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Abstract—Data aggregation is a key primitive in wireless sensor
networks and refers to the process in which the sensed data are
processed and aggregated en-route by intermediate sensor nodes.
Since sensor nodes are commonly resource constrained, they may
be compromised by attackers and instructed to launch various
attacks. Despite the rich literature on secure data aggregation,
most of the prior work focuses on detecting intermediate nodes
from modifying partial aggregation results with two security
challenges remaining. First, a compromised sensor node can
report arbitrary reading of its own, which is fundamentally
difficult to detect but widely considered to have limited impact on
the final aggregation result. Second, a compromised sensor node
can repeatedly attack the aggregation process to prevent the base
station from receiving correct aggregation results, leading to a
special form of Denial-of-Service attack. VMAT [1] (published in
ICDCS 2011) is a representative secure data aggregation scheme
with the capability of pinpointing and revoking compromised
sensor nodes, which relies on a secure MIN aggregation scheme
and converts other additive aggregation functions such as SUM
and COUNT to MIN aggregations. In this paper, we introduce a
novel enumeration attack against VMAT to highlight the security
vulnerability of a sensor node reporting an arbitrary reading of
its own. The enumeration attack allows a single compromised
sensor node to significantly inflate the final aggregation result
without being detected. As a countermeasure, we also introduce
an effective defense against the enumeration attack. Theoretical
analysis and simulation studies confirm the severe impact of the
enumeration attack and the effectiveness of the countermeasure.

I. INTRODUCTION

Wireless sensor networks play a key role in the emerging
IoT paradigm where millions of sensors are expected to be
deployed throughout the physical space, which continuously
sense the surrounding environment and generate an unprece-
dented amount of data. A typical wireless sensor network
is a multi-hop wireless network formed by many resource-
constrained sensor nodes and a base station, where sensed data
are forwarded to the base station with Internet connectivity via
intermediate sensor nodes. Exemplary applications of wireless
sensor networks include manufacture plant monitoring, asset
tracking, traffic monitoring, environmental monitoring, public
safety, and so on [2].

In-network data aggregation [3], [4] a key functionality in
wireless sensor networks and refers to the process in which
the sensed data are processed and aggregated en-route by
intermediate sensor nodes. Since sensor nodes are commonly

battery powered with limited communication and computation
resources, forwarding every sensor reading to the base station
would quickly deplete the energy of intermediate nodes. In-
network data aggregation allows the base station to learn
statistic aggregates of the sensed data while greatly reducing
the energy consumption and prolonging the network’s lifetime.
Consider the SUM aggregation as an example. Sensor nodes
first form an aggregation tree rooted at the base station. During
the aggregation process, every node sums up the readings
from its children and its own and forwards the partial sum
to its parent. The base station is able to obtain the sum of all
readings at the end of the process. Other common aggregate
functions such as MAX/MIN, COUNT, and AVERAGE can
be realized in a similar fashion.

As an important network primitive, in-network data aggre-
gation faces several critical security challenges. Since sensor
nodes are resource-constrained, they may be physically cap-
tured or compromised by attackers and instructed to launch
various attacks. For example, a compromised sensor node may
modify its partial aggregation result to significantly inflate or
deflate the final aggregation result at the base station. Second,
even if the base station is able to detect and reject the false
aggregation result, a compromised sensor node can launch
persistent attacks to prevent the base station from receiving
the correct aggregation result, leading to a special form of
Denial-of-service attack. Last but not the least, a compromised
sensor node may report an arbitrary reading of its own while
following the aggregation protocol.

