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Abstract—Location privacy continues to attract significant
attentions in recent years, fueled by the rapid growth of location-
based services (LBSs) and smart mobile devices. Location ob-
fuscation has been the dominating location privacy preserving
approach, which transforms the exact location of a mobile user
to a perturbed location before its public release. The notion
of location privacy has evolved from user-defined location k-
anonymity to two statistical quantification based privacy notions:
geo-indistinguishability and expected inference error. The former
promotes differential location privacy but does not protect loca-
tion against inference attacks of Bayesian adversary with using
prior information, whereas the latter promotes the background
inference resilient location privacy but does not guarantee differ-
ential location privacy with respect to geo-indistinguishability. In
this paper we argue that geo-indistinguishability and expected
inference error are two complementary notions for location
privacy. We formally study the relationship between two privacy
notions. By leveraging this relationship and a personalized error
bound, we can effectively combine the two privacy notions. We
develop PIVE, a two-phase dynamic differential location privacy
framework. In Phase I, we take into account the user-defined
inference error threshold and the prior knowledge about the
user’s location to determine a subset of locations as the protection
location set for protecting the actual location by increasing
adversary’s expected location inference error. In Phase II, we
generate pseudo-locations (i.e., perturbed locations) in the way
that achieves differential privacy over the protection location set.
This two-phase location obfuscation is constructed dynamically
by leveraging the relationship between two privacy notions
based on adversary’s current prior information and user-specific
privacy requirements on different locations and at different
times. Experiments with real-world datasets demonstrate that
our PIVE approach effectively guarantees the two privacy notions
simultaneously and outperforms the existing mechanisms in terms
of adaptive privacy protection in presence of skewed locations and
computation efficiency.

I. Introduction

We are entering a mobile Internet era where people and
vehicles are constantly connected while on the move through
mobile and wireless devices. Location becomes an important
piece of information for enhancing such ubiquitous connectiv-
ity through a rich selection of location based services (LBSs)

and applications, such as Uber, Yelp and Foursquare. On one
hand, the emergence of location aware computing and location-
based services creates great opportunities for empowering
business with new competitive edges and enriching citizen with
life-enhancing experiences. On the other hand, such continuous
publishing and sharing of mobile users’ location information
may open doors to potential misuse and abuse of private
location information and serious location privacy risks, such
as exposing places that a user has visited, the travel patterns
of a user, and using the location information to infer users’
activities and uncover many unauthorized personal information
such as their political views, religious affiliation, or state of
health.

Location privacy research has drawn significant interests in
recent years. Considering the high utility of location informa-
tion and personalized privacy risk variations, instead of cryp-
tographic solutions, a large body of location privacy research
have been centered on the location obfuscation mechanisms
that allow mobile travelers to use LBSs with perturbed location
instead of exact location, referred to as pseudo-location, such
that the release of the pseudo-location can prevent the dis-
closure of user-specific and request-specific sensitive location
information [2], [3], [7], [8], [17], [19], while maintaining
desired utility of location information.

Recently, geo-indistinguishability [2] and expected infer-
ence error [18], [19] are proposed in the literature as the two
statistical notions of location privacy. Geo-indistinguishability
is derived from differential privacy [5] and ensures that for any
two location points that are geographically close, the location
obfuscation mechanism will produce a pseudo-location with
similar probabilities. The expected inference error, as a statis-
tical metric instead, takes into account the prior information of
an adversary about user’s location, and measures location pri-
vacy by the expected distance between the estimated location
by the adversary and the true location. A number of location
obfuscation mechanisms [19], [20] have been developed solely
based on the privacy notion of expected inference error.

