringing [25] refers to a class of geo-statistical spatial in-

terpolation techniques that are originally developed for mining

but have been increasingly being used for radio mapping.

Under Kringing, the RSS at any location x is modeled as

as a Gaussian random field in the form

Z(x) = μ(x) + δ(x),

where μ(x) is the mean capturing path loss and shadowing,

and δ(x) represents possible sampling error.



In OK [25], Z(x) is further assumed to be intrinsic station-
ary in the sense that

E[Z(x)] = μ(x) = μ,

E[(Z(x1)− Z(x2))
2] = 2γ(h) ,

(1)

for all x ∈ D, where E(·) denotes expectation, μ is an

unknown constant, h = ||x1−x2|| is the distance lag between

two locations, and γ(·) is the semivariogram function that

models the variance between two locations as a function of

their distance. This assumption may not hold for original

spectrum measurements but has been found acceptable in the

literature [10], [21], [22], [24], [39], [40], especially after

removing any source of nonlinear trend from measurements

through detrending process [23].

C. Detailed Design

On receiving all the measurements R, the DBA first per-

forms detrending on the measurements and then constructs an

REM from the detrended measurements in an iterative fashion.

1) Detrending: Detrending original spectrum measurement

is usually preferred to make the measurements a better fit

for the OK model. SecREM does not rely on any specific

detrending procedure but assumes the existence of a suitable

one for the received measurements. Below we briefly introduce

the detrending procedure proposed in [23] as an example for

completeness, which is not our contribution.

In [23], Carrier-to-Interference and Noise Ratio (CINR)

measurements are detrended by subtracting the predicted path

loss at the measured locations from the original measurements.

Specifically, the path loss at any location x is estimated using

the following empirical log-distance model

P (x) = α10 log10(d) + 20 log10(f) + 32.45 + ε , (2)

where d is the distance between the x and the PU, f is the

PU’s transmitting frequency, 32.45 represents free-space path

loss, and α and ε are parameters obtained via experimental

fitting. For each original measurement Ri = (Zi,xi), the

corresponding detrended measurement is then R′
i = (Si,xi),

where

Si = Zi − P (xi)

is the residue at xi.

2) Iterative REM Construction Semivariogram: The DBA

then constructs an REM in an iterative fashion from {Si|i ∈
Θt

⋃
Θc} using OK. Specifically, the DBA maintains a trusted

sensor set Θt and a candidate sensor set Θc at all time, where

Θt = Θa and Θc = Θm initially. In each iteration, the DBA

does the following in sequel.

The DBA first builds an empirical semivariogram γ̂(h) from

the trusted measurement {R′
i|i ∈ Θt}. Specifically, the DBA

first computes

γ̂(h) =
1

2|P(h)|
∑

(xi,xj)∈P(h)

(Si − Sj)
2,

where P(h) = {(xi,xj)|i, j ∈ Θt, ||xi − xj || = h} is the set

of location pairs with distance h. The DBA then fits γ̂(h) with

a suitable parametric model. For example, the commonly used

exponential model is given by

γ(h;α1, α2) = α1(1− exp(
−h

α2
)) ,

where α1 is related to the variance of the signal strength

measurements, and α2 scales the correlation distance of the

model. Other popular models include Gaussian, Cauchy, and

Spherical models [43]. These parameters can be obtained from

the estimated semivariogram through least squares estimator.

The DBA then evaluates the trustworthiness of the measure-

ments based the empirical semivarogram model γ̂(·) obtained

above to estimate the residues at the locations {xj |j ∈ Θc} at

which candidate measurements have been submitted. Specifi-

cally, given the set of trusted measurements {R′
i|i ∈ Θt}, the

DBA predicts the residue at each location xj(j ∈ Θc) as

Ŝ(xj) =
∑
i∈Θt

wi · S(xi) =
∑
i∈Θt

wi · Si.

where
∑

i∈Θt
wi = 1 are normalized weights. The estimation

error is given by

ε(xj) = Ŝ(xj)− S(xj)