Secure data aggregation in wireless sensor networks has
been studied extensively in the past. A common assumption
held in the literature is that a single compromised sensor node
forging its own reading is fundamentally difficult to detect but
has limited impact on the final aggregation result for robust
aggregation functions like SUM and COUNT [5]. Most of the
research efforts have focused on detecting intermediate nodes
manipulating partial aggregation results. Existing solutions can
be broadly classified into two categories. The first category
such as [6]–[9] can provide accurate aggregation results and
detect malicious sensor nodes manipulating partial aggregation
results via commitment verification. The second category
such as [1], [10]–[14] offers statistical estimations of the
aggregate results via probabilistic sampling. As mentioned



above, a single malicious sensor node can keep attacking
the aggregation process to prevent the base station from
obtaining the correct aggregate. There are a very few attempts
addressing the identification and revocation of compromised
nodes with VMAT [1] being a representative. VMAT relies
on verifiable MIN aggregation and converts other additive
aggregation functions such as SUM and COUNT into MIN
aggregation via verifiable sampling.

In this paper, we introduce a novel enumeration attack
against VMAT [1] to highlight the vulnerability of convert-
ing additive aggregation functions to MIN aggregation via
probabilistic sampling. We observe that a compromised sensor
node can exploit the vulnerability of probabilistic sampling by
enumerating all possible readings to find the one that leads
to a significantly inflated aggregation result. In other words,
the long-held view that a single compromised node falsifying
its local value has a limited impact on final aggregation
results does not always hold. While VMAT has incorporated
a verifiable random number generation mechanism to prevent
compromised sensor nodes from generating arbitrary random
samples, we show that such mechanism is necessary but inad-
equate. As a countermeasure, we also introduce an effective
defense against the enumeration attack. Our contributions in
this paper can be summarized as follows.
• We introduce a novel enumeration attack against VMAT

to highlight the danger of converting additive aggrega-
tion into MIN aggregation, whereby a small number of
compromised sensors could severely manipulate the final
aggregation result.

• We theoretically analyze the impact of enumeration at-
tacks and validate our analysis using simulation studies.

• We introduce an effective countermeasure against enu-
meration attacks by requiring every sensor node to com-
mit to its reading prior to knowing the random seed for
generating random synopsis. We confirm the efficacy and
efficiency of the countermeasure via simulation studies.

The rest of this paper is structured as follows. Section II
discusses the related work. Section III presents the network
and adversary models. Section IV reviews the VMAT scheme.
Section V presents the enumeration attack and its evaluation.
Section VI presents a defense against the enumeration attack
and evaluates its performance. Section VII finally concludes
this paper.

II. RELATED WORK

Secure data aggregation in wireless sensor networks and
related systems has been studied extensively in the past.

Existing solutions can be generally classified into two
categories. The first category such as [6]–[9] provides accurate
aggregation result at the base station. Most of these schemes
[6]–[8] ensure aggregation-result integrity by requiring inter-
mediate nodes to commit to partial aggregation-results through
cryptographic means. SIES [9] explores homomorphic encryp-
tion to detect intermediate nodes modifying partial aggregation
results. The second category such as [1], [10], [11], [13],
[14] aims to provide a statistical estimation of the aggregate

result with probabilistic guarantee. SIA [10] considers a single-
aggregator model and statistically detects false aggregation
results via random sampling and interactive proof, which is
subsequently improved in [11] to realize secure approximate-
median aggregation. A secure aggregation scheme based on
verifiable set sampling was introduced in [13]. Synopsis dif-
fusion [12] is a robust aggregation framework against packet
loss that explores multi-path routing and duplicate-insensitive
aggregation, which is improved in [15] to enable detection of
false subaggregates and [14] to tolerate false subaggregates.