In this paper, we argue that geo-indistinguishability and
expected inference error are two complementary notions for lo-
cation privacy. Existing geo-indistinguishable mechanisms [2],
[3] guarantee location privacy with respect to the information
leakage through a differential privacy based location obfus-
cation mechanism, but they do not consider the inference
attacks using prior knowledge [17]. We performed the bound
analysis to formally examine the relationship between geo-
indistinguishability and expected inference error. We show that
geo-indistinguishability may not adequately protect the abso-
lute privacy of user’s location against inference attacks with
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using prior information. On the other hand, the mechanisms
with expected inference error as privacy metric are constructed
based on the assumption of certain types of prior information
that the adversary may have, but without consideration of
constraint on the posterior information gain from the release
of pseudo-locations. These mechanisms may be vulnerable to
inference attacks with arbitrary prior knowledge. Thus, we
argue that a strategic combination of the two privacy notions
can double shield location privacy by simultaneously limiting
information leakage of the location perturbation mechanism
and ensuring the inference error to be constrained for inference
attacks with prior information the adversary may have.

In addition to combining the two privacy notions for
effective defense against inference attacks, we also argue that
an effective location obfuscation mechanism should maintain
desired location utility and service quality for respective mo-
bile users and their LBSs. In practice, mobile users may have
very different privacy requirements for different types of LBSs.
Even for the same LBS, users may have different privacy
demands for different locations or for the same location at
different times. For example, a user may want the expected
inference error of adversary to be larger than 1km when he is in
a hospital or a religious event, but may reduce this requirement
to 200 meters when he is in a restaurant with a lot of other
restaurants nearby; or the user may not care about privacy at
some places (e.g., her home or office) during certain periods
of a day, but needs the privacy at other places, such as her
travel routes and stops along some trajectories.

In this paper, we propose to design a dynamic differ-
ential location privacy mechanism with personalized error
bounds. First, we formally study the relationship between geo-
indistinguishability and expected inference error and examine
their limitations through experimental study. The relationship
between two privacy notions helps to determine the noise
level of location obfuscation required for protecting a location
against inference attacks. Second, we allow users to define
personalized error bound for each of their locations and intro-
duce the concept of protection location set for each location,
which identifies the neighborhood locations based on both the
personalized error bound constraint and the prior distribution
that the adversary may have based on historical locations of
a user, her mobility model or the population density. Based
on the above development, we design a two-phase dynamic
differential location privacy framework, called PIVE, which
integrates geo-indistinguishability and expected inference error
to effectively protect location privacy against two popular types
of inference attacks: optimal inference attack and Bayesian
inference attack. This framework constructs pseudo-locations
dynamically and adaptively, based on multiple pieces of in-
formation that may change frequently in the spatial-temporal
context of a mobile user, such as the user’s current location
at the time of her service request, her current location privacy
requirements, her location utility and LBS quality preferences,
and the prior information that the adversary may have at this
time. In Phase I, we utilize the user-defined inference error
threshold and the prior knowledge about the user’s location to
determine the protection location set for protecting the actual
location of a user and ensuring the lower bound of adver-
sary’s expected location inference error over this protection
location set. In Phase II, we generate pseudo-locations that
achieve differential privacy on this protection location set.

The former aims to bound the expected inference error in the
worst case and the latter aims to scope the possible posterior
information leakage. The PIVE approach provides dynamic
differential location privacy with personalized error bound and
can work adaptively in presence of skewed prior distribution of
locations and efficiently for the scenarios in which users may
have personalized and non-uniform privacy needs at different
locations and for different LBSs.

Previous work [17] by Shokri is the first to identify the
need for integrating the two privacy notions and to propose a
joint optimization approach. This approach combines the two
privacy notions together in parallel in a linear program and
produce the distribution of perturbed locations statically once
for all locations in an area, and we refer to it as the global op-
timization approach. Compared to the joint optimization [17],
PIVE takes a sequential and local approach to combine two
privacy notions. It separately applies the expected inference
error metric first, which produces a neighborhood protection
location set for the user’s location by leveraging user defined
error bound and the prior information, and then produces the
perturbed location by ensuring geo-indistinguishability and at
the same time increasing the resilience of perturbed location
against inference attacks. Another feature of PIVE that is
different from the joint optimization approach is to leverage the
user defined personalized error bound (threshold) for different
locations or for the same location at different times and
for computing the protection location sets dynamically and
adaptively. This allows PIVE to balance privacy and utility for
different locations while meeting the personalized inference
error bound constraint for perturbed locations.

