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Abstract—Keystroke inference attacks pose an increasing
threat to ubiquitous mobile devices. This paper presents EyeTell, a
novel video-assisted attack that can infer a victim’s keystrokes on
his touchscreen device from a video capturing his eye movements.
EyeTell explores the observation that human eyes naturally focus
on and follow the keys they type, so a typing sequence on a
soft keyboard results in a unique gaze trace of continuous eye
movements. In contrast to prior work, EyeTell requires neither
the attacker to visually observe the victim’s inputting process nor
the victim device to be placed on a static holder. Comprehensive
experiments on iOS and Android devices confirm the high efficacy
of EyeTell for inferring PINs, lock patterns, and English words
under various environmental conditions.

I. INTRODUCTION

Keystroke inference attacks pose an increasing threat to
mobile devices which have penetrated into everyday life. In a
typical attack scenario, a victim types on the soft keyboard of
his1 smartphone or tablet in an insecure public environment
such as a public library, a coffee shop, or a train. The
attacker tries to infer the victim’s keystrokes in order to obtain
sensitive information such as the victim’s device passwords,
web account passwords, or even emails. Based on the inferred
keystrokes, the attacker can proceed to launch further attacks.
One example is that the attacker can use the inferred password
to pass the authentication system of the victim’s device.
The severe security and privacy implications make keystroke
inference a very active research topic in mobile device security.

Many keystroke inference attacks rely on analyzing a
video recording the victim’s typing process. They require that
either the recorded video capture the victim’s typing process
with little or no visual obstruction [1]–[9] or the device be
placed on a static holder [9]. Given the video recording, the
attacker infers keystrokes by analyzing touchscreen reflection
[6], spatial hand dynamics [7], relative finger movements on
the touchscreen [8], or the backside motion of the device [9].
While these attacks have been demonstrated quite effective,
their strong assumptions may not always hold in practice.

In this paper, we report the design and evaluation of
EyeTell, a novel video-assisted keystroke inference attack that
can infer a victim’s keystrokes on his touchscreen device from
a video capturing his eye movements. EyeTell is inspired by
the observation that human eyes naturally focus on and follow
the keys they type such that a typing sequence on a soft
keyboard results in a unique gaze trace of continuous eye
movements. Under EyeTell, the attacker records a video of

1No gender implication.

the victim’s eye movements during his typing process and then
extracts a gaze trace. By analyzing the gaze trace, the attacker
can infer the victim’s input with high accuracy.

Although conceptually intuitive, EyeTell faces three main
design challenges. First, it needs to extract a gaze trace from
the recorded video without any prior information about the
victim (e.g., what his eyes look like). Second, the gaze trace
is usually very noisy, making it very difficult to recover the
correct typing sequence. Third, the gaze trace does not tell the
exact number of keystrokes on the soft keyboard. To tackle
the first challenge, we explore a user-independent model-based
gaze tracking method [10]. To deal with noisy gaze traces and
accommodate unknown keystroke counts, we develop a novel
decoding algorithm to rank all possible typing sequences and
finally output the ones with high rank.

Our contributions in this paper are summarized as follows.

• We propose EyeTell, a novel video-based attack that
can infer a victim’s keystrokes on a touchscreen device
from a video capturing his eye movements. In compar-
ison with prior work [1]–[9], EyeTell requires neither
the attacker to visually observe the victim’s typing
process nor the victim device to be placed on a static
holder. Therefore, EyeTell is more practical, sneaky,
and launchable from a large distance, thus posing a
more serious threat to user privacy.

• We prototype and evaluate EyeTell through exper-
iments on both iOS and Android devices, which
involve the PIN, pattern-lock, and alphabetical soft
keyboards. We show that EyeTell can identify the top-
5, top-10, and top-50 likely PINs that must contain a
target 4-digit PIN with probabilities up to 65%, 74%,
and 90%, respectively. Similarly, EyeTell can output
the top-5, top-10, and top-50 possible lock patterns
that must include a target Android lock pattern with
probabilities up to 70.3%, 75.3%, and 85.1%, respec-
tively. In addition, EyeTell can identify the top-5, top-
10, top-25, and top-50 likely words that must include a
target word with probabilities up to 38.43%, 63.19%,
71.3%, and 72.45%, respectively.

• We point out future directions to improve EyeTell
and also possible countermeasures. Although currently
EyeTell works only under a short recording distance
and a small recording angle, we believe that the
adoption of better optics and eye tracking techniques
can readily relieve such limitations.



II. RELATED WORK

In this section, we discuss the prior work most related to
EyeTell in two research directions: keystroke inference attacks
and eye-tracking-related security implications.

A. Keystroke Inference Attacks

Prior keystroke inference attacks can be broadly classified
into video-based, sensor-based, and WiFi-based attacks.

1) Video-based attacks: In this category, the attacker uses a
recorded video to infer keystrokes. Early work targets physical
keyboards. For instance, Backes et al. [1], [2] recovered the
content on a computer screen from its reflections on nearby
objects such as glasses and tea pots. As another example,
Balzarotti et al. [3] inferred the keystrokes by characterizing
the light diffusion around the keyboard in the video recording.
This work [3] requires the attacker to directly video-record the
victim’s finger typings on the physical keyboard.

More recent research along this line targets soft keyboards
on ubiquitous touchscreen mobile devices. In [4], Maggi et
al. tried to recover keystrokes from key magnifications on the
touchscreen. In [5], Raguram et al. inferred keystrokes from
the touchscreen’s reflection on the victim’s sunglasses. In [6],
Xu et al. extended the attack in [5] to recover keystrokes from
double reflections of the touchscreen. In [7], Yue et al. inferred
keystrokes by exploiting the homographic relationship between
captured images and a reference image of a soft keyboard.
Similar homographic relationship was also used in [8] by
matching finger movements. In [9], Sun et al. showed that
the keystrokes can be actually inferred from the motion of
a tablet’s backside. All these attacks require the attacker to
record a video capturing at least part of the victim’s typing
process or device backside, so they do not work if no such
video is available. For example, the surrounding environment
may prevent the attacker from having an unobstructed, stealthy
view of the victim’s typing process.

In contrast, EyeTell requires no unobstructed view of the
victim’s device or typing process and only needs the attacker to
record the victim’s eye movements during the typing process.
When a user types, he usually holds his device in one hand
or places it on a table or his knee. This means that his eyes
are normally at much higher positions than his device during
the typing process. So it is much easier and more sneaky to
video-record the user’s eye movements from a distance than ti
video-record his device motion or typing process. EyeTell is
thus applicable to much wider contexts.

2) Sensor-based attacks: In this category, the attacker uses
on-board sensor data to infer a victim’s keystrokes. In [11],
[12], it was shown that the accelerometer data of a mobile
device can be used to infer the victim’s password. Subse-
quently, keystrokes were inferred in [13], [14] by combining
both accelerometer and gyroscope data. In [15], [16], the
authors exploited microphones and front cameras for keystroke
inference. In comparison with video-based attacks (including
EyeTell), these attacks require the attacker to acquire sensor
data from the victim device through either malware infection
or unprotected data transmissions. Such assumptions may not
always hold in reality.

There is also work on using device sensors as the side
channels to infer keystrokes of nearby physical keyboards. In
[17]–[19], keystrokes on a physical keyboard were recovered
through analyzing the acoustic emanations of the keyboard
recorded by a nearby malicious microphone. In [20], [21],
keystrokes were inferred by analyzing the time difference of
arrival of acoustic signal recordings. In [22], Marquardt et
al. used the accelerometer on a smartphone to measure the
vibration induced by a nearby physical keyboard for keystroke
inference. In [23], Liu et al. inferred keystrokes by exploiting
the accelerometer data of a smartwatch worn by the victim
while he typed. Similar to sensor-based attacks [11]–[16],
these schemes [17]–[23] assume that the attacker can obtain
sensor data from the victim device or that sensor data can
be collected by other devices close to the physical keyboard.
By comparison, EyeTell has no such restriction and can be
launched from a larger distance.

3) WiFi-based attacks: In this category, the attacker infers
a victim’s keystrokes from recorded channel state information
(CSI). The idea is that different keystrokes lead to distinct
changes in wireless channels and the corresponding CSI. It
has been shown that CSI information can be exploited to
infer a victim’s keystrokes on a physical keyboard [24], or
a soft keyboard [25], or a pattern lock keyboard [26]. All
these attacks are user-dependent and require the attacker to first
obtain the victim’s data with known labels to train a classifier.
In addition, they cannot tolerate any change in the surrounding
environment other than the victim’s hand or finger movement.
Furthermore, the distance between the WiFi transmitter and
receiver, the orientation of the victim device, and the victim’s
typing gestures were all fixed in the experiments. These
shortcomings limit the applicability of WiFi-based keystroke
inference attacks in practice.

B. Eye-Tracking-Related Security Implications

Considering eye tracking as an input method for user-
device interaction, researchers have proposed to use it for user
authentication and inferring user input.

1) User authentication: In the early days, researchers tried
to use eye movement as a biometric identifier for user authenti-
cation. In [27], the authors put forward this idea and evaluated
the identification rate among users. In [28], [29], the authors
proposed novel features extracted from eye movements and
designed specific stimulus to enhance the performance.

More recent research in this line mainly focuses on design-
ing novel challenge-and-response schemes for user authentica-
tion in a contactless manner. The key motivation is that eye
tracking as an input method is more secure against shoulder-
surfing attacks, besides novel two-factor authentication [30]
and anti device-theft [31] schemes. For example, the authenti-
cation systems in [32]–[35] ask a user to follow moving objects
on the screen, draw pre-selected shapes, perform eye gestures
to input PIN passwords, etc.