While most of these solutions [1], [6]–[11], [13], [14], [16]
focus on detecting intermediate nodes manipulating partial
aggregation results, there are a few attempts aiming at identi-
fying compromised nodes during data aggregation in addition
to VMAT [1]. Early proposals [17], [18] rely on expensive
public-key cryptography operations and group testing to iden-
tify malicious nodes. Xu et al. [19] proposed an improvement
for SDAP [7] to identify malicious nodes via statistical ab-
normality detection and random node grouping. Their scheme
is ineffective if the attacker adopts its behavior according to
the statistical detection rules. In [20], a secure aggregation
scheme was introduced to pinpoint intermediate nodes that
drop partial aggregation results. The approach, unfortunately,
incurs a communication overhead linear to the total number of
sensor nodes, which largely nullifies the benefit of in-network
aggregation. In [21], Li et al. introduced a secure SUM
aggregation protocol to misbehaving intermediate aggregators
by having every intermediate node’s partial aggregation result
checked by its children and parent, which is ineffective against
two colluding parent and child nodes. In addition, there is a
general consensus [6], [7], [14], [15] that a compromised node
forging its own reading is fundamentally difficult to detect but
has limited impact on robust aggregation functions such as
SUM and COUNT [5].

III. NETWORK AND ADVERSARY MODELS

In this section, we introduce our system and adversary
models.

A. Network Model

We consider a multi-hop wireless sensor network compris-
ing a base station and n sensor nodes. Each sensor node i has
a sensed reading di in the range {1, . . . , k}. The base station
intends to learn f(d1, . . . , dn), where f(·, . . . , ·) is some ag-
gregation function such as MAX/MIN, SUM, AVERAGE, and
COUNT. The aggregation is performed over an aggregation
tree, which is the directed tree rooted at the base station formed
by the unique path from every sensor node to the base station.

B. Adversary Model

We assume that the base station has adequate computation
and energy resources and is safeguarded from possible attacks.
In contrast, sensor nodes are constrained in computation and
communication resources and may be compromised by the
attacker, e.g., through physical capture. Once compromised, all
the information stored at the sensor node such as cryptographic



keys is revealed to the attacker. The attacker aims to have the
base station accept a significantly inflated aggregation result
without being detected. We consider the following two attacks
in this paper.

• A compromised node may falsify its own sensed reading,
which may or may not be in the valid reading range.

• A compromised node may modify or drop a partial
aggregation result.

We further assume that the attacker can compromise up to c
sensor nodes and that all the compromised nodes can collude
in an arbitrary fashion under the instruction of the attacker.
We focus on the attacks targeting data aggregation in this
paper and refer to the rich literature (e.g., [22]–[27]) for other
possible attacks on wireless sensor networks.

IV. REVIEW OF VMAT

In this section, we briefly review the VMAT scheme and
how to convert additive aggregation functions into MAX
aggregation.

VMAT [1] is a representative secure aggregation scheme
built upon efficient symmetric-key operations with the capa-
bilities of pinpointing and revoking malicious nodes. Under
VMAT, each node shares one or multiple secret keys, called
edge keys, with each of its neighbor, and a distinct secret
key with the base station. The key component of VMAT is
a secure MIN aggregation scheme. During the aggregation
phase, each sensor node creates a message consisting of its
node ID, sensor reading, and a MAC encrypted with an edge
key shared with its parent. Each intermediate node receives
the messages from its children and forwards the message
with the smallest reading among all the messages from its
children and itself. At the end of the aggregation phase, the
base station obtains the minimal reading among all sensor
nodes and verifies whether this minimal reading has a valid
MAC. During the confirmation phase, the base station uses
authenticated broadcast to announce the minimum value it
received. If the minimum value is higher than the true minimal
value, then the sensor node with the true minimal value can
detect it and issue a veto message to be flooded back to the
base station.The base station can then revoke one of the edge
keys used by the reporter sensor through finding out between
which neighboring sensors the value contained in the veto
was dropped without an even smaller value being forwarded.
We refer readers to [1] for more details of the secure MIN
aggregation protocol.