PIVE algorithms are highly efficient in terms of com-
putation complexity, compared to existing mechanisms that
need to solve a linear program with |X|2 decision variables
and up to O(|X|3) constraints for previous joint optimization
approach [17], where X is the number of all possible locations
of a user. First, PIVE only requires the search of a protection
location set locally within the neighborhood of a user’s current
location by leveraging user-defined error bound, and simple
probability computation for the exponential mechanism. This
locality based design enables PIVE to adapt to the dynamic
changes of both prior information and privacy preferences per
location more efficiently. Second, PIVE adaptively adjusts the
noise level of location obfuscation to prior information through
searching a protection location set under the minimum infer-
ence error bound constraint, which provides dynamic differen-
tially private mechanism to generate perturbed locations. We
implement the PIVE dynamic location obfuscation mechanism
and evaluate PIVE with real-world datasets. Our experimental
results show that the PIVE approach effectively guarantees
the two privacy notions simultaneously and outperforms the
existing mechanisms that secure geo-indistinguishability or
that quantify location privacy by expected inference errors.

II. RelatedWork

Location privacy research started about ten years ago
with the notion of location k-anonymity with two landmark
results: (i) uniform location k-anonymity [10] and (ii) user-
defined, personalized location k-anonymity [9]. The location
k-anonymity based solutions hide a user’s exact location point
using a spatial region that meets the two constraints: (a) it
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contains the exact location point of the user; and (b) there are
at least k−1 other users who will use the same location region
as their released location to meet the k anonymity requirement.
Alternatively, some location obfuscation mechanisms achieve
privacy by using landmark objects or random perturbation
instead of k-anonymity. [11] proposes to use the location
of a closest landmark object as the perturbed location such
that the LBS severs process the location query based on
the landmark. [21] proposes to search the region that has
sufficient user footprints such that the user can feel safe for his
location privacy. However, neither user-defined privacy notion
nor any formal privacy notion is provided and guaranteed by
the proposed region-based location cloaking mechanism.

Recently, two stronger privacy notions are proposed based
on statistical quantification of attack resilience: expected in-
ference error [18], [19] and geo-indistinguishability [2]. The
former advocates the privacy notion based on its attack re-
silience to the prior information of adversary by measuring the
expected inference error and the latter promotes the differential
privacy notion to constrain the posterior information gain of an
adversary based on the release of pseudo-locations of mobile
user. A number of location obfuscation mechanisms [2]–[4],
[17], [19] have been developed based on them. For example,
based on the prior distribution of user’s location, Shokri et
al. [19] proposed an optimal construction mechanism for
location perturbation against inference attacks through linear
programming. The mechanism aims to maximize the expected
inference error (resp. service quality) given the constraint
on the service quality loss(resp. expected inference error).
The service quality loss is characterized by the expected
distance between real and reported locations. Based on Shokri
et al.’s optimization framework, Theodorakopoulos et al [20]
advocated to follow a user over his trajectory and maximizes
privacy for each location with considering privacy leakage
due to location correlation between past, current and future
locations in a trajectory. Andrés et al. [2] proposed the notion
of geo-indistinguishability. A Planar Laplace (LP) mechanism
is developed to achieve the ε geo-indistinguishability by adding
noise to actual location drawn from a polar Laplacian distribu-
tion. Several recent location privacy development projects [1],
[7], [8] have adopted or extended ε geo-indistinguishability for
location privacy protection. Bordenabe et al. [3] proposed an
optimal geo-indistinguishable mechanism to minimize the ser-
vice quality loss. Similar to [19], it uses linear programing to
minimize global expected service quality loss, with a uniform
privacy parameter for geo-indistinguishability. Chatzikokolakis
et al [4] defines privacy mass over the point of interests
on the plane and adaptively decide the privacy parameter of
geo-indistinguishability for a location with considering local
characteristics of each area.

The mechanisms in [3], [17], [19] follow a global op-
timization framework: given the privacy or service quality
constraints, a linear programming model is formulated to max-
imize service quality or privacy respectively. Such formulation
uses uniform differential privacy parameter and global pri-
vacy/quality metrics averaged over all locations, which offers
uniform privacy/utility with respect to all locations and all
LBSs. It could be a difficult task to pre-determine the constraint
for every location where a user will ask for any LBS service
request with his personalized and spatial-temporal dependent
as well as LBS dependent privacy requirement. Besides, these

techniques are computationally costly due to solving a linear
program with |X|2 decision variables, and the perturbation
solution is statically constructed once for all locations, which
can be prohibitively expensive for frequently changing prior
information and frequently changing privacy/utility preference
by users at different locations and times.