2) Inferring user input: There are few efforts to work on
inferring user inputs on device touchscreen by exploiting eye
tracking as a side channel. In [36], the authors pointed out
that the victim’s eyes would follow his finger movements on
the touchscreen of mobile device, which may leak his inputs.
To show such feasibility, they mannually analyzed the images
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Fig. 1. Anterior segment of a human eye [37].

taken by the front camera of the victim’s device to infer
his input digits. Through a small scale of experiments (three
participants and nine trials in total), they obtained an accuracy
result of around 67% on PIN keyboard.

Compared with the above work, EyeTell exhibits two main
differences. First of all, EyeTell works on a more challenging
scenario of inferring user keystrokes on mobile device touch-
screen, while most user authentication schemes based on eye
tracking aim at much larger screens such as TV. Furthermore,
these schemes were engineered in a way that their eye tracking
module can obtain a user’s eye trace easily and effectively.
On the contrary, EyeTell can only obtain a much noisier
eye trace due to two reasons: the attacker does the video
recording from a distance, and the victim’s eye movements on
a mobile touchscreen is much more subtle. Secondly, EyeTell
involves a set of tools to infer user inputs and comprehensive
investigations on different types of soft keyboards to better
evaluate its security and privacy impacts.

III. BACKGROUND ON VIDEO-BASED GAZE TRACKING

EyeTell is based on the intuition that a victim’s gaze trace
can reveal his typing sequence on a soft keyboard. Fig. 1
depicts the anterior segment of a human eye. According to the
definition in [38], the gaze actually refers to the gaze direction.
We now briefly introduce the background of video-based gaze
tracking, which is used in EyeTell to extract gaze traces.

Gaze tracking refers to the techniques that determine
the gaze direction of the eyes. Gaze tracking has numerous
applications such as human attention analysis and gaze-based
human-computer interfaces. So far video-based gaze tracking
is most popular because it achieves high accuracy without
requiring the target to wear any special device.

There are mainly two types of video-based gaze track-
ing methods: feature-based and appearance-based [38], [39].
Feature-based methods use local features such as contours, eye
corners, and reflections from the eye image for gaze estimation.
In contrast, appearance-based methods directly use the content
of the eye image as input to estimate the gaze direction instead
of extracting any local feature.

Feature-based methods can be further divided into
interpolation-based and model-based methods according to
how the features are used. Interpolation-based methods com-
monly assume that the mapping between the image features
and gaze can be modeled as a parametric form such as a
polynomial or nonparametric one like a neural network. In
contrast, model-based methods directly calculate the gaze from
the image features based on suitable geometric models of the
human eye. In this paper, we adopt the model-based gaze
tracking method in [10] due to its advantage that the attacker
does not need to obtain any training data about the victim
prior to the attack. Other model-based methods can be used in
EyeTell as well if they require no training data.

(a) PIN (b) Pattern lock (c) Alphabetical

Fig. 2. Three representative soft keyboards.

IV. ADVERSARY MODEL

We consider a victim using a mobile touchscreen device
such as a smartphone or tablet. Assume that the victim
holds the device right in front of himself and types on the
touchscreen soft keyboard. Such scenarios are very common
in practice. For example, the victim may use his mobile device
at his workplace or wait in line at a coffee shop. We assume
that the victim is alert to conventional shoulder-surfing attacks
in the sense that the attacker cannot get too close to the victim
when he types on the device.

We consider an attacker who aims to infer the typed
sequence on the victim device, which could be PINs, lock
patterns, words, or sentences. We assume that the attacker
can use a COTS smartphone, digital camera, or camcorder
to record the victim’s eyes during his typing process, possibly
from a long distance. However, the attacker cannot obtain any
IMU sensor (accelerometer, gyroscope, microphone, etc.) data
by installing malware such as Trojans or malicious web scripts
on the victim device. Different from prior work, we assume
that the attacker can see neither the touchscreen or backside
of the victim device nor the victim’s hand movements during
his typing process. Under these assumptions, existing video-
based [1]–[9], [40] and sensor-based [11]–[16], [18]–[20], [22]
keystroke inference attacks no longer work.

V. EYETELL DESIGN

In this section, we give an overview of EyeTell and then
detail its design. For convenience only, we assume the victim
device to be a smartphone throughout the illustration, though
EyeTell can work with any mobile touchscreen device.

Fig. 3. Workflow of EyeTell.

A. Overview

EyeTell is designed to infer the sensitive inputs on the soft
keyboard from the video of the victim’s eye movements while
he types. The high-level design of EyeTell is shown in Fig. 3,
which consists of the following four steps.

(1) Video Recording. We first record a video capturing the
victim’s eyes during his inputting process using a COTS
camcorder. As mentioned in Section IV, we assume that
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(a) Side view (b) Attacker’s view

Fig. 4. Typical setup for video recording.

neither the touchscreen nor the victim’s hand movement can be
directly seen from the video. In addition, we do not assume
that the smartphone is fixed on a device holder or that the
video can capture its backside.
(2) Gaze Trace Extraction. We adapt user-independent gaze
tracking [10] to extract the gaze direction from each frame of
the recorded video and then combine the directions to obtain
a complete gaze trace. In particular, we detect the two eyes in
each video frame and then the limbus for each eye, from which
we finally estimate the corresponding gaze direction. Due to
the noisy and unstable nature of the extracted gaze trace, we
further apply outlier detection and low-pass filtering to obtain
a cleaner gaze trace.
(3) Trace Decoding. In this step, we design a novel decoding
algorithm to match the gaze trace extracted in Step 2 into
a set of candidate typing sequences on the soft keyboard.
Fig. 2 shows the soft keyboards we investigate in this paper,
including the pattern-lock keyboard on Android and the PIN
and alphabetical keyboards on iOS. For PIN or pattern-lock in-
ference, each candidate typing sequence corresponds to one or
several PINs or lock patterns. For word or sentence inference,
an additional step is taken to select meaningful results with
the assistance of a dictionary. The decoding algorithm must
adapt to different inference scenarios where the attacker’s prior
information may vary a lot. For example, the attacker knows
that a PIN must consist of four or six digits, but he knows
very little to none about which word the victim is likely to
input before doing word inference.
(4) Word/Sentence Inference. Finally, we select the possible
words by considering meaningful alphabetical combinations
using a dictionary. We also explore the linguistic relationship
between adjacent English words to further infer sentences.

We detail each step above in what follows.

B. Video Recording

In this step, we want to obtain a video of the victim’s eyes
when he types on the soft keyboard of the smartphone. Fig. 4
shows a typical setting of video recording in our experiments.
We ask the participants to sit on the chair and input on a
smartphone. A Panasonic HCV7000 camcorder is used to
record videos. Using a COTS camcorder can show that EyeTell
is low-cost, convenient, and stealthy to launch. In our studies,
we find that the following factors affect the result of our gaze
tracking algorithm.

Image resolution. The resolution of the recorded video affects
eye and limbus detection and therefore the extracted gaze. In
the experiments, we always stick to the highest resolution of
the camcorder, i.e., each video frame is of 1920×1080 pixels.
Video frame rate. Due to the noisy and instable nature of the
extracted gaze trace, we need to collect more sudden changes

of the user’s eye movement and thus desire a higher video
frame rate. In the experiments, we choose the frame rate as
60 fps, which is the highest frame rate supported by our
camcorder. Our attack can be more effective if a camcorder
supporting higher frame rates is available.
Light condition. The light condition in the environment may
also affect the inference result, as the imaging sensor of the
camcorder generates larger noise in low-illumination environ-
ments and thus produces a polluted gaze trace.
Recording angle. We define the recording angle as the angle
between the plane formed by the victim and his smartphone
and the plane formed by the victim and the attacker’s cam-
corder. Our current EyeTell implementation requires that the
camcorder be placed in the same plane as the victim and
his smartphone, typically as shown in Fig. 4. Therefore, our
default recording angle is zero degree. We believe that this
assumption is fairly easy to achieve in practice with advanced
camcorders and can be relieved if more sophisticated gaze
tracking algorithms are available.

After video-recording the victim’s eye movement, we man-
ually crop the beginning and ending part of the video such
that the remaining part contains only the typing process. For
example, the video only contains the process of the victim
inputting four digits or drawing a pattern on the smartphone.

C. Gaze Trace Extraction

There are three steps in gaze trace extraction: eye localiza-
tion, limbus detection, and gaze trace estimation.

1) Eye detection: EyeTell detects the victim’s eyes in each
frame through a two-step approach. We first search for a pair of
eyes within the entire frame in a coarse-grained manner. Once
a rough region is obtained, we further refine the detected eye
region and then calculate the accurate eye positions.

In the first step, we use a Haar-like feature-based cascade
classifier [41] to detect possible eye regions and always select
the first output as the candidate eye region. We then segment
the candidate eye region into two area-of-interests (AOIs), one
for each eye. The cascade classifier [41] is very efficient and
also user-independent, but it may still incur false positives that
the candidate region is not the eye region. For example, a rect-
angular area enclosing the user’s clothes may be misclassified
as the eye region.

We use two tricks to reduce such false positives. First,
we require that the size of the detected eye region be above
a minimum threshold. In our implementation, we set the
threshold to be 80×40 pixels, which has been shown valid for
our video recording setting. Second, we calculate a similarity
score between the detected eye region and a reference region,
which is the eye region successfully detected in a different
frame of the same video. In particular, we resize the candidate
eye region to the same size as the reference region and then
normalize the pixel values of both regions. After normalization,
we calculate a pixel-level similarity score for the same pixel
in the two regions, which is the ratio between the absolute
difference of the two pixel values and their sum. After that,
the similarity score of the two eye regions is calculated as the
average pixel-level similarity score across the entire eye region.
The smaller the similarity score, the more similar the two eye
regions. In our implementation, we use an empirical threshold

4



of 0.8 to filter out possible false positives of eye regions and
manually check them. The threshold needs to be adjusted in
practice: a small threshold may result in many possible false
positives and thus increase the demand for manual checking,
and vice versa. If a detected candidate eye region is indeed a
false positive, we manually assign a correct rectangular region
enclosing both eyes as the input to the cascade classifier, which
leads to correct eye detection in practice.