= [w1, . . . , w|Θt|,−1] · [S1, . . . , S|Θt|, S(xj)] ,

where S(xj) is the true residue at xj that may be different

from the reported residue Sj . It is easy to see that the estimator

is unbiased as E(ε(xj)) =
∑

i∈Θt
wiμ − μ = 0. Let hi,j =

||xi − xj || for all i, j ∈ Θt. Since minimizing the prediction

variance of an unbiased predictor is equivalent to minimizing

the mean squared error, we have

Var(ε(xj)) = E(Ŝ(xj)− S(xj))
2

= E(
∑
i∈Θt

wiSi − S(xj))
2

= −
∑
i∈Θt

∑
k∈Θt

wiwkγ̂(hi,k) + 2
∑
i∈Θt

wiγ̂(hi,j)

To find the optimal {wi}i∈Θt , the DBA solves the following

optimization problem

min −
∑
i∈Θt

∑
k∈Θt

wiwkγ̂(hi,k) + 2
∑
i∈Θt

wiγ̂(hi,j)

subject to
∑
i∈Θt

wi = 1.

The solution to the above optimization problem is given by
⎛
⎜⎜⎜⎝

w1

...

w|Θt|
ν

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

γ(h1,1) . . . γ(h1,|Θt|) 1
...

. . .
...

...

γ(h|Θt|,1) . . . γ(h|Θt|,|Θt|) 1
1 . . . 1 0

⎞
⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎝

γ(h1,j)
...

γ(h|Θt|,j)
1

⎞
⎟⎟⎟⎠ ,

(3)

where ν is a Lagrange multiplier used in the minimization to

honor the unbiasedness condition.

The DBA proceeds to evaluate the trustworthiness of each

candidate measurement R′
j(j ∈ Θc) based on the difference

between predicted and reported residue values. Specifically,



we define the inconsistency of a candidate measurement R′
j =

(Sj ,xj) as

Ij = |
∑
i∈Θt

wiSi − Sj | , (4)

where Sj is the reported residue. The smaller Ij , the more

trustworthy measurement R′
j , and vice versa.

The DBA then finds the q candidate sensors whose mea-

surements are deemed most trustworthy, denoted by Θq , where

q is a system parameter that represents the tradeoff between

the computation overhead and accuracy of the final REM.

The DBA then moves Θq to the trusted sensor set, i.e.,

Θt = Θt

⋃
Θq and Θc = Θc \Θq .

The DBA repeats the above process, i.e., refitting the

empirical semivarogram model γ̂(·) using the updated trusted

measurements {R′
i|i ∈ Θt}, predicting the residues at each

location xi for all i ∈ Θc, evaluating the inconsistency of each

measurement R′
i for all i ∈ Θc, and moving the q candidate

sensors with the most trustworthy measurements from Θc to

Θt.

The DBA terminates the process upon certain condition is

met. In this paper, we investigate three terminal conditions as

follows.

• Condition 1: The ratio between the number of the trusted

sensors and the total number of sensors reaches a prede-

termined threshold η1, i.e.,

|Θt|/|Θa

⋃
Θm| ≥ η1 ,

where η1 is a system parameter.

• Condition 2: The number of trusted measurements reach-

es a predefined threshold, i.e.,

|Θt| ≥ η2 ,

where η2 is a system parameter.

• Condition 3: At least one of the q most trustworthy

measurement has inconsistency (i.e., Ij) higher than η3.

The three terminal conditions correspond to different assump-

tions about the false spectrum measurements. Specifically,

the first terminal condition assumes that the ratio of false

measurements is small, and the DBA intends to defend against

up to 1−η1 ratio of false measurements. The second terminal

condition assumes that there are sufficient good measurements,

while the ratio of false measurements could be potentially

large. Using Terminal Condition 2, the DBA intends to con-

struct a sufficiently accurate REM despite that there might

be additional truthful measurements that can be explored.

The third terminal condition assumes that false measurements

exhibit high inconsistency, i.e., large Ij . Note that the last

iteration may add less than q candidate sensors to the trust

sensor set. After the above process is terminated, all the

measurements from remaining candidate sensors are discarded.

The DBA finally constructs the REM based on the measure-

ments from the trusted sensors. In particular, the DBA refits

the empirical semivarogram model using {R′
i|i ∈ Θt}. For

Fig. 2. Measurement/PU locations of cu/wimax dataset.

every cell center xc, the DBA predicts it residue Ŝ(xc) using

Eq. (3) and outputs its estimated RSS as

Ẑ(xc) = Ŝ(xc) + P (xc) ,

where P (xc) is the predicted path loss given in Eq. (2).