Our work is primarily related to two recent research
efforts in [17] and [4]. Concretely, Shokri [17] is the first
to propose a joint mechanism to integrate the two privacy
notions using a linear programming framework, demonstrating
the potential for improvement on privacy protection. However,
the joint optimization mechanism uses uniform differential
privacy parameter and global privacy/utility metrics by av-
eraging over all locations. We argue that an overall metric
for all locations and a per-location based metric may result
in different allocations of privacy and utility. Thus PIVE is
more suitable to situations where mobile users may have
different privacy/utility preferences for different locations, at
different time and working with different LBSs. Next, unlike
most existing geo-indistinguishable mechanisms that consider
uniform differential privacy parameters for all users and all
locations, Chatzikolakis and his co-authors [4] propose to
adaptively decide the noise level of geo-indistinguishability
according to the privacy characteristics of local area. They
compute the density of a local area for each location and
adds less noise for perturbed location if the density of the
actual location area is high and more noise when the actual
location falls into the low density areas. However, the density
of a local area is defined in terms of the public locations
such as restaurants, churches and hospitals. Thus this approach
assumes that these different types of public locations are of the
same privacy sensitivity for all mobile users at all time, and
thus fails to model the personalized geo-indistinguishability
with respect to different locations, different times and different
LBSs. In comparison, PIVE adaptively adjusts the noise level
of location obfuscation according to a personalized error bound
and the prior distribution in local area.

III. Overview

In this section we first introduce the notation of differential
privacy, describe the model of location obfuscation and the
adversary model used in this paper. Then, we state the problem
to be addressed in this paper.

A. Differential Privacy

Differential privacy is a rigorous mathematical framework
that offers provable privacy guarantees for protecting individual
data in statistical databases and has recently become a de-
facto standard for privacy. It ensures that arbitrary changes to
a single individual’s row result in only statistically insignificant
changes in the outcome of a data analysis. Formally,

Definition 1 (Differential Privacy [5]): A randomized
mechanism A provides ε-differential privacy if for any two
neighboring database D1 and D2 that differ in only a single
entry, ∀S ⊆ Range(A),

Pr(A(D1) ∈ S )
Pr(A)(D2) ∈ S )

≤ eε (1)

The standard approach to achieve differential privacy is
the sensitivity method [5], [6] (e.g., Laplacian mechanism)
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that adds to the query output the noise proportional to the
sensitivity of the query function. The sensitivity measures the
maximum change in the query answers due to the change of
a single database entry.

Definition 2 (Sensitivity [6]): The sensitivity of a query
function q : D → Rd is

∆q = max
D1,D2

||q(D1) − q(D2)||1 (2)

where D1, D2 ∈ D are any two neighboring datasets that differ
at most one element, || · ||1 denotes L1 norm.

To achieve ε-differential privacy, the Laplacian mechanism
perturbs the output by q(D) + Lap(∆q/ε), where Lap(∗) =
(Z1, . . . ,Zd) in which Zi are drawn i.i.d from Laplace distri-
bution. Such differentially private mechanism ensures that two
neighboring datasets are indistinguishable on the distribution
of query answers.

The exponential mechanism [14] is another mechanism that
preserves ε-differential privacy. Given the output range R, a
utility function u : D × R → R is defined, which maps the
dataset/output pairs to utility scores. The sensitivity of utility
function u is

∆u = max
r∈R

max
D,D′
|u(D, r) − u(D′, r)| (3)

over any two neighboring datasets D and D′.

Definition 3 (The exponential mechanism [14]): The ex-
ponential mechanism selects and outputs an element r ∈ R
with probability proportional to exp( εu(D,r)

2∆u ).