In the second step, EyeTell uses a shape-based approach to
refine the two AOIs by exploring the predicted dark circular
appearance of eye features [42]. Specifically, we define the
center of a circular pattern as the point where most image
gradient vectors intersect. Then we search for the optimal
point by using an objective function that measures how well
the gradient vectors and the eye center displacement vectors
are aligned. Moreover, considering the fact that the eye center
usually appears darker than other areas in the eye, we attach
each point with a weight of its inverse intensity in the objective
function. Once the optimal points of the two AOIs (i.e., the
two eye centers) are located, we refine the positions of two
AOIs in the frame and then resize them to a fixed ratio. The
resizing operation can minimize the areas of the two AOIs
while maintaining important eye features within them. The red
cross in Fig. 5(a) denotes the detected eye center.

(a) Eye center (b) Fitted limbus

Fig. 5. Examples of our detected eye center and limbus.

2) Limbus detection: In this step, EyeTell determines the
elliptical outline of the limbus from each identified AOI by
first identifying a set of possible limbus edge points and then
fitting an ellipse model from those edge points [10]. In contrast
to other popular limbus detection methods [43], [44], this
method does not rely on any pre-defined threshold, which
allows EyeTell to reliably detect the limbus regardless of eye
appearance, users, and lighting conditions. Moreover, it can
detect the limbus from out-of-focus images because it does
not depend on the existence of very strong edge. We illustrate
this process in what follows.

Since limbus edge points are part of the edge, we search
for them by analyzing the radial derivatives within each AOI.
Specifically, we transform a given AOI into the polar form
and then calculate the vertical derivative of each pixel. In
our implementation, we select the pixel with the largest radial
derivative in each column as the limbus edge point.

Special attention is paid to non-edge points that are in-
correctly detected as edge points, which occurs if the radial
derivatives of non-edge points are larger than those of true
limbus edge points. According to our experimental observa-
tions, we use the following process to filter out as many such
non-edge points as possible. First, we notice that nearby light
sources can leave specularities on the cornea. The pixels within
these specularities can have very large radial derivatives and
thus be incorrectly identified as limbus edge points. To deal
with this case, we compare each pixel value with a threshold,
e.g., 150 (the pixel value is between 0 and 255), to identify

a set of possible specularities and then inpaint these small
connected regions. The effective threshold depends on the
recording environment, which we choose empirically. Second,
we observe that the upper eyelid may cover part of the iris
and therefore lead to incorrect limbus edge points. To cope
with this case, we use three points, two eye corners and the
iris-eyelid boundary point right above the given eye center, to
fit a parabola to approximate the upper eyelid and then discard
the points that fall outside the parabola.

Finally, we fit an ellipse model from the set of edge points
using the iterative method in [45]. In each iteration, a minimum
number of edge points are randomly selected from available
ones to fit an ellipse model through a least-square approach.
Then a support function is calculated to evaluate how fit the
model is to the entire set. We use the support function in [45]
that measures how well the geometric gradients of the fitted
ellipse model align with the image gradients. Fig. 5(b) denotes
a detected limbus in our experiment.

3) Gaze trace estimation: In this step, we estimate one gaze
point from each frame to obtain a complete gaze trace from
the entire video. To do so, we use the detected eye centers and
limbus in the 2D domain to recover the corresponding 3D eye
centers and optical axes. We then estimate the gaze point as the
intersection between the optical axes and the virtual 3D screen.
We further refer to the gaze point as point-of-gaze (PoG),
which can be simply denoted by a vector [x, y]T . Here x and
y correspond to the coordinates of the PoG along x and y axis
on the screen, respectively. For the benefit of better readability,
here we omit the detailed mathematical deduction to calculate
a PoG. For more details, please refer to Appendix A.

By calculating the PoG for each eye in each frame, we ob-
tain two complete gaze traces from the recorded video, denoted
by Ψl = (PoGl

1, . . . ,PoGl
nf
) and Ψr = (PoGr

1, . . . ,PoGr
nf
)

for the left and right eyes, respectively, where nf is the number
of frames in the video.

Since the extracted gaze traces are usually noisy and
unstable, we apply outlier detection and filtering to enhance
their quality. To detect possible outliers, we check the distance
between the two estimated eye centers in each frame. If the
distance in the ith frame is larger than an anatomical threshold,
e.g., 80 mm, we consider that at least one PoG between PoGl

i
and PoGr

i is an outlier. In this case, we replace the PoG that
yields a larger PoG change between adjacent frames with the
one that leads to a smaller change.

In the subsequent filtering step, we first obtain a raw gaze
trace Ψ = (PoG1, . . . ,PoGnf

) by taking the average of the
left and right gaze traces, where

PoGi =
PoGl

i + PoGr
i

2
, (1)

for all i ∈ [1, nf ]. We then apply a triangular kernel [46] to Ψ,
which assigns linear weights to each PoG in the time order.
Specifically, for each j ∈ [1, nf ], we calculate

PoGj =

∑j
i=j−N1+1 i× PoGi∑j

i=1 i
, (2)

where N1 is empirically set to 5 in our implementa-
tion. The final gaze trace for keystroke inference is Ψ =
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(PoG1, . . . , PoGnf
). For convenience, we call each element

in Ψ a PoG as well.

D. Trace Decoding

In this step, EyeTell decodes the gaze trace Ψ to obtain
some candidate input sequences on the touchscreen. Depending
on the soft keyboard the victim types on, the candidate input
sequence may correspond to a lock pattern, a PIN, a word,
or a sentence. Generally speaking, trace decoding is done in
four steps. First, we identify the turning points in a gaze trace
and then divide the whole trace into a sequence of segments,
each corresponding to a sudden change in the PoG. Second,
we convert each segment into a small set of candidate vectors.
Third, given the sequence of segments and their corresponding
candidate vector sets, we enumerate all possible combinations
of candidate vectors. For each possible combination of candi-
date vectors, we traverse the soft keyboard to check whether or
not the combination can be mapped into a valid input sequence.
Finally, we rank all the valid input sequences according to
certain heuristic rules and generate a final set of candidate
input sequences for a given gaze trace. In what follows, we
use the pattern-lock keyboard as the example to illustrate trace
decoding and then point out the difference when applying
EyeTell to PIN and alphabetical keyboards.

1) Trace segmentation: We first apply a moving average
filter to further smooth the gaze trace extracted in the last
step, as it does not exhibit any clear pattern for segmentation.
The length of the moving window has a direct impact on the
segmentation performance. On the one hand, if the window is
too short, the filtered gaze trace is not sufficiently smooth. On
the other hand, if the window is too long, some sudden changes
may be buried, resulting in some undetectable turning points.
We empirically set the moving-window length to 10 based on
analyzing our experiment data.

We then segment the smoothed trace by identifying the
turning points that separate adjacent segments. For simplicity,
we abuse the notation by letting Ψ = (PoG1, . . . , PoGnf

)
denote the smoothed trace as well. Suppose that Ψ consists
of two segments as an example. In the ideal case, the points
in each segment lie in a straight line, and the intersection of
the two lines is the turning point between two segments. Based
on this observation, we first estimate the moving direction of

each PoG (or element) in Ψ. Let
−−→
PoGi,j = PoGj − PoGi

be the vector for ∀i, j ∈ [1, nf ]. For each PoGi and the

next N2 PoGs (i.e., {PoGj}i+N2−1
j=i+1 ), we compute N2 vectors

{−−→PoGj,i}i+N2−1
j=i+1 , where N2 is a system parameter empirically

set to 5 in our experiment. We further calculate

−−→
PoGi =

∑i+N2−1
j=i+1

−−→
PoGi+1,i

N2
(3)

as the moving direction of PoGi. Let θi ∈ [−π, π) denote

the angle of
−−→
PoGi. We can then obtain a sequence of angles

θ1, . . . , θnf−N2+1) for the gaze trace Ψ. For every N3 adjacent

PoGs such as {PoGj}i+N3−1
j=i , we consider them in the same

segment if and only if∑i+N3−1
j=i |θj+1 − θj |

N3
≤ φ1 ,

where N3 and φ1 are both system parameters that are empir-
ically set to 5 and π

4 in our experiment, respectively.

We then search for turning points as follows. Starting from

i = 1, we find the smallest i′ such that

∑i′+N3−1

j=i′ |θj+1−θj |
N3

> φ1

and then regard PoGi′ as the ending point of the first segment.
Starting from i′, we proceed to find the smallest i′′ such

that

∑i′′+N3−1

j=i′′ |θj+1−θj |
N3

≤ φ1 and then consider PoGi′′ as the

starting point of the second segment. After determining i′ and
i′′, we search between i′ and i′′ to find i1 with the largest
∑i1+N3−1

j=i1
|θj+1−θj |

N3
and consider PoGi1 as the turning point

between the first two segments.

Repeating the above process, we can identify all the turning
points in the gaze trace. Suppose that nt turning points are
found in total. Combined with the first and last PoGs of
the gaze trace, the total nt + 2 points correspond to nt + 1
segments. Denote the nt +2 points by {TPi}nt+2

i=1 , where TP1

and TPnt+2 correspond to the first and last PoGs of the gaze
trace, respectively, and TPi (∀i ∈ [2, nt + 1]) are the turning
points. In the remainder of the paper, we denote the number
of segments by ns. Therefore, ns = nt+1. The final output of
trace segmentation comprises ns segments, each of which can
be represented by its length and angle. Specifically, assuming
TPi = [xi, yi]

T , the i-th segment can be characterized by
[xi+1 − xi, yi+1 − yi]

T for all i ∈ [1, ns].