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of SecREM via

simulation using a real spectrum measurement dataset.

A. Dataset

We use the CRAWDAD cu/wimax dataset [44] for

our simulation studies, which was also used in [23]. The

cu/wimax dataset was collected at the University of Col-

orado Boulder (UC) and contains the CINR measurements

of the WiMax network consisting of 5 base stations serving

the UC campus taken by a portable spectrum analyzer. The

measurements were taken on a 100m equilateral triangular

lattice and additional measurements taken at random and

optimized points. For our purpose, we chose the measurements

for channel 308 and BSID 3674210305, which includes 145

measurements at different locations. Fig. 2 shows the locations

of the measurements and the PU.

We follow the detrending procedure in [23] to remove

the nonlinear trend in the measurements. First, we calculate

the distance between the measurement location and the base

station at longitude -105.26333 and latitude 40.00722. We then

use the predictive model in Eq. 2 to estimate the path loss

based on the calculated distance with frequency f = 2578
MHz and fitted parameters (path loss exponent α = 1.22
and offset ε = 28.81). We finally obtain the residue values

after deducting the estimated path loss from collected CINR

measurements. Since the difference between CINR and actual

RSS value is a constant depending on noise floor (e.g., 95

dBm), PU’s transmission power, and receiver’s antenna gain,

we hereafter ignore such constant factors and construct REMs

in terms of the CINR values.



(a) ABFM (b) TMO (c) AM (d) SecREM

Fig. 3. Exemplary REMs (in terms of CINR) constructed by SecREM, TMO, AM, and ABFM with 10 trusted and 20 false measurements.

B. Simulation Settings

We divide the 145 measurements into two sets: a testing

dataset Rt with 100 measurements and a validating set Rv

with 45 measurements as the ground truth. For 100 testing

measurements, we randomly choose ten measurements as the

trusted ones and another 20 measurements as the false ones.

Moreover, we call a false measurement Ri with an attack
strength T (dB) if it reports a Zi + T where Zi is the true

RSS values [28]. Table 1 summarizes our default simulation

settings unless mentioned otherwise.

We mainly use Mean Absolute Error (MAE) to evaluate the

performance of RecREM. Specifically, for each measurement

Ri ∈ Rv , let Zi and Ẑi be the reported RSSs and estimated

RSSs, respectively. The MAE is defined as

MAE =

∑
Ri∈Rv

|Zi − Ẑi|
|Rv| .

Since SecREM is the first proposal for secure REM con-

struction against false spectrum measurements, we compare

the performance of SecREM with three other strategies.

• Trusted measurements only (TMO): the REM con-

structed using the trusted measurements submitted by

anchor sensors only.

• All measurements (AM): the REM constructed using all

measurements, including false ones.

• All but false measurements (ABFM): the REM con-

structed using all but false measurements. Note that

since the DBA does not know which measurements are

false in advance, the accuracy achieved by all but false

measurements is the upper bound of any mechanism that

can achieve.

The simulation is done using MATLAB, and every point

represents the average of 100 runs each with a distinct seed.

TABLE I
DEFAULT SIMULATION SETTINGS

Para. Val. Description.
|Θt| 10 The number of trusted measurements
|Θc| 90 The number of candidate measurements

20 The number of false measurements
T 20 dB Attack strength
q 10 Step length
η1 80 Terminal condition 1
η2 80% Terminal condition 2
η3 10 dB Terminal condition 3

C. Simulation Results

We now report our simulation results.

1) Comparison of REMs Constructed by ABFM, TMO, AM,
and SecREM: Fig. 3 compares the REMs in terms of CINR

constructed by ABFM, TMO, AM, and SecREM, which have

a constant offset from the actual RSS values. Fig. 3(a) shows

the ideal REM constructed by all good measurements, which

can serve as the baseline for other mechanisms. Generally

speaking, the closer the REM produced by a mechanism to

the ideal REM, the more resilient the mechanism against false

spectrum measurements. Fig. 3(b) shows the REM constructed

only using ten known trusted measurements from anchor sen-

sors, which is very different from the ideal REM constructed

by ABFM and shows that the REM constructed using only

a small number of known trusted measurements is highly

inaccurate. On the other hand, Fig. 3(c) shows that the REM

constructed from all the measurements is highly distorted by

the 20 false measurements, which highlights the detrimental

impact from even a small number of false measurements.