B. Location Obfuscation Mechanism

In this paper we are interested in the location based
services in which the users sporadically reveal their locations
for issuing spatial queries, e.g., finding the nearby points-of-
interests or friends. We do not consider the protection of the
users’ identities that prevents the adversary to discover which
user issues the query. In this case, the typical way to preserve
the users’ location privacy is to randomly obfuscate the user’s
actual location to a pseudo-location and report this pseudo-
location to the location based service providers. In this paper
we assume discretized locations as in [3], [19] and use X to
denote the set of the user’s possible locations. An obfuscation
mechanism determines the random mapping between the user’s
actual locations A and pseudo-locations O, with following the
probability distribution

f (x′|x) = Pr(O = x′|A = x) x, x′ ∈ X (4)

That is, it takes the actual location x as input and chooses a
pseudo-location x′ by sampling from the distribution f (x′|x).
An obfuscation mechanism is indeed a specification of prob-
ability distributions f (·|·) over X. Different obfuscation mech-
anisms determine such probability distributions in different
ways.

C. Adversary Model

This paper assumes the adversary that has prior knowledge
about user’s location. We argue that the prior information
about users’ locations inherently exists because of the publicly
available transportation information, geographical information
of points of interest, road networks, residential area, population

distribution, and human movement pattern, etc. Following
previous works [18], [19], the prior knowledge is captured
by a prior (probability) distribution π over the set of possible
locations of the user, X. The adversary can build π for the
target user in multiple ways:

• Using the population density or popularity [4], [21]
of every place as π that can be obtained from public
traces, check-in datasets or demographic information;

• Using the user’s historical access information to a
location based service that records his locations from
which he sent location based queries [19].

• Using the mobility pattern modeled by Markov chain
to infer the possible locations of a user at current time
and their probabilities given his previous disclosed
locations [20].

In this paper we assume the adversary with prior knowledge
of π regardless of in which way it is derived. We also
assume that the adversary also knows the location obfuscation
mechanism, i.e, how it works and the distribution f . Such
adversary is called an informed adversary [6].

The adversary’s goal is to infer the user’s actual location x.
Once the adversary observes the pseudo-location x′ reported
by the user, he computes the posterior probability distribution,
Pr(x|x′) for x ∈ X, i.e., the probability that x is the actual
location that generated x′:

Pr(x|x′) =
π(x) f (x′|x)∑

x∈X π(x) f (x′|x)
(5)

Based on the posterior distribution, a Bayesian adversary
can perform optimal inference attack [19] which aims to min-
imize his expected inference error, i.e., the expected distortion
between the estimated location x̂ and user’s actual location x,
given an observed pseudo-location x′. That is,

x̂ = arg min
x̂∈X

∑
x∈X

Pr(x|x′)dp(x̂, x) (6)

where dp can be Hamming distance or Euclidean distance be-
tween locations, or their semantic dissimilarity, which captures
the privacy loss from inference attack. We assume dp to be
Euclidean distance d for optimal inference attack.

If dp is Hamming distance, for which dp(x̂, x) = 0 if x̂ = x,
and dp(x̂, x) = 1 otherwise, it is easy to see that the optimal
inference attack actually guesses the actual location as the one
having the maximum posterior probability. We call this attack
as Bayesian inference attack, represented by

x̂ = arg max
x∈X

Pr(x|x′) (7)

D. Problem Statement

We can categorize the existing research on quantifying
location privacy into two broad categories based on two
notions of location privacy: geo-indistinguishability and ex-
pected inference error. The location privacy solutions that
promote geo-indistinguishability are primarily based on the
theory of differential privacy [5]. The solutions that quantify
location privacy by the amount of expected inference error are
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typically based on Bayesian theory and thus are referred to
as Bayesian optimal mechanisms. The class of solutions based
on geo-indistinguishability protect location privacy without any
assumption of adversary’s prior information but consequently
do not consider absolute location privacy against inference
attacks in terms of expected inference error when the adversary
has some prior knowledge about the user’s exact location or
past released locations. In contrast, the Bayesian optimal mech-
anisms advocate the background inference resilient location
privacy but are not as robust as geo-indistinguishability against
adversary with arbitrary prior information.