VMAT explores the distributed randomized algorithm pro-
posed in [28] to convert additive aggregation such as SUM and
COUNT into MIN aggregation. Consider SUM aggregation
as an example. To compute S =

∑n
i=1 di, each node i

with reading di generates m mutually independent random
synopses si,1, si,2, . . . , si,m from an exponential distribution
Exp(di) with mean 1/di. All n sensor nodes then partici-
pate in m parallel instances of secure MIN aggregation to
allow the base station to obtain smin

1 , smin
2 , . . . , smin

m , where

smin
j = min(s1,j , s2,j , . . . , sn,j) for all 1 ≤ j ≤ m. The sum

of all di can then be estimated as

Ŝ =
m∑m

j=1 s
min
j

,

which has been shown [28] to be an unbiased estimator of S.
In addition, when m = Θ( 1

ε2 log 1
δ ), Ŝ is within ((1−ε)S, (1+

ε)S) with probability at least 1− δ. AVERAGE and COUNT
aggregates can be realized in a similar fashion.

To prevent a compromised node from generating arbitrarily
small synopsis, VMAT uses a deterministic pseudorandom
number generator to ensure that any synopsis must correspond
to a valid reading in range. In particular, the deterministic
pseudorandom number generator takes the sensor reading di,
node ID i, and a nonce s as input and outputs m synopsis
si,1, . . . , si,m. On receiving smin

1 , smin
2 , . . . , smin

m , the base sta-
tion can verify that every minimal synopsis is indeed generated
from a valid reading. Unfortunately, we will show in the next
section that this mechanism alone is necessary but inadequate.

V. ENUMERATION ATTACK

In this section, we use SUM aggregation as an example to
introduce a novel data enumeration attack.

A. Attack

In enumeration attack, a compromised sensor node aims to
inflate the final aggregate at the base station. In comparison
to the naive attack in which a compromised node simply
reports the maximum reading in range, enumeration attack is
more effective by causing the aggregation result significantly
deviating from the true aggregation result.

Enumeration attack exploits the vulnerability that a com-
promised sensor node can report arbitrary reading of its own.
Recall that in VMAT, every node i with reading di generates
m independent synopsis from an exponential distribution with
mean 1/di, and the aggregation result is computed from the
m minimal synopsis across all the sensor nodes. Recall that a
valid sensed reading is in the range {1, . . . , k}. If the sensor
node simply reports the maximum reading k, each of its m
synopsis is an exponential random variable with mean 1/k.
In enumeration attack, a compromised sensor node attacks
one synopsis of its choice. Consider as an example that a
compromised sensor node i attacks synopsis si,1. Node i can
compute one synopsis for each possible reading 1, . . . , k using
the verifiable random number generator DRNG(s, d, ID) to
find the reading d∗ that leads to the smallest synopsis sd as

d∗ = arg minDRNG(s, d, ID).

It then faithfully participates in the secure MIN aggregation
with sd.

We say the enumeration attack succeeds if sd happens
to be smaller than all the synopsis sj1 generated by non-
compromised sensor nodes. It is easy to see that under enumer-
ation attack, the synopsis si,1 is the minimal of k independent
exponential random variables with means 1, 1/2, . . . , 1/k,
respectively, which is smaller than the one generated from



the maximum reading k with high probability. In other words,
enumeration attack allows a sensor node to generate a much
smaller synopsis with high probability.

Multiple compromised sensor nodes can collude to maxi-
mize the impact of the enumeration attack. In particular, if
the attacker has c > 1 sensor nodes, the attacker can instruct
each compromised sensor node to attack one distinct synopsis
or evenly allocate the compromised sensor nodes across m
synopsis if c > m. In the worst case, if enumeration attack
succeeds for every synopsis, then the final aggregation result
computed by the base station is independent from any of the
non-compromised sensor nodes’ reading.

B. Theoretical Analysis

We first analyze the probability that a single compromised
sensor node can succeed in launching enumeration attack.
Without loss of generality, we consider one compromised
sensor node i and g non-compromised sensor nodes and
assume that node i intends to attack synopsis smin

1 . We have
the following theorem regarding the success probability of a
single node attacking one synopsis.