Finally, Fig. 3(d) shows the REM constructing by SecREM.

As we can see, the REM is very close to the ideal REM shown

in Fig. 3(a), indicating the high resilience of SecREM to false

measurements. These exemplary REMs indicate that SecREM

outperforms both TMO and AM.

Fig. 4 shows the CDFs of the estimation errors at the

locations where validating measurements are taken under

ABFM, TMO, AM, and SecREM and the default simulation

settings, where SecREM-1, SecREM-2, and SecREM-3 refer

to SecREM with terminal condition 1, 2, and 3, respectively.

In addition, SecREM-1 and SecREM-2 share the same perfor-

mance as they are equivalent under the default settings. As we

can see, the estimation error is smaller than 4 dB for 70.64%
and 70.53% of the measured locations under SecREM-1&2

and SecREM-3, respectively, both of which are very close

to 71.82% under ABFM and much superior to 59.03% and

51.91% under TMO and AM, respectively. Moreover, less than

10% of the measured locations have estimation error over 7 dB

under both ABFM, SecREM-1&2 and SecREM-3. In contrast,

more than 10% of the measured locations have estimation error

over 10 dB and 12 dB under TMO and AM, respectively.

Fig. 5 shows the boxplots of the MAEs of ABFM, TMO,

AM, SecREM-1&2, and SecREM-3 over 100 runs. The me-

dian MAEs under AM, TMO, ABFM, SecREM-1&2, and

SecREM-3 are 4.78 dB, 4.03 dB, 2.80 dB, 2.86 dB, and 2.86



Fig. 4. CDF of estimation errors. Fig. 5. Boxplot of estimation errors. Fig. 6. MAE vs. attack strength.

Fig. 7. MAE vs. # of false measurements. Fig. 8. MAE vs. # of trusted measurements. Fig. 9. MAE vs. step length q.

dB, respectively. We can see that overall SecREM achieves

smaller MAE than AM and TMO. For the five strategies,

the distances between two ”whiskers” above and below the

box are 1.82 dB, 4.26 dB, 0.53 dB, 1.179 dB, and 0.92 dB,

respectively. TMO has the largest distance, indicating that the

MAE by TMO highly depends on the locations of the trusted

measurements. In contrast, although both SecREM-1&2 and

SecREM-3 have several outliers, the distances between first

and third quartiles are only 0.41 dB and 0.31 dB, respectively,

which are quite small in comparison with 0.56 dB and 1.36

dB in AM and TMO, respectively. These results show that the

accuracy of the REMs produced by SecREM is much more

stable.

2) Impact of Attack Strength: Fig. 6 shows the MAEs vary-

ing with attack strength for ABFM, TMO, AM, and SecREM,

where the MAEs of AM and ABFM are not affected by the

change in attack strength and are plotted for reference only. As

we can see, the MAE of ABFM, i.e., the ideal case, is 2.82 dB,

which represents the limit of OK-based REM construction and

coincides with the results obtained in the recent measurement

study [22]. In addition, the MAE of TMO is larger than 4dB,

which again shows that the REM constructed from only a

small number of trusted measurements is highly inaccurate.

Moreover, the MAE of AM increases close linearly as the

attack strength increases and is unbounded. In contrast, as

the attack strength increases from 0 to 30 dB, the MAE

of SecREM-1 and SecREM-2 initially increases and then

gradually decreases until reaches that of ABFM, i.e., the ideal

case, and the maximum MAE appears when the attack strength

is 6 dB. In addition, SecREM-3 exhibits the similar trend with

slightly worse performance than SecREM-1 and SecREM-2

but still outperforms AM and TMO. These trends suggest that

SecREM-1, 2 and 3 can effectively bound the impact of false

measurements and exclude all the false measurements if the

attack strength is too large.