The problem statement can be summarized from three
dimensions. First, geo-indistinguishability and expected infer-
ence error are two complementary privacy notions for protect-
ing location privacy against inference attacks. It is critical to
understand the relationship between the two privacy notions,
and the limitations of existing location obfuscation mecha-
nisms that support only one of the two privacy notions. Second,
it is not only beneficial but also feasible to develop a location
obfuscation mechanism that can effectively integrate the two
privacy notions. Third, incorporating user-defined constraint,
such as minimum inference error bound, not only improves the
usability perspective, which is critical for the wide deployment
of privacy protection models, but also enables adaptive noise
adjustment for geo-indistinguishability and supports customiz-
able privacy/utility requirement of mobile users that allows
personalized error bounds at different locations, different times,
and for different LBSs. This motivates the design and imple-
mentation of PIVE, a two-phase dynamic differential location
privacy framework for ensuring both notions of location pri-
vacy with personalized error bounds.

IV. Location Privacy Notions

In this section we provide a detailed analysis and illustra-
tion of the two location privacy notions: expected inference er-
ror and geo-indistinguishability. We first briefly describe each
notion, its respective location perturbation model, compare the
mechanisms based on these two privacy notions and identify
and illustrate their inherent problems through both formal and
experimental analysis.

A. Expected Inference Error

Under the inference attack of Bayesian adversary, the
location privacy offered by a mechanism is measured by the
expected inference error of the adversary averaged over all
possible locations in X, referred to as unconditional expected
inference error [18], [19], computed as∑

x′∈X

Pr(x′) min
x̂∈X

∑
x∈X

Pr(x|x′)dp(x̂, x) (8)

=
∑
x′∈X

min
x̂∈X

∑
x∈X

π(x) f (x′|x)dp(x̂, x) (9)

Similarly, the service quality loss is measured by the
unconditional expected distance between actual location and
reported pseudo-location over the quality metric dq(·), i.e.,∑

x∈X

∑
x′∈X

π(x) f (x′|x)dq(x′, x) (10)

where dq determines the quality loss by reporting x′ instead of
actual location x. Since the accuracy of location based queries

like nearest neighbor and range queries usually depends on the
Euclidean distance between the actual location and reported
location, we use the Euclidean distance d as dq, as in previous
works [3], [17].

An optimal mechanism [19] has been proposed to max-
imize the expected inference error (resp. service quality)
given the constraint on the service quality loss (resp. ex-
pected inference error). In such approach, privacy and quality
are controlled in terms of these global performance metrics
that are averaged over all locations, which does not provide
users a straightforward way to explicitly specify different
privacy/quality requirements at different locations and times.
Also, for the prior information that is dynamically built by
the adversary with mobility model [20], a linear program has
to be recomputed under every change. More importantly, the
construction relies on the assumption about adversary’s prior
information, different prior information with higher accuracy
level may cause privacy degradation of the mechanism, as
shown in [17].

We note that the upper limit of expected inference error
is achieved when the maximum tolerable service quality loss
becomes sufficiently large or not bounded. In this case, the
pseudo-locations are generated independently of user’s loca-
tions, and the adversary’s best strategy is to make guess based
on prior distribution. Therefore, the upper limit of expected
inference error is

ExpErrmax = min
x̂

∑
x∈X

π(x)dp(x̂, x) (11)

B. Geo-indistinguishability

A mechanism satisfies εg-geo-indistinguishability [2] iff for
all x, y,

f (x′|x)
f (x′|y)

≤ eεgd(x,y) (12)

where d(x, y) is the Euclidean distance between x and y. It
ensures that for two locations that are geographically close,
the probability distributions of pseudo-locations generated at
them are similar. Note, as shown in [2], εg is decided by a
privacy parameter ε (≥ 0) and the range of circular region
centered at the user’s location x. Essentially it means that geo-
indistinguishability aims to protect this circular region with
guaranteeing ε-differential privacy over it. Because the actual
location is protected by being hidden among all the locations
in the region due to their similar probability distributions
for generating pseudo-locations, we call such region as the
protection region and the set of locations within the region as
the protection location set. Let D be the diameter of protection
region and εg = ε/D, the mechanism is ε-differentially private
for any two locations x and y in the protection region, i.e.,

e−ε ≤
f (x′|x)
f (x′|y)