We use the example in Fig. 6 to shed more light on trace
segmentation. Specifically, Fig. 6(a) shows a two-segment gaze
trace to decode; Fig. 6(b) shows the gaze trace after applying
the moving average filter; Fig. 6(c) shows the angles of the
PoGs on the trace; and Fig. 6(d) shows the ending point of
the first segment and the starting point of the second segment.

N2, N3, and φ1 depend on the factors such as frame rate,
signal-to-noise ratio (SNR) of the video, etc. For example,
N2 and N3 increase with the frame rate and decrease with
SNR generally. In this paper, we choose these parameters
empirically by experimenting them with a small portion of
data and observing the results of segmentation. In practice,
we believe that they need to be adjusted or trained in different
scenarios.

TABLE I. MAPPING BETWEEN ALPHABETICAL AND QUASI-PIN
KEYBOARDS DEPICTED IN FIG. 8(A).

1 q,w,e,r 2 t,y 3 u,i,o,p
4 a,s,d 5 f,g,h 6 j,k,l
7 z,x 8 c,v,b 9 n,m

2) Decoding segment: We observe that only a limited
number of gaze segments are permissible on any typical
soft keyboard (PIN, pattern lock, and alphabetic), which are
referred to as legitimate segments hereafter. In this step, we
decode a given gaze segment into a small set of candidate
legitimate segments on the pattern-lock keyboard. This is
done by calculating the Euclidean distances between the given
segment and all legitimate ones and then selecting those with
shorter distances as the candidates.

Let us first look into more details of the pattern-lock
keyboard and its corresponding legitimate segments. Fig. 7
depicts the dimensions of the pattern-lock keyboard layout on
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Fig. 6. An illustration for trace dividing.

(a) Pattern-lock (b) PIN (c) Alphabetical

Fig. 7. Measurement of the three keyboards. The unit is pixel.

a Google Nexus 6 smartphone with Android 5.1.1, including
the radius of nine white circles, the horizontal gap between
two neighboring circles, and the vertical gap between two
neighboring circles. All these dimensions are also listed in
Table XI in Appendix B. We further plot all the 24 possible
segments on the pattern-lock keyboard in Fig. 9 and then
calculate their lengths and angles. The 24 segments lead to
five lengths and 16 angles in total.

We first normalize the segment length to facilitate segment
decoding. As we can see from Fig. 9, the minimum segment
length is 1, so we try to make the minimum normalized
segment length be 1 as well via the following approach. First,
we sort the segments in the ascending order of their lengths.
Let Lmax denote the longest segment length. Then we select
the shortest segment and calculate the ratio ρ between Lmax

and its length. According to Table XII, the length ratio between
any two legitimate segments is no larger than 2

√
2. Therefore,

we compare ρ to a threshold ρmax. If ρ ≤ ρmax, the currently
selected segment is used for normalizing all the segments.
Otherwise, we select the next shortest segment, calculate a new
ρ, and compare it to ρmax. This process ends until ρ ≤ ρmax.
The currently selected segment is the one used for length
normalization, and the normalized segment lengths smaller
than 1 are all set to 1. ρmax should be larger than 2

√
2 to

accommodate the noisy and instable nature of the gaze trace.

Next, we compute the Euclidean distance between each
normalized segment and each legitimate segment in Fig. 9.
Suppose that we look for η candidate legitimate segments
for each normalized segment. Those leading to the top-η
shortest Euclidean distances are selected as the candidates.

Intuitively speaking, the larger η, the more likely that the
correct legitimate segment is included in the candidate set,
the less pinpointing capability the attacker has, and vice versa.

The final output in this step corresponds to ns candidate
sets, each corresponding to a gaze trace segment. We denote
the candidate set for the i-th trace segment by Ni (∀i ∈ [1, ns]),
which contains η legitimate segments in the ascending order
of their Euclidean distances with the i-th trace segment.

3) Candidate lock patterns: Now we generate the candidate
lock patterns for a gaze trace. Let c1, . . . , c9 denote the nine
white circles of a pattern lock keyboard, as shown in Fig. 8(b).
By setting the center coordinate of c1 to (0, 0), we derive the
center coordinates of other circles and list them in Table II.
Since the gaze trace comprises ns segments with each having
η candidate legitimate segments, a candidate lock pattern can
be represented by a row vector p = [p1, . . . , pns+1], where pi
refers to the i-th point that corresponds to one of c1, . . . , c9.

TABLE II. COORDINATES OF PATTERN-LOCK KEYBOARD DEPICITED

IN FIG. 8(B).

c1 (0,0) c2 (1,0) c3 (2,0)
c4 (1,0) c5 (1,1) c6 (2,1)
c7 (2,0) c8 (2,1) c9 (2,2)

We generate the candidate lock patterns by considering
each possible combination of ns legitimate segments and
then checking its feasibility by traversing on the pattern-
lock keyboard. In each round, we select a random segment
Si among the η segments in Ni (∀i ∈ [1, nt]) to form
a legitimate segment sequence {S1, . . . , Sns

}. There are to-
tally ηns rounds, each with a unique legitimate segment
sequence. Assuming that the length and angle of Si are l and
α, respectively, we rewrite Si = (l cos(α), l sin(α)). Given
{S1, . . . , Sns} and an arbitrary starting point ps ∈ {ci}9i=1,
we can obtain a candidate lock pattern p, where p1 = ps and
pi = pi−1 + Si−1 (∀i ∈ [2, ns + 1]). We say that p is feasible
if pi ∈ {c1, . . . , c9}, ∀i ∈ [1, ns + 1]. There are nine possible
choices for ps, each corresponding to a candidate lock pattern.
All the feasible lock patterns are then recorded.

An undesirable consequence of length normalization is
that larger lock pattens may be mis-recognized as their
shrunken versions. The example in Fig. 10 illustrates this
aspect. The correct pattern in the example is [c1, c3, c7, c9],
and the gaze trace segments after length normalization are
{(1, 0), (−1, 1), (1, 0)}. So the candidate lock patterns are
[c1, c2, c4, c5], [c2, c3, c5, c6], [c4, c5, c7, c8], and [c5, c6, c8, c9],
illustrated in Fig. 10. Our remedy for the issue is that if a legit-
imate segment sequence {S1, . . . , Sns

} can generate a feasible
lock pattern, we double the length of each segment there and
then check if the new sequence {S̃1, . . . , S̃ns

} can generate a
feasible lock pattern or not, where S̃i = (2l cos(α), 2l sin(α)).
All such feasible lock patterns are recorded as well.

4) Ranking candidate lock patterns: The final step is to
rank candidate lock patterns with three heuristics as follows.

First, we introduce a row vector r = (r1, . . . , rns),
where ri ∈ [1, η] means that the ri-th segment is chosen
from Ni (∀i ∈ [1, ns]). Then we generate the ηns legitimate
segment sequences based on r in the following order:
[1, 1, . . . , 1, 1], [1, 1, . . . , 1, 2], . . . , [1, 1, . . . , 1, η], [1, 1, . . . , 2, 1],
[1, 1, . . . , 2, 2], . . . [1, 1, . . . , 2, η], [1, 1, . . . , 3, 1], . . . , [η, . . . , η].
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(a) Transform alphabetical keyboard to quasi-PIN keyboard. (b) Denotions in Ta-
ble II.

Fig. 8. Quasi-PIN keyboard.

(a) All possible segments. (b) A pattern and its segments.

Fig. 9. Segments on pattern-lock keyboard.

(a) c1, c3, c7, c9 (b) c1, c2, c4, c5 (c) c2, c3, c5, c6

(d) c4, c5, c7, c8 (e) c5, c6, c8, c9

Fig. 10. Ambuguities due to normalization.

Recall that the earlier segments in each Ni have smaller
Euclidean distances to the corresponding gaze trace segment
than those of the later segments. Earlier legitimate segment
sequences can thus produce higher ranked candidate lock
patterns than later ones.

Second, the candidate lock patterns generated from the
same legitimate segment sequence are ranked according to
their starting points in the order of c1 > c4 > c7 > c2 >
c5 > c8 > c3 > c6 > c9. Such a heuristics is also adopted in
[40].

Finally, the candidate lock patterns generated from an
enlarged legitimate segment sequence have higher ranks than
those from the original sequence. The intuition is that normal
users tend to draw larger patterns.

TABLE III. HIDDEN KEYS ON PIN KEYBOARD.

(1,3) 2 (4,6) 5 (7,9) 8 (1,7) 4 (2,8) 5
(3,9) 6 (1,9) 5 (3,7) 5 (5,0) 8 (2,0) 5,8

5) PIN keyboard: Now we discuss how EyeTell applies to
the PIN soft keyboard. Fig. 7 and Table XI (in Appendix B)
show the dimensions of the PIN keyboard layout on a Google
Nexus 6 with Android 5.1.1, including the radius of each
key, the horizontal gap, and the vertical gap. We plot the 30

legitimate segments in Fig. 15 in Appendix B for lack of space.
Note that users slide on the pattern-lock keyboard to draw a
pattern but touch the keys on the PIN keyboard to input a
PIN. A user may input the same key multiple times on the
PIN keyboard, in which case there is little displacement in
the corresponding gaze trace. Furthermore, a user may input
three keys along the same direction sequentially, in which case
the attacker does not know how many keys are touched. For
example, the gaze traces for two different PINs (e.g., [1, 4, 7, 9]
and [1, 7, 8, 9]) can be very similar.