3) Impact of the Number of False Measurements: Fig. 7

shows the MAEs of TMO and SecREM with the number of

false measurements varying from 0 to 50, where the MAE of

TMO stays at 3.99 dB and is plotted for reference only. We can

see that the MAE of AM is the same as that of ABFM when

there is no false measurement and increases almost linearly as

the number of false measurements increases, which surpasses

that of TMO when the number of false measurements exceeds

10. This is anticipated, as the negative impact from false mea-

surements grows as their number increases. On the other hand,

the MAE of ABFM slightly increases as the number of false

measurements increases, which is due to the corresponding

decrease in the number of good measurements. In addition,

the MAE of SecREM-1&2 initially declines as the number

of false measurements increases. The reason for the initial

decline is that SecREM-1&2 may terminate too early when

there are only few false measurements, meaning some good

measurements are excluded from being used to improve the

accuracy of the REM. As the number of false measurements

increases, fewer good measurements are discarded, and the

MAE of SecREM-1&2 approaches that of ABFM when the

number of false measurements reaches 20. As the number

of false measurements further increases from 20, the MAE

of SecREM-1&2 deteriorates and surpasses that of TMO

when the number of false measurements reaches 30. This is
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Fig. 10. MAEs of SecREM-1, 2, and 3 with different terminal conditions

(a) SecREM-1 (b) SecREM-2 (c) SecREM-3

Fig. 11. MAEs of SecREM-1, 2, and 3 vs. the total number of measurements, where half of the measurements are false.

also expected, as SecREM-1&2 always include some false

measurements in the final REM under such situations. Finally,

the MAE of SecREM-3 increases slowly as the number of

false measurements increases and stays below than that of

TMO even when half of the measurements are false. The

reason is that with the terminal condition parameter properly

set, e.g., η3 = 10 dB in this case, SecREM-3 can terminate at a

more proper time and exclude most of the false measurements,

resulting in higher accuracy of the REM even when the false

measurements constitute the majority.

4) Impact of the Number of Trusted Measurements: Fig. 8

shows the MAEs of ABFM, AM, and SecREM with the

number of trusted measurements, i.e., anchor sensors, varying

from 5 to 80, where the total number of good measurements

is fixed, and the MAEs of AM and ABFM are not affected

and are plotted for reference only. As we can see, the MAEs

of AM and ABFM are 4.84 dB and 2.81 dB, respectively. As

the number of trusted measurements increases from 5 to 80,

the MAE of TMO decreases from 5.07 dB to 2.81 dB, which

is anticipated as the more good measurements being used, the

higher the accuracy of the resulting REM. Moreover, while we

can see that the MAEs of both SecREM-1&2 and SecREM-3

decrease as the number of trusted measurements increases, the

gain by having more trusted measurements is relatively small.

For example, with only five trusted measurements, the MAEs

of SecREM-1&2 and SecREM-3 are 2.96 dB and 2.95 dB,

respectively, which decrease to 2.92 dB and 2.88 dB with

additional 15 trusted measurements. These results indicate

that SecREM-1/2/3 only require a small number of trusted

measurements to ensure the high accuracy of resulting REMs.

5) Impact of Step Length q: Fig. 9 shows the MAEs of

SecREM-1&2 and SecREM-3 varying with step length q,

where AM, TMO, and ABFM are not affected by the change in

step length and their MAEs are plotted for reference only. As

we can see, the MAEs of SecREM-1&2 and SecREM-3 both

slightly increase as the step length increases at the beginning.

The reason is that the initial REM constructed from the trusted

measurements is relatively coarse, and using the initial REM to

estimate the trustworthiness of other measurements and select

too many at once may have some false measurement included.

This will lead to higher MAE for the final REM. As the step

length further increases from 20, the MAE of the final REM

slightly fluctuate. Overall, the change in step length has limited

impact on the accuracy of the resulting REM under our default

settings.

6) Impact of Terminal Conditions: We now evaluate the

impact of different terminal conditions on the accuracy of the

REMs produced by SecREM. We can see from Fig. 10(a) that

the MAE of SecREM-1 first decreases as η1 increases and then

increases after 1−η1 exceeds the ratio of false measurements.

This is anticipated, as more good measurements are included

with a larger η1. As long as 1 − η1 is smaller than the ratio



(a) SecREM-1&2 (b) SecREM-3

Fig. 12. MAEs of SecREM-1&2 and 3 vs. anchor sensor placement.

of false measurement, SecREM-1 can produce an REM with

sufficient accuracy. Similarly, we can see from Fig. 10(b) that

the MAE of SecREM-2 first decreases as η2 increases and then

increases after η2 surpasses the number of good measurements.

Finally, Fig. 10(c) shows that the MAE of SecREM-3 first

decreases and then increases as η3 increases. The reason is

that when η3 is set too small, some good measurements would

be excluded, leading to higher MAE. On the other hand, if η3
is set too large, some false measurements will be included into

the final REM, leading to higher MAE.