≤ eε . (13)

Upper bound of posterior probability: Let Φ be the
protection region. An upper bound of the posterior distribution
of location x ∈ Φ, given any observed pseudo-location x′, can
be obtained as follows:

Pr(x|x′) =
π(x) f (x′|x)∑

y∈X π(y) f (x′|y)
(14)
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=
π(x) f (x′|x)∑

y∈Φ π(y) f (x′|y) +
∑

y∈X\Φ π(y) f (x′|y)
(15)

≤
π(x) f (x′|x)∑

y∈Φ π(y) f (x′|y)
(16)

=
π(x)∑

y∈Φ π(y) f (x′|y)/ f (x′|x)
(17)

Applying (13),we have

≤
π(x)

π(x) + e−ε
∑

y∈Φ,y,x π(y)
(18)

Since 0 < e−ε < 1,we have

≤ eε
π(x)∑

y∈Φ π(y)
(19)

The upper bound of posterior probability (19) implies
that no matter what prior information the adversary has,
geo-indistinguishability constrains the multiplicative distance
between posterior distribution Pr(x|x′) and prior distribution

π(x)∑
y∈Φ π(y) within eε , and thus limits the posterior information

gain of the adversary. This makes location obfuscation more
robust against Bayesian adversary compared with the Bayesian
mechanism [19] that could be constructed with incomplete
knowledge about the adversary’s prior information.

Lower bound of inference error: We further consider
location privacy in terms of expected inference error. Let
z be the estimated location by the adversary, i.e., z =
arg minx̂

∑
x∈X Pr(x|x′)d(x̂, x). The conditional expected infer-

ence error is ∑
x∈X

Pr(x|x′)dp(z, x) (20)

Here we consider the lower bound for it, which is indeed
achieved in the worst case that the adversary narrows possible
guesses to the location set within the protection region that
contains the user’s actual location. Therefore, the lower bound
is

min
x̂∈X

∑
x∈Φ

Pr(x|x′)∑
y∈Φ Pr(y|x′)

dp(x̂, x) (21)

Let z′ = arg minx̂∈X
∑

x∈Φ
Pr(x|x′)∑

y∈Φ Pr(y|x′) dp(x̂, x), the above becomes

=
∑
x∈Φ

Pr(x|x′)∑
y∈Φ Pr(y|x′)

dp(z′, x) (22)

=
∑
x∈Φ

π(x) f (x′|x)∑
y∈Φ π(y) f (x′|y)

dp(z′, x) (23)

Using (13), we have

≥ e−ε
∑
x∈Φ

π(x)∑
y∈Φ π(y)

dp(z′, x) (24)

≥ e−ε min
x̂∈Φ

∑
x∈Φ

π(x)∑
y∈Φ π(y)

dp(x̂, x) (25)

where we have the derivation from (24) to (25) given that Φ
is convex and thus the minimum is obtained when x̂ is the
weighted geometric median of Φ that lies in the region.

The bounds of posterior probability (19) and inference
error (25) indicate the capability of geo-indistinguishability for
defending against Bayesian inference attack (7) and optimal

inference attack (6) respectively. Both of them depend on the
prior distribution over protection region Φ, which suggests
that geo-indistinguishability may not provide enough location
protection against Bayesian adversary with sufficient prior
information. The protection of geo-indistinguishability only
measures the impact of user’s location on the output, but
not the inference capability of Bayesian adversary with his
prior information. We have argued that certain prior knowledge
to identify the user’s location inherently exists, but geo-
indistinguishable mechanisms produce pseudo-locations as if
the adversary does not have any prior knowledge.