We then modify the process in Section V-D3 to generate
candidate 4-digit PINs.

• If there are three trace segments, EyeTell directly
generates candidate 4-digit PINs as in Section V-D3.

• If there are two trace segments, EyeTell first follows
the process in Section V-D3 to generate candidate
3-digit PINs. We abuse the notation by letting a
candidate PIN be denoted by a row vector p, in
which each element is a key on the PIN keyboard.
We have p = [p1, p2, p3] initially and then gen-
erate candidate 4-digit PINs as follows. First, we
generate and record [p1, p1, p2, p3], [p1, p2, p2, p3], and
[p1, p2, p3, p3], as the user may type any key twice.
Second, we consider the possible hidden keys between
any two original keys. For example, if a possible
hidden key ph lies between p1 and p2, we consider
and record [p1, ph, p2, p3] as a candidate PIN as well.
Table III shows the possible hidden keys on the PIN
keyboard corresponding to each pair of original keys.

• If there is only one trace segment, EyeTell first follows
the process in Section V-D3 to generate a 2-digit
PIN denoted by p = [p1, p2]. Then we generate
and record the candidate PINs as [p1, p1, p1, p2], and
[p1, p2, p2, p2].

The above process can be easily extended to 6-digit PINs and
omitted here for lack of space.

6) Alphabetical keyboard: Here we discuss how to adapt
our algorithm to attack the alphabetical keyboard whose layout
dimensions are given in Fig. 7 and Table XI. In contrast to the
PIN keyboard, the alphabetical keyboard has more keys (26
instead of 10) and a smaller area (about 48% smaller), which
poses a great challenge to keystroke inference. We tackle this
challenge by first transforming the alphabetical keyboard into
a quasi-PIN keyboard, as shown in Table I and depicted in
Fig. 8(a). Then we generate candidate PINs on the quasi-
PIN keyboard as in Section V-D3. Next, we produce a list of
candidate words from candidate PINs and then use a dictionary
to filter out non-existing words.
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Keystroke inference on the quasi-PIN keyboard is even
harder than that on the PIN keyboard. Specifically, the user
may type the same key multiple times or hit some hidden keys
on a segment, which is difficult for the attacker to identify. In
addition, the attacker knows that the PIN to infer corresponds
to 4 or 6 keys on the PIN keyboard, while he has no idea
how many keys are contained in a PIN on the quasi-PIN
keyboard because the corresponding word to infer may include
an arbitrary number of letters. The situation becomes even
worse because the same key or a hidden key may be typed
multiple times. For example, the combinations of “ty”, “er”,
“gh”, and “ui” are quite common in English words.

We amend the process in Section V-D3 to increase the
accuracy of inferring English words on the quasi-PIN keyboard
and thus the alphabetical keyboard.

• We add a (0, 0) segment into the set of legitimate
segments. If a (0, 0) segment is selected, the gaze trace
stays on the same key, corresponding to the case that
the victim inputs the same key repeatedly.

• Since it is unrealistic to consider all the possible
lengths of the typed word, we only consider candidate
words of ns+1 or ns+2 letters long for a given gaze
trace of ns segments.

As in [9], [22], [23], we refine the candidate words with the
popular “corn-cob” dictionary [47] which is an on-line word
list of 58,110 common English words.

Given a candidate PIN on the quasi-PIN keyboard, we
generate a list of candidate words for the extracted gaze trace
in the following two steps. First, we enumerate all the possible
combinations of letters of the given PIN. Second, we search
in the dictionary and add discoverable combinations into the
list of candidate words. The complexity of such a process can
be very high. For example, in our experiments, the number
of possible PINs for a 13-letter word is in the order of 104,
the number of possible combinations is in the order of 106

(313 = 1594323), and the number of strings in the dictionary
is 58,110. All these add up to a complexity of 1015. To reduce
the search complexity, we build a prefix tree of the “corn-
cob” dictionary using trie structure [48] such that the search
complexity within the dictionary is O(L), where L is the
length of the given string.

VI. PERFORMANCE EVALUATION

A. Experiment Setup

1) User enrollment: We recruited 22 participants for the ex-
periments, including 5 females and 17 males. Our experiment
protocol was approved by the Institutional Review Board (IRB)
at our institution and strictly followed in the experiments. Since
the participants were only asked to input on smartphones, the
experiments did not affect either them or people nearby at all.
We only obtained the participants’ oral consent because the
IRB approved a waiver of the requirement to obtain written
consent. All the participants were either graduate students in
our lab or others we know in the same university. We did not
reward them with any monetary compensation and only treated
them to free snacks. Finally, all the recorded videos are stored
in password-protected lab computers. As shown in Table IV,

the number of participants in our evaluation is larger than those
in our closely related work.

TABLE IV. NUMBER OF PARTICIPANTS IN RELATED SYSTEM

EVALUATIONS.

System [19] [22] [23] [9] [40] EyeTell
Number of
participants

N/A N/A 5 4 10 22

2) Data collection: We used a Panasonic HCV700 cam-
corder for video recording in our experiment. This camcorder
has a 21× zoom len and can record 1080p60 HD videos.
Two smartphone models were used in the experiments: Apple
iPhone 6s with a 10.5cm × 5.8cm screen size and Google
Nexus 6 with a 12.3cm× 7.5cm screen size.

A typical data collection process is as follows. A participant
was asked to sit on a chair (illustrated in Fig. 4), hold
a smartphone in front of herself/himself, and input on the
touchscrren. The input can be a PIN on the PIN keyboard,
a pattern on the pattern-lock keyboard, or an English word
on the alphabetical keyboard. The participant was asked to
input in her/his normal typing/drawing speed. We observed
that the participant almost always kept her/his head relatively
steady during each inputting process which was very short
and less than 5 s in our experiments. Such relatively steady
head positions are explored by almost all existing gaze tracking
methods, including the one used in EyeTell. The following
default settings were used, unless noted otherwise. The dis-
tance between the participant and camcorder was around 2 m.
The participant, smartphone, and camcorder lay in the same
plane. The resolution and frame rate of the camcorder were
set as 1920× 1080 and 60 fps, respectively. We also adjusted
the zoom of the camcorder such that the captured face of the
participant was focused and larger than 500× 500 pixels.

In general, we conducted two sets of experiments: one
without task randomization and the other with task random-
ization. The former involved 12 participants, each of whom
performed experiments sequentially from one session to the
next. For example, a participant first performed all experiments
on inferring a single lock-pattern segment, then complete
lock patterns, and so on. In contrast, the latter involved 10
participants, each of who was given randomly permuted tasks.
As an example, a participant performed one trial on inferring
a single lock-pattern segment, then two trials on complete lock
pattens, then three trials on 4-digit PINs, and so on.

We use the experiment on inferring a single segment on the
pattern-lock keyboard to examplify how we reduced the impact
of fatigue. For this experiment, a participant was asked to draw
each segment in Table XII on the pattern-lock keyboard. For
a given segment, she/he was asked to draw it five times. To
counteract the impact of possible fatigue, the participant was
asked to take pauses between two consecutive inputs. Before
the experiment, we informed all the participants that they could
stop the ongoing experiment freely whenever they felt a need
to rest. Finally, we purposely asked each participant to stop
and rest for one or two minutes about every ten minutes.

For the set of experiments without task randomization,
we designed multiple sessions to fully evaluate EyeTell. In
the following sessions (from Section VI-C to Section VI-G),
we will describe the details of these experiments (e.g., the
number of participants, the experiment requirements, etc.) and
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the corresponding results. The same participant took part in
multiple sessions, resulting in a total time between two and
three hours. To further reduce the impact of possible fatigue,
we collected the data of the same participant on different
days. As a result, the total time of doing experiments for each
participant was less than one hour on the same day.

For the set of experiments with task randomization, we
also designed different experiments for the same participant.
Particularly, task randomization was done in two steps. First,
we prepared all the experiments (tasks) for the same partici-
pant, assembled them together, and assigned each of them an
order number. In our evaluation, a participant was assigned 24
single segments, 10 lock patterns, 10 4-digit PINs, and 10 6-
digit PINs. Therefore, the order numbers are from 1 to 54 (i.e.,
24+ 10+10+10 = 54), which we use a vector [1, 2, . . . , 54]
to denote. Second, we permuted the order vector randomly and
obtained a new randomized one for each individual participant.
Finally, each participant performed experiments according to
her/his given vector.

As can be imagined, our experiments required a participant
to look at the touchscreen of a mobile device and input on
it repeatedly, which can result in fatigue. There are mainly
two factors leading to fatigue in our experiments: experimental
time and task similarity. Intuitively, if the experimental time is
longer with very similar tasks, participants may easily suffer
from fatigue. As mentioned above, we adopted two methods
to reduce the impact of passible fatigue as much as possible.
On the one hand, we asked the participants to take sufficient
pauses during the experiments and stop the experiments freely,
and controlled the duration of data collection on the same day.
On the other hand, we conducted two sets of experiments, with
and without task randomization. Since we did not observe large
difference between the results of the two sets of experiments,
we present the details and results of task randomization in
Appendix C-B.

B. Performance Metrics

We use top-k inference accuracy as the main performance
metric, as in [9], [19], [22], [23], [40]. Specifically, EyeTell
generates a set of ranked candidate inputs (PINs, lock patterns,
or letters) for each trial. We claim that a trial succeeds if
the true input appears in the top-k candidate inputs. Top-k
inference accuracy is defined as the percentage of successful
trials. We compare the inference accuracy of EyeTell with that
in [9], [19], [22], [23], [40]. Specifically, we compare EyeTell
with [40] on inferring lock patterns and with [9], [19], [22],
[23] on inferring English words.