7) Impact of the Total Number of Measurements: We now

study the impact of the total number of measurements. Given

the limited size of our dataset, we choose 25 measurements

as the validating set and randomly choose 70 to 120 mea-

surements as the testing dataset. For each testing dataset,

we randomly choose half of the measurements as the false

measurements with attack strength 20 dB and then randomly

choose another 10 measurements as the trusted measurements.

Figs. 11(a) to 11(c) compare the MAEs of SecREM-1, 2, and

3 with ABFM with the total number of measurements varying

from 70 to 120.

We can see from Figs. 11(a) to 11(c) that ABFM has the

smallest MAE, which is expected. In addition, Fig. 11(a)

shows that the MAE of SecREM-1 is relatively insensitive

to the change in the total number of measurements. This is

expected, as SecREM-1 can produce an REM with sufficient

accuracy if the ratio of false measurements is lower than 1−η1.

On the other hand, we can see from Fig. 11(b) that the MAE

of the REM produced by SecREM-2 decreases as the total

number of measurements increases. This is anticipated, as the

number of good measurements increases as the total number

of measurements increases, if the ratio of false measurements

remains the same. As long as there are more than η2 good mea-

surements, SecREM-2 can produce an REM with sufficient

accuracy. Finally, Fig. 11(c) shows that the MAE of SecREM-

3 is relatively insensitive to the change in the total number of

measurements. The reason is that when the parameter η3 is

small, SecREM-3 can effectively exclude false measurements.

8) Impact of Anchor Sensor Placement: We now study the

impact of the locations of anchor sensors. We consider the

following four strategies for placing anchor sensors.

• 1/4-Grid-Random: Divided the area into four square grids

of equal size and randomly select 2 or 3 measurements

in each zone to form the 10 trusted measurements.

(a) SecREM-1&2 (b) SecREM-3

Fig. 13. MAEs of SecREM-1&2 and 3 vs. locations of false measurements.

• Random: Randomly select 10 measurements as the trusted

measurements.

• PU-300m: Randomly select 10 measurements within 300

meters of the PU.

• PU-150m: Randomly select 10 measurements within 150

meters of the PU.

Generally speaking, the anchor sensors are distributed most

evenly under 1/4-Grid-Random, followed by Random, PU-

300m, and PU-150m.

Fig.12 compares the MAEs under the four anchor sensor

placement strategies for SecREM-1&2. The median MAEs

under 1/4-Grid-Random, Random, PU-300m, and PU-150m

over 100 runs are 2.84 dB, 2.84 dB, 3.02 dB, and 3.09

dB, respectively, and the MAEs of PU-300m and PU-150m

exhibit larger variance. Generally speaking, the more unevenly

distributed the anchor sensors, the higher the MAE, and vice

versa, which also holds for SecREM-3 as shown in Fig. 12(b).

However, the differences among the MAEs under the four

placement strategies are relatively small. Given the limited

size of our dataset, we leave the further investigation of the

optimal anchor sensor placement as our future work.

9) Impact of the Locations of False Measurements: We

consider the same four strategies for the attacker to place false

measurements. Fig. 13(a) compares the MAEs under the four

strategies for SecREM-1&2. The median MAEs under 1/4-

Grid-Random, Random, PU- 300m, and PU-150m over 100

runs are 3.01 dB, 2.83 dB, 3.13 dB, and 3.15 dB, respectively.

We can see that placing false measurements close to the PU

may result in higher MAE for SecREM-1&2. However, no

clear conclusion can be drawn from Fig.13(b) for SecREM-

3. We leave further investigation of the optimal placement of

false measurements as our future work.

VI. CONCLUSION

In this paper, we present the design and evaluation of

SecREM, a novel framework for secure crowdsourced REM

construction in the presence of false spectrum measure-

ments. Inspired by self-labeled techniques developed for semi-

supervised learning, SecREM constructs an initial REM from

only trusted measurements and gradually refines it by adding

more measurements deemed most trustworthy until certain

terminal conditions are met. Extensive simulation studies

based on a real spectrum measurement dataset confirms that

SecREM can produce an REM with sufficient accuracy in the



presence of false measurements. As our future work, we plan

to investigate the optimal placement for anchor sensors as well

as the optimal attack strategy against SecREM.
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