Theorem 1. Assume that there are g non-compromised sensor
nodes. Further assume that the readings of non-compromised
sensor nodes are i.i.d. random variables with probability
distribution Pr(dj = x) = px where 1 ≤ x ≤ k. The
probability that a single compromised node can successfully
launch enumeration attack against a single synopsis is given
by

Psucc =

∫ ∞
0

λe−λt · (
k∑
y=1

pye
−yt)gdt. (1)

Proof: Without loss of generality, assume that a com-
promised sensor node i aims to attack synopsis smin

1 . The
enumeration attack succeeds if node i can find a reading
di ∈ {1, . . . , k} that results in its synopsis si,1, being the
minimum among all s1,1, . . . , sn,1. Let sem be the synopsis
generated by node i under enumeration attack. We can see
that

sem = min(s[1], s[2] . . . , s[k]),

where s[1], s[2] . . . , s[k] are mutually independent exponen-
tial distributed random variables with means 1, 1/2, . . . , 1/k,
respectively. It follows that sem is an exponential random
variable with p.d.f.

f(sem = t) = λe−λt

for t ≥ 0, where λ = k(k + 1)/2.
Assume that there are g non-compromised sensor nodes. Let

sj,1 be the synopsis generated by a non-compromised sensor

node j. It follows that

Pr(sj,1 ≤ t) =

k∑
x=1

Pr(sj,1 ≤ t|dj = x) · Pr(dj = x)

=

k∑
x=1

(1− e−xt)px

= 1−
k∑
x=1

pxe
−xt.

Let smin
g be the minimal synopsis among g non-compromised

sensor nodes. We have

Pr(smin
g ≤ t) = 1− Pr(smin

g > t)

= 1−
g∏
j=1

Pr(sj,1 > t)

= 1− (

k∑
y=1

pye
−xy)g.

We finally have

Psucc = Pr(sem < smin
g )

=

∫ ∞
0

λe−λt · Pr(smin
g > t)dt

=

∫ ∞
0

λe−λt · (
k∑
y=1

pye
−yt)gdt

We also have the following theorems regarding the expected
number of synopsis successfully attacked and the optimal
strategy of allocating compromised nodes to synopsis.

Theorem 2. Assume that there are c compromised sensor
nodes and g non-compromised sensor nodes. Suppose that
the attacker allocate cj nodes to attack the jth synopsis for
1 ≤ j ≤ m, where

∑m
j=1 cj = c. The expected number of

synopsis successfully attacked is given by

E(m̂) = m−
m∑
j=1

(1− Psucc)
cj ,

where Psucc is given in Eq. (1).

Theorem 3. Assume that there are c compromised sensor
nodes. The optimal attack strategy is to assign the compro-
mised nodes to synopsis in a round robin fashion, i.e., the ith
compromised node to attack the jth synopsis, where

j = i mod m.

The proofs of the two theorems are straightforward and
omitted here due to space constraints.

C. Simulation Results

We conduct simulation studies to validate our theoretical
analysis. Specifically, we consider n = 1000 sensor nodes
and m = 50 synopsis as the default setting and evaluate
the impact of several parameters. We also consider four



probability distributions of non-compromised nodes’ readings.
Every point is the average of 500 runs, each with a distinct
random seed.

Figs. 1(a) to 1(c) illustrate the impact of valid read-
ing range and the number of non-compromised nodes
on Psucc, where we assume that the readings from non-
compromised sensor nodes follow four uniform distribu-
tions U(5, 15),U(25, 35),U(45, 55) and U(65, 75) with mean
10, 30, 50 and 70, respectively. First of all, we can see that
the theoretical results match the simulation results very well,
which validate our theoretical analysis. We can see from
Fig. 1(a) that the success probability increases as the reading
range increases. This is expected, as the larger the reading
range, the more readings the compromised sensor node can
try to find the minimal possible synopsis, the higher the
probability that its synopsis is smaller than all the synopsis
generated by the non-compromised sensor nodes, and vice
versa. In addition, the larger the expectation of the non-
compromised node’s reading, the lower the success probability.
This is because it is more likely for non-compromised nodes
to generate smaller synopsis with larger readings. We can
see from Fig. 1(b) that the success probability decreases as
the number of non-compromised nodes increases. This is also
anticipated, as the more non-compromised nodes, the smaller
the minimal synopsis among all the synopsis generated by the
non-compromised nodes. Finally, we can see from Fig. 1(c)
that the number of synopsis successfully attacked increases
as the number of compromised sensor nodes increases. We
can also observe that the pace of increasing slows down after
the number of compromised nodes exceeds the number of
synopsis.