C. Experiments on Pattern-Lock Keyboard

We first evaluate how accurately EyeTell can infer a
single segment on the pattern-lock keyboard. Considering that
inferring a single segment is the simplest task for EyeTell and
the basis for more complicated ones, we want to see how well
it performs. For this experiment, we asked each participant
to draw each segment in Table XII on a Nexus 6 for five
times. Recall that Table XII consists of all the possible single
segments on a pattern-lock keyboard. For the segments with
multiple possible starting points (e.g., segment 1 can start
from any point in {c1, c2, c4, c5, c7, c8}), the participants had

the freedom to pick any starting point. Since there is only one
segment in the resulting gaze trace, EyeTell can only calculate
its angle but not its length. The output length is always 1
due to normalization. Therefore, we group the segments with
the same angle together and obtain Table V from Table XII.
Therefore, both segment 1 and 2 in Table XII correspond
to segment 1 in Table V. Here we ignore the impact of the
segment length, which is reported in later evaluations. As we
can see in Table VI, EyeTell can infer the angle of a single
segment on the pattern-lock keyboard with top-1, top-2, and
top-3 inference accuracy up to 87.76%, 98.65%, and 99.74%,
respectively.

TABLE V. ANGLES OF A SINGLE SEGMENT ON THE PATTERN-LOCK

KEYBOARD. DERIVED FROM TABLE XII.

Index Angle Index Angle Index Angle Index Angle

1 0 5 π
2

9 π 13 −π
2

2 0.464 6 2.03 10 -2.68 14 -1.11

3 π
4

7 3π
4

11 − 3π
4

15 −π
4

4 1.11 8 2.68 12 -2.03 16 -0.464

TABLE VI. INFERENCE ACCURACY ON A SINGLE SEGMENT OF

PATTERN-LOCK KEYBOARD.

Index of
segment

top-1 top-2 top-3 top-4 top-5

1 87.78% 100% 100% 100% 100%

2 82.5% 90.83% 100% 100% 100%

3 96.67% 100% 100% 100% 100%

4 95% 100% 100% 100% 100%

5 80% 100% 100% 100% 100%

6 92.22% 100% 100% 100% 100%

7 85% 96.67% 100% 100% 100%

8 93.33% 100% 100% 100% 100%

9 90% 100% 100% 100% 100%

10 93.33% 100% 100% 100% 100%

11 93.33% 100% 100% 100% 100%

12 60% 100% 100% 100% 100%

13 80% 92.5% 95.83% 100% 100%

14 88.33% 98.33% 100% 100% 100%

15 100% 100% 100% 100% 100%

16 87.67% 100% 100% 100% 100%

Average 87.76% 98.65% 99.74% 100% 100%

(a) Simple (b) Medium (c) Complex

Fig. 11. Examples of simple, medium, and complex lock patterns.

Then we evaluate the performance of EyeTell inferring lock
patterns. We used the same set of lock patterns as those in
[40], which includes 120 lock patterns in total [49]. In [40],
the authors assigned a lock pattern to one of three categories,
i.e., simple, medium, and complex, according to its complexity
score. Specifically, the complexity score CSP of an arbitrary
lock pattern P is estimated as

CSP = nP × log2(LP + IP +OP ), (4)
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where nP denotes the number of connecting dots, LP is the
length of P , IP denotes the number of intersections, and OP

is the number of overlapping linear segments. Based on the
complexity score, P can then be categorized according to the
following rule. If CSP < 19, P is simple; if 19 ≤ CSP < 33,
P is medium; and if CSP ≥ 33, P is complex. Fig. 11 gives an
example for each pattern category. We use the simple pattern
in Fig. 11(a) to explain the calculation of CSP , for which we
have nP = 5, LP = 4, IP = 0, OP = 0, and CSP = 10.
Each participant was assigned with four simple lock patterns,
three medium ones, and three complex ones. The assignment
of lock patterns was generated randomly. Besides, each lock
pattern was drawn five times on a Nexus 6.

As shown in Table VII, the average top-1, top-5, top-
10, and top-50 accuracy of EyeTell inferring pattern locks
are 57.5%, 70.3%, 75.3%, and 85.1%, respectively. In [40],
the authors reported average top-5 accuracy more than 95%,
which is much higher than what EyeTell can achieve. But
such high accuracy in [40] was achieved based on the strong
assumption that the attacker can directly capture how the
victim drew her/his lock pattern on the screen. In contrast,
EyeTell assumes that the attacker can only capture the victim’s
eyes (possibly from a large distance), which is much more
realistic. We can also see that the inference accuracy increases
with the complexity score of a lock pattern, which is consistent
with the observation in [40].The reason is that higher pattern
complexity helps reduce the number of candidate patterns.

TABLE VII. INFERENCE ACCURACY ON PATTERN-LOCK KEYBOARD.

Pattern category top-1 top-5 top-10 top-20 top-50
Simple 47.75% 69.5% 74.5% 79.5% 88.75%

Medium 59.3% 70% 75% 77% 83%
Complex 65% 71% 76% 78% 83%
Average 57.5% 70.3% 75.3% 78.3% 85.1%

D. Experiment on PIN Keyboard

We asked each participant to input 10 4-digit PINs and 10
6-digit PINs on the PIN keyboard on an iPhone 6s. Each PIN
was input five times. All the PINs were randomly generated
and then assigned to the participants. We showed the results in
Table VIII. As we can see, EyeTell can infer 4-digit PINs with
average top-1, top-5, top-10, and top-50 accuracy up to 39%,
65%, 74%, and 90%, respectively. In addition, the average
top-1, top-5, top-10, and top-50 accuracy on 6-digit PINs are
39%, 70%, 80%, and 90%, respectively. As for pattern locks,
the inference accuracy for 6-digit PINs is slighter higher than
that for 4-digit PINs, as 6-digit PINs are longer, more complex,
and thus easier to infer.

TABLE VIII. INFERENCE ACCURACY ON PIN KEYBOARD.
# of digits top-1 top-5 top-10 top-20 top-50

4-digit 39% 65% 74% 81% 90%
6-digit 39% 70% 80% 85% 90%

E. Experiment on Word Inference

We used the 27 English words in Table XIII (Ap-
pendix C-A) from the corn-cob dictionary to evaluate the
performance of EyeTell for word inference. The same words
were also used in [9], [19], [22], [23]. The length of the 27
words ranges from 7 to 13 letters. We asked each participant
to input each word five times on the alphabetical keyboard of
an iPhone 6s.

Table IX compares the word-inference performance of
EyeTell with some existing schemes. As we can see, the
average top-5, top-10, and top-50 accuracy on inferring English
words are 38.43%, 63.19%, and 72.45%, respectively. EyeTell
has comparable performance to the attacks in [9], [19], [22],
[23] but with weaker assumptions. For example, they assume
that the attacker can obtain the exact length of the typed word,
while EyeTell does not rely on this assumption. In addition,
as detailed in Section II, they require that the attacker obtain
on-board sensor data of the victim device [19], [22], [23] or
that the victim device be placed on a static holder.

TABLE IX. WORD-INFERENCE ACCURACY.
System top-5 top-10 top-25 top-50 top-100
EyeTell 38.43% 63.19% 71.3% 72.45% 73.38%

[19] N/A 43% 61% 73% 87%
[22] N/A 43% 50% 57% 60%
[23] 54.80% 63% 75% 82.40% 86%
[9] 48% 63% 78% 93% N/A

F. Experiment on Sentence Inference

EyeTell infers a complete sentence in two steps. In the
first step, we generate a candidate set for each typed word. In
the second step, we use the linguistic relationships between
English words to manually select the best candidate for each
typed word. Essentially, inferring a complete sentence is based
on inferring each individual word (in Section VI-E). Therefore,
for this experiment, we only involved four participants to
demonstrate the feasibility of our approach. Each participant
was asked to input two sentences twice on the alphabetical
keyboard of an iPhone 6s. The same sentences were also used
for evaluation in [9]. Since the results for different participants
are comparable, we only show the result of one trial for one
participant for lack of space. We leave the results for other
participants in Appendix C-C.

Table X shows the result. If a typed word does not appear
in the candidate set generated by EyeTell, we use a ∗ to
denote it. The words in italic form are those EyeTell infers
successfully. We also show the number of candidates for each
word (including itself). We can see that EyeTell can recover
a large portion of the two sentences with the aid of post-
inference human interpretation. We believe that we can further
improve the performance on sentence inference by predicting
unknown words using advanced linguistic models such as [50].

G. Influence Factors

In this section, we evaluate the impact of multiple factors
on EyeTell for inferring 4-digit PINs on the PIN keyboard
of an iPhone 6s, including the number of candidates (η) for
segment decoding, the number of eyes used for extracting
a gaze trace, the frame rate of the camcorder, the lighting
condition for video recording, the distance between the victim
and camcorder, and the recording angle. The following default
setting was adopted, unless noted otherwise: η = 5, both eyes
used for extracting a gaze trace, a frame rate of 60 fps, indoor
normal lighting, 2 m between the victim and camcorder, and
a zero-degree recording angle.

Among the 12 participants, only two of them do not wear
glasses while the others do. Wearing glasses has little effect on
the performance of our system. The reason is that we employ
an image inpainting step to eliminate possible specularities
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TABLE X. SENTENCE-INFERENCE RESULT.