Figs. 2(a) to 2(c) compares the relative estimation errors
under enumeration attack and naive attack where every com-
promised sensor node simply reports the maximum reading in
range. The relative estimation error is defined as |Ŝatt− Ŝ|/Ŝ,
where Ŝatt and Ŝ are the sums estimated by the base station
under attack and under no attack, respectively. We assume
that the average readings of non-compromised sensor nodes
are 50, 100, and 150, respectively. We can see from Fig. 2(a)
that the relative estimation error increases as the number of
compromised nodes increases under both naive and enumer-
ation attacks, which is anticipated. In addition, the relative
estimation error under the naive attack is very limited, which
is in line with the long-held view and conclusions in [5]. How-
ever, the relative estimation error under enumeration attack is
always significantly higher than that under the naive attack. For
example, enumeration attack can inflate the sum aggregation
result by 40% and 100% with 25 and 50 compromised sensor
nodes, respectively. Such large aggregation errors highlight
the severe impact of the enumeration attack. Moreover, the
larger the average reading of non-compromised nodes, the
smaller the impact of both naive attack and enumeration attack.
We can also see from Fig. 2(b) that the relative estimation
error decreases as the number of synopsis increases. This is
expected, as if the number of compromised nodes remains
the same, the proportion of the synopsis successfully attacked

decreases as the number of synopsis increases. When the
number of synopsis exceeds 115, the relative estimation error
under enumeration attack is about the same as that under the
naive attack. Finally, Fig. 2(c) shows that the aggregation error
decreases as the number of non-compromised nodes increases.
This is because the more non-compromised nodes results, the
lower the success probability, the fewer synopsis successfully
attacked, and vice versa.

VI. COUNTERMEASURE

In this section, we introduce an effective countermeasure
against the enumeration attack.

A. Countermeasure

We observe that the enumeration attack is possible because
compromised nodes know the nonce used for generating syn-
opsis before choosing its reading. An effective way to defend
against enumeration attack is to require every sensor node to
commit to its reading before knowing the nonce, so that there
is no opportunity for compromised sensor nodes to enumerate
all possible readings. Our countermeasure requires each node
to commit to its reading and forward the commitment to
selected witnesses in its neighborhood, which allows the base
station to verify whether the synopsis is generated before the
sensor node knowing the random seed. In what follows, we
detail the operations.

During network initialization, every node i learns the IDs
of all the nodes in its h-hop neighborhood, denoted by N h(i),
and the base station learns the complete topology of the
network. To initiate a data aggregation process, the base station
broadcasts a command with a random nonce s1. On receiving
the command, each sensor node i with reading di computes a
commitment as

Commiti = 〈IDi, di,MAC(IDi||s1||di)〉,

where MAC(·) denotes message authentication code com-
puted using the secret key shared between node i and the base
station, and || denotes concatenation. It selects λ nodes from
N h(i) to serve as its witnesses using a deterministic random
number generator seeded by the nonce s1 and its node ID,
where λ ≥ 1 is a system parameter. Node i then forwards
Commiti to each of the λ witnesses.

Every node then follows VMAT to generate m synopsis
and participates in m instances of secure MIN aggregation.
In particular, the base station broadcasts another nonce s2.
At the end of the aggregation phase, the base station ob-
tains smin

1 , smin
2 , . . . , smin

m , i.e., m minimal synopsis across
all n sensor nodes. For every smin

j (1 ≤ j ≤ m), the base
station determines the ID of the node that generated this
synopsis and verifies that smin

j is indeed generated from a
valid reading as in VMAT. Consider smin

j as an example.
Assume that node i with reading di generated smin

j . During
the confirmation phase, the base station uses authenticated
broadcast to announce 〈IDi, di, s

min
j 〉 to all the nodes. Ev-

ery witness of node i, say node w, then sends a message
〈IDw,Commiti,MAC(IDw||Commiti)〉 to the base station.
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Fig. 2. Comparison of enumeration attack and naive attack in estimation error, where k = 200, n = 500, c = 25, and m = 50

On receiving the message, the base station first verifies
whether node w is a valid witness for node i. If so, the base
station verifies the MACs in the message and Commiti. If
the verification succeeds, the base station knows that node i’s
reading di was committed before knowing the nonce s2.

B. Simulation Results

We also use simulation studies to evaluate the performance
of our countermeasure. We consider a 35 × 35 grid sensor
network with n = 1225 sensor nodes, where the base station
is located at one of the corners. Every sensor node (except
the ones near the boundary) has 4 one-hop neighbors, 12
two-hop neighbors, 24 three-hop neighbors, and 40 four-hop
neighbors. We measure the communication overhead incurred
by our countermeasure as the average number of extra message
transmissions per node and per synopsis.

Fig. 3(a) shows the impact of the number of compromised
nodes on Pwitness, the probability of all witnesses being com-
promised under the assumption that compromised nodes are
distributed uniformly at random. As we can see, the larger the
λ, the smaller Pwitness, and vice versa. This is expected, as
Pwitness is approximately ( cn )λ. For example, when 10% of the
nodes are compromised, the probability that all witnesses are
compromised is 0.01 if λ = 2. A compromised sensor node
can successfully launch enumeration attack on one selected
synopsis if it can find a reading that leads to the minimal
synopsis and all λ witnesses are also compromised.

The attacker may choose to compromise one selected sensor
node and then the nodes within its h-hop neighborhood.
Fig. 3(b) shows Pwitness varying with the number of com-
promised nodes under different h. As we can see, the more
compromised nodes, the smaller h, the higher Pwitness, and
vice versa. This is expected, as the λ witnesses are chosen
uniformly at random from all the nodes within the h-hop
neighborhood. When the number of compromised nodes ex-
ceeds the number of nodes in the h hop neighborhood, Pwitness
becomes one. In this case, the success probability is reduced
to the probability that the compromised node can successfully
find a reading that leads to the minimal synopsis among all
sensor nodes.

Fig. 3(c) shows the impact of λ, the number of witnesses
that store the commitment, on the extra communication over-
head incurred by the proposed countermeasure. It is not
surprising to see that the larger the λ, the more message
transmissions incurred by the proposed countermeasure. In
addition, the number of message transmissions also increases
as h increases for the same λ. The reason is that the larger
h, the larger the average distance between a node and its
witnesses. Overall, our countermeasure incurs a small number
of extra message transmissions. For example, when h = 3 and
λ = 3, the proposed countermeasure incurs approximately 8
extra message transmissions over VMAT.
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Fig. 3. Performance of the countermeasure, where n = 1225.

VII. CONCLUSION

In this paper, we have introduced a novel enumeration
attack against VMAT to highlight the security vulnerability
of a sensor node reporting arbitrary readings. In comparison
with the naive attack, the enumeration attack allows a sin-
gle compromised sensor node to cause significantly higher
estimation error at the base station without being detected.
We have also introduced an effective countermeasure against
the enumeration attack. Theoretical analysis and simulation
studies have confirmed the severe impact of the enumeration
attack and the effectiveness of the proposed countermeasure.
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