Input our friends at the university of texas are planning a
Output our ∗ at the university of texas are planning a
# of candi. 33 N/A 6 3 1 16 6 78 2 N/A
Input conference on energy economics and finance in february of next
Output ∗ on energy ∗ and finance in ∗ of next
# of candi. N/A 5 3 N/A 54 N/A 8 N/A 16 30
Input year we discuss the major factors underlying the exceptionally high
Output year we discuss the major ∗ underlying the ∗ high
# of candi. 15 7 8 5 44 N/A 1 5 N/A 85
Input volatility of electricity prices
Output ∗ of electricity prices
# of candi. N/A 16 2 26

within the eye region for limbus detection, as mentioned in
Section V-C2. As a result, we do not distinguish participants
with glasses from those without glasses.

1) Impact of η: Fig. 12(a) shows the top-5, top-20, and
top-100 inference accuracy of EyeTell for η = 3, 4, or 5. As
we can see, the inference accuracy increases with η, and the
top-100 accuracy exhibits the largest increase. Such results are
as expected because larger η leads to more enumerations in
Section V-D3 so that the probability of the typed PIN falling
into its candidate set increases. In our experiment, we found
that when η = 5, most PINs and lock patterns were included
in their respective candidate sets. Though a larger η always
leads to higher accuracy, we set η = 5 by default to reduce
computation time.
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Fig. 12. Impact of η (left) and eye configuration (right).

2) Impact of eyes: Here we compare the inference accuracy
when the gaze trace from only one eye (left or right) or from
both eyes are used for PIN inference. The result is shown in
Fig. 12(b). It is not surprising to see that EyeTell achieves
much higher inference accuracy when the gaze traces of both
eyes are used. The reason is that the gaze trace from one eye
exhibits large noise due to the nature of human eyes while the
gaze trace averaged from both eyes is much less noisy.

3) Impact of frame rate: Now we compare the inference
accuracy of EyeTell under two frame rates for video recording,
30 fps and 60 fps. Since the default frame rate is 60 fps in our
experiment, we down-sampled Ψl and Ψr in Section V-C3 by
half to simulate the gaze trace obtained from 30-fps videos. As
shown in Fig. 13(a), EyeTell can yield better inference results
under a higher frame rate. The reason is that the gaze traces
from videos of higher frame rates are more accurate than those
of lower frame rates, thus resulting in higher accuracy.

4) Impact of lighting conditions: In this experiment, we
evaluate the impact of environmental lighting conditions on
EyeTell. Three types of environments are investigated, in-
cluding indoor normal lighting with 300-360 lux illumination,
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Fig. 13. Impact of frame rate (left) and lighting condition (right).

indoor low lighting with 60-100 lux illumination, and outdoor
daytime sunlight with around 1200 lux illumination. In each
environment, each participant was asked to input 10 4-digit
PINs on an iPhone 6s, and each PIN was input five times.
As mentioned above, the PINs were generated randomly and
then assigned to the participants. Fig. 13(b) summarizes the
result for this experiment. EyeTell exhibits similar perfor-
mance under indoor normal lighting and outdoor daytime
sunlight conditions. However, the performance becomes worse
in indoor low lighting environments. The reason is that low
illumination in the shooting environment causes more noise in
detected eye regions, thus degrading the accuracy of ellipse
fitting for limbus and later gaze trace extraction.

5) Impact of recording distance: In this experiment, we
evaluate EyeTell when the recording distance is 1m, 2m,
and 3m, respectively. In each scenario, each participant was
asked to input 10 4-digit PINs on an iPhone 6s, and each
PIN was input five times. The PINs were generated randomly
and then assigned to the participants. We show the result in
Fig. 14(a). As we can see, EyeTell has similar performance
when the distance is 1m or 2m. The slight performance
degradation when the distance is 3m can be attributed to the
larger zoom-in setting from a longer shooting distance. As a
result, the captured video may be more sensitive to small head
movements of the victim. However, we believe that the impact
of the recording distance can be very limited if the attacker
has more advanced camcorders.

6) Impact of recording angle: In this experiment, we study
the performance of EyeTell when the recording angle is
0°(the default), 5°, or 10°, respectively. In each scenario, each
participant was asked to input 10 4-digit PINs on an iPhone
6s. Each PIN was input five times. The PINs were generated
randomly and then assigned to the participants. Fig. 14(b)
shows the results. As expected, the inference accuracy quickly
decreases as the recording angle increases. This is mainly due
to two reasons. First, the gaze tracking method [10] EyeTell
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Fig. 14. Impact of recording distance (left) and angle (right).

adopts assumes that the recording angle is zero. Second, when
the recording angle increases, the recorded video may not be
able to capture the limbus of both eyes. Accurate gaze trace
extraction under arbitrary recording angles (or equivalently
arbitrary head postures) is very challenging and requires more
advanced gaze tracking methods. We plan to look further into
this issue in our future work. Note that the attacker with an
advanced camcorder may not have much difficulty achieving
a near-zero recording angle in practice from a long distance
to the victim.

H. Computational Time

We implemented EyeTell in two components. The first
one is for gaze trace extraction implemented in C++, and the
second for trace decoding implemented in Matlab. We run
the experiments on a DELL desktop with 2.67 GHz CPU,
9 GB memory, and Windows 10 64-bit Professional. In the
experiments, it takes less than 40s to generate a gaze trace from
an input video. For trace decoding, the most time-consuming
part is to generate the candidate set in Section V-D3, which is
jointly determined by the number of segments and the number
of candidates for each segment. Most PINs and lock patterns
are associated with a few segments. For example, it takes less
than 1s to generate the candidate set for a 4-digit PIN. In
contrast, it takes about 40min for an English word with 13
letters. Overall, the computational time incurred by EyeTell is
quite affordable for a determined adversary.

VII. DISCUSSION

In this section, we discuss the limitations of EyeTell and
point out possible countermeasures.

A. Limitations

First, the inference accuracy of EyeTell is slighter lower
than that of other video-based inference attacks [9], [40],
especially for the alphabetical keyboard. There are two main
reasons. First, other attacks use more direct observations about
the keystrokes, such as the device’s backside motion [9]
and the victim’s finger movement [40]. In contrast, the gaze
trace that EyeTell exploits only contains indirect keystroke
information which is much more noisy and instable. Second,
the efficacy of EyeTell on the alphabetical keyboard is largely
limited by the uncertain number of keystrokes. We plan to
explore extra side information such as eye fixation time in our
future work to have more accurate estimation of the number of
keystrokes and thus improve the inference accuracy of Eyetell.

Second, EyeTell currently requires the video to be recorded
within a small recording angle, e.g., less than 5°based on our

experiments. While such small recording angles make EyeTell
detectable by vigilant users in uncrowded space, EyeTell is
likely to succeed in crowded areas. This limitation can be
alleviated by using more advanced camcorders or employing
more advanced gaze tracking methods that are less sensitive to
the victim’s head posture. With better optics, the attacker can
record the video from a longer distance. In addition, Gaze
tracking based on machine learning [51] has shown to be
effective even under different recording angles. We intend to
explore this direction in our future work.

Finally, our experiment scale is comparable to that in the
most recent work [40] but still limited. Though costly, larger-
scale experiments may further evidence the efficacy of EyeTell.

B. Countermeasures

Since the only information EyeTell uses for keystroke
inference is a video of the victim’s eyes, mobile users should
be alert when they input important sensitive information on
their touchscreen devices. The following countermeasures can
be adopted to thwart EyeTell. The most effective way against
EyeTell is to prevent the attacker from video-recording the
victim’s eyes. For example, the user can wear sunglasses with
dark colors to hide his gaze trace. In addition, users can input
keystrokes without looking at the keys so that the gaze trace
extracted by EyeTell is irrelevant to keystrokes. However, this
method may be practical only when the user incurs a small
number of keystrokes, e.g., 4-digit PINs. Finally, sophisticated
users can increase their typing speed on the touchscreen. In
case that the frame rate of the attacker’s camcorder is not high
enough, the extracted gaze trace should be much less accurate
and noisy, therefore degrading the inference result.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we introduced EyeTell, a video-based
keystroke inference attack framework to infer the victim’s
typed input from a video capturing his eyes. We adopted a
user-independent model-based gaze tracking method to obtain
a gaze trace of the victim’s eyes and designed novel decoding
algorithms to infer the typed input. We confirmed the high
efficacy of EyeTell via extensive experiments on iOS and
Android devices under various circumstances.

We plan to improve EyeTell in three directions in the
future. First, we intend to develop novel gaze tracking methods
that are less sensitive to the victim’s head posture, which will
greatly enhance EyeTell’s applicability. Second, we will inves-
tigate novel methods to determine the number of keystrokes
in order to improve the inference accuracy of EyeTell on
alphabetical keyboards. Finally, we plan to evaluate EyeTell
in a larger scale.
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APPENDIX A
POINT-OF-GAZE ESTIMATION

In this step, we estimate one gaze point from each frame to
obtain a complete gaze trace from the entire video. First, we
calculate the 3D center and optical axis of each eye from the
eye center and limbus obtained from limbus detection. Denote
the coordinate of the eye center on the 2D image plane by
(ex, ey) and the fitted ellipse of limbus by E(x, y) = Ax2 +
Bxy+Cy2+Dx+Ey+F . The 3D center of an eye, denoted
by c = [cx, cy, cz]

T , can be calculated as

cx = cz
(ex − μ0)

fx
, cy = cz

(ey − υ0)

fy
, cz =

fx + fy
2

· r0
rmax

,

(5)
where fx and fy are the focal lengths in pixel along horizontal
and vertical axis, respectively, (μ0, υ0) is the coordinate of the
principal point on the 2D image plane, rmax is the semi-major
axis of the fitted ellipse E(x, y) on the 2D image plane, and
r0 is the actual size of human limbus. By definition, the line
determined by the focal point and the principal point is perpen-
dicular to the 2D image plane, which allows us to calculate the
principal point from the focal point. In practice, fx, fy, μ0, and
υ0 can be obtained by one-time camera calibration. In addition,
parameters ex, ey , and rmax can be computed from E(x, y),
and r0 is set to 6mm in our implementation.

The optical axis of an eye, denoted by k, can be written
as k = c + mn. Here n is the unit normal vector of the
supporting plane of the limbal circle, and m is a constant. In
the coordinate system of the eye, n is equal to [0, 0, 1]T . Next,
we obtain its corresponding form in the coordinate system of
the camera by the rotation matrix between the two coordinate
systems through the following equation [52],

n = [v1 v2 v3]

[
h
0
g

]
, (6)

where v1, v2, and v3 are three eigenvectors of Qe defined as

Qe =

⎡
⎢⎣

A B
2 − D

fx+fy
B
2 C − E

fx+fy

− D
fx+fy

− E
fx+fy

4F
(fx+fy)2

⎤
⎥⎦ , (7)

g =

√
λ2 − λ3

λ1 − λ3
, h =

√
λ1 − λ2

λ1 − λ3
, (8)

and λ1, λ2, and λ3 are the eigenvalues corresponding to v1,
v2, and v3, respectively.

After obtaining the optical axis of each eye, we calculate
the PoG as

PoG =

[
x
y
0

]
=

[
cx
cy
cz

]
+m

[
nx

ny

nz

]
. (9)

It follows that

m = − cz
nz

and

[
x
y

]
=

[
cx +mnx

cy +mny

]
, (10)

where [x, y]T is the estimated PoG of a video frame.

APPENDIX B
KEYBOARD SPECIFICATION

Table. XI shows the soft keyboard dimensions illustrated
in Fig. 7 and Fig. 8(a).

TABLE XI. SOFT KEYBOARD DIMENSIONS IN PIXEL ILLUSTRATED IN

FIG. 7 AND FIG. 8(A).

Keyboard Radius Width Height
Horizontal
Gap

Vertical
Gap

PIN 65 N/A N/A 50 30

Pattern lock 20 N/A N/A 340 340

Alphabetical N/A 60 80 12 24

Quasi-PIN N/A 216 80 12 24

Fig. 15 shows all the possible segments on PIN keyboard,
similar to Fig.9.

Fig. 15. All possible segments of a PIN keyboard.

Table. XII shows the lengths and angles of the segments
in Fig. 9.

APPENDIX C
ADDITIONAL EVALUATION RESULTS

A. Word for Inference

Table XIII shows the 27 English words from the corn-cob
dictionary to evaluate the performance of EyeTell for word
inference.

B. Experiments with Task Randomization

In this session, we present more details and results on
the set of experiments with task randomization. For these
experiments, the number of participants is 10. As mentioned in
Section VI-A2, each participant was assigned 54 ordered tasks,
of which the order was indicated by her/his given vector. A
task can be inputting a single segment, a lock pattern, a 4-
digit PIN, or a 6-digit PIN. Each participant was asked to
repeat the same task for five times. To reduce the impact of
fatigue as much as possible, besides following the instruction
in Section VI-A2, the participants were told to stop their
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TABLE XII. ALL POSSIBLE SEGMENTS OF PATTERN-LOCK KEYBOARD.

Index Length Angle Index Length Angle Index Length Angle Index Length Angle

1 1 0 7 1 π
2

13 1 π 19 1 −π
2

2 2 0 8 2 π
2

14 2 π 20 2 −π
2

3
√
5 0.464 9

√
5 2.03 15

√
5 -2.68 21

√
5 -1.11

4
√
2 π

4
10

√
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5 1.11 12
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√
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TABLE XIII. WORDS FOR INFERENCE.

Length Words
7 between, spanish, nuclear
8 identity, emirates, platinum, homeland, security
9 institute, extremely, sacrament, dangerous
10 difference, wristwatch, processing, unphysical
11 inquisition, pomegranate, feasibility, polytechnic, obfus-

cating
13 paediatrician, interceptions, abbreviations, impersonating,

soulsearching, hydromagnetic

experiments at any time they wished. Also, we collected
the data of the same participant on different days. For each
participant, the experimental time on the same day was less
than half an hour. The total experimental time for a participant
ranged from one and a half to three hours.

1) Inferring a Single Lock-Pattern Segment: For these
experiments, each participant input each segment in Table XII
on a Nexus 6 for five times under task randomization. As we
can see in Table XIV, EyeTell can infer the angle of a single
finger movement on the pattern-lock keyboard under task
randomization with top-1, top-2, and top-3 inference accuracy
up to 87.19%, 97.10%, and 99.62%, respectively.

TABLE XIV. INFERENCE ACCURACY ON A SINGLE SEGMENT OF

PATTERN-LOCK KEYBOARD.

Index of
segment

top-1 top-2 top-3 top-4 top-5

1 82.5% 100% 100% 100% 100%

2 82.5% 92.5% 100% 100% 100%

3 92.5% 96.7% 100% 100% 100%

4 96.67% 100% 100% 100% 100%

5 75% 90.8% 100% 100% 100%

6 91.3% 100% 100% 100% 100%

7 83% 94.3% 100% 100% 100%

8 92.8% 98.2% 100% 100% 100%

9 90.3% 100% 100% 100% 100%

10 95.5% 100% 100% 100% 100%

11 93% 98% 100% 100% 100%

12 72% 100% 100% 100% 100%

13 84% 91% 94% 100% 100%

14 82% 100% 100% 100% 100%

15 97% 100% 100% 100% 100%

16 85% 92% 100% 100% 100%

Average 87.19% 97.10% 99.62% 100% 100%

2) Experiments on Inferring Lock Patterns: For these ex-
periments, each participant input four simple patterns, three
medium patterns, and three complex patterns from [49] on a
Nexus 6 under task randomization. The patterns were randomly
selected when preparing all the tasks for each participant.
As shown in Table XV, the average top-1, top-5, top-10,
and top-50 accuracy of EyeTell inferring pattern locks under
task randomization are 55.8%, 70.1%, 75.1%, and 84.1%,
respectively.

TABLE XV. INFERENCE ACCURACY ON PATTERN-LOCK KEYBOARD.

Pattern category top-1 top-5 top-10 top-20 top-50
Simple 45.4% 70.4% 75.4% 77.2% 85.6%

Medium 58.6% 69.6% 74.0% 78.0% 83.2%
Complex 63.4% 70.2% 75.8% 77.6% 83.4%
Average 55.8% 70.1% 75.1% 77.6% 84.1%

3) Experiments on Inferring PINs on PIN Keyboard: For
these experiments, a participant input 10 4-digit PINs and 10 6-
digit PINs on an iPhone 6s under task randomization. The PINs
were randomly generated when preparing all the tasks for each
participant. As shown in Table XVI, EyeTell can infer 4-digit
PINs with average top-1, top-5, top-10, and top-50 accuracy up
to 37.5%, 67.2%, 78.0%, and 92.0%, respectively. In addition,
the average top-1, top-5, top-10, and top-50 accuracy on 6-
digit PINs are 38.8%, 68.9%, 81.3%, and 91.0%, respectively.

TABLE XVI. INFERENCE ACCURACY ON PIN KEYBOARD.

# of digits top-1 top-5 top-10 top-20 top-50
4-digit 37.5% 67.2% 78.0% 81.2% 92.0%
6-digit 38.8% 68.9% 81.3% 84.6% 91.0%

C. Additional Results on Sentence Inference

Here we show more experimental results on sentence
inference. As mentioned in Section VI-F, we involved four
participants to take part in the experiments on sentence infer-
ence. Table XVII, Table XVIII, and Table XIX show the results
for the other three participants. As we can see, the results for
the four participants are comparable.
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TABLE XVII. SENTENCE-INFERENCE RESULT FOR PARTICIPANT A.

Input our friends at the university of texas are planning a
Output our ∗ at the university of texas are planning a
# of candi. 27 N/A 8 3 1 14 6 90 2 N/A
Input conference on energy economics and finance in february of next
Output ∗ on energy ∗ and finance in february of next
# of candi. N/A 5 3 N/A 30 2 8 5 12 18
Input year we discuss the major factors underlying the exceptionally high
Output year we discuss the major ∗ underlying the ∗ high
# of candi. 18 3 5 5 8 N/A 1 8 N/A 20
Input volatility of electricity prices
Output ∗ of electricity prices
# of candi. N/A 23 1 14

TABLE XVIII. SENTENCE-INFERENCE RESULT FOR PARTICIPANT B.

Input our friends at the university of texas are planning a
Output our ∗ at the university of texas are planning a
# of candi. 20 N/A 16 3 1 6 6 53 2 N/A
Input conference on energy economics and finance in february of next
Output conference on energy ∗ and finance in february of next
# of candi. 1 15 6 N/A 54 N/A 8 10 7 25
Input year we discuss the major factors underlying the exceptionally high
Output year we discuss the major ∗ underlying the ∗ high
# of candi. 21 3 5 3 60 N/A 1 5 N/A 100
Input volatility of electricity prices
Output ∗ of electricity prices
# of candi. N/A 18 1 10

TABLE XIX. SENTENCE-INFERENCE RESULT FOR PARTICIPANT C.

Input our friends at the university of texas are planning a
Output our ∗ at the university of texas are planning a
# of candi. 40 N/A 8 2 2 11 6 63 2 N/A
Input conference on energy economics and finance in february of next
Output ∗ on energy ∗ and finance in february of next
# of candi. N/A 7 3 N/A 42 N/A 8 2 14 18
Input year we discuss the major factors underlying the exceptionally high
Output year we discuss the major ∗ underlying the ∗ high
# of candi. 12 5 12 8 32 N/A 1 5 N/A 91
Input volatility of electricity prices
Output ∗ of electricity prices
# of candi. N/A 12 1 16
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