Also, we can see that it has limitations for geo-
indistinguishable mechanisms in existing works [2], [3], [7],
[8] to use uniform differential privacy parameter and protection
region radius, independently of the user’s locations. Because
the prior distribution over protection regions around different
locations are mostly different, geo-indistinguishablity may not
achieve the same level privacy against Bayesian adversary,
indicated by bounds (19) and (25) that change with priors.
For example, in an urban area with many possible locations
densely distributed, the user can use a small radius r for his
protection region in which ε-differential privacy is achieved;
but in a rural area, when the user’s location is only possible
location within it, using a small radius to generate a pseudo-
location does not provide sufficient protection. This is indicated
by that the upper bound (19) achieves maximum eε (≥ 1)and
the lower bound (25) becomes zero, which actually means no
bound for the posterior probability and inference error. Indeed,
the adversary can easily associate the pseudo-location with the
actual location given the prior knowledge that there is only one
possible location in this area.

C. Experimental Illustration

In this section we evaluate the privacy of geo-
indistinguishability against optimal and Bayesian inference at-
tack and validate our analysis result in previous section. In or-
der to see the lack of protection against inference attacks with
geo-indistinguishability, we compare a geo-indistinguishable
mechanism with a mechanism constructed with expected in-
ference error as privacy metric that is optimal against inference
attacks. Two mechanisms are given below:

• The optimal εg-geo-indistinguishable mechanism [3],
denoted by Mεg , that minimizes the service quality loss
(10) subject to geo-indistinguishability (12);

• The optimal Bayesian mechanism [19], denoted by
MB, that maximizes the expected inference error (8)
under the constraint of the maximum tolerable service
quality loss Qmax

loss for (10).

We choose them because it has been shown in [3] that Mεg and
MB can achieve the same level of location privacy in terms of
expected inference error (8) defined with Euclidean distance,
which enables us to make a fair comparison of them under
optimal inference attack. To achieve that, given Mεg and the
minimum quality loss q it obtains, MB is derived with letting
Qmax

loss = q. Besides, we are particularly interested in the local
performance of the mechanisms for protecting each location,
rather than only considering the global average metrics as
previous works [3], [19].
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Fig. 1: The 50 regions in the location
dataset.
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Fig. 2: The average inference error of
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Fig. 3: The success probability of
Bayesian inference attack.

In our experiment we use location data extracted from
Geo-life dataset [22]–[24]. The details of data processing is
described in Section VI. Specifically, here we use all-day
location data of a single user with id 0, and consider 50 regions
shown in Figure 1 as X. The prior for the user is computed
by counting and normalizing the number of his/her location
points falling into each of 50 regions.

1) Optimal inference attack: We use εg = 0.9 for Mεg that
incurs minimum quality loss 0.89km. Letting Qmax

loss = 0.89km,
we follow the approach in [19] to obtain MB with maximum
expected inference error 0.89km. We simulate a user using
two mechanisms at every region in X, repeat the simulation
1000 times, and measure the inference error, i.e., the distance
between the actual location and the location inferred by
optimal inference attack (6), averaged over 1000 times for
every region. The result is shown in Figure 2.

Though both Mεg and MB can guarantee the expected
inference error 0.89km at most locations, we can see that
Mεg has almost zero inference error at regions with id 48, 49
and 50, but the optimal solution against the inference attack
MB incurs much larger inference error at them. This indicates
that geo-indistinguishability does not provide sufficient privacy
protection against optimal inference attack at these locations.
The essential reason is that geo-indistinguishability does not
consider any prior distribution the adversary may have. As
we can see from Figure 1, region 48, 49 and 50 are isolated
locations on the prior distribution over X, which means zero
probabilities for any other locations in their neighborhood.
Such skewed probability distribution lets the upper bound of
posterior probability (19) to be eε (larger than 1) given any
pseudo-locations reported from these isolated locations, which
means no bound for the posterior probability and thus it can
get close to one on the true locations. Similarly, the lower
bound of expected inference error in (25) becomes zero at these
regions, meaning no guarantee for location privacy in terms
of expected inference error. Consequently, with minimization
on the quality loss, Mεg has probability larger than 0.9 to
report truthfully at these regions, and the posterior probability
Pr(x|x′) conditioned on x′ = 48, 49, 50 get close to one on
x = 48, 49, 50 respectively.

In Figure 4, we vary εg from 0.7 to 0.1 and Qmax
loss from 1 to

2 and measure the expected inference error (8). We can see that
both Mεg and MB have the expected inference error to increase
to 1.178 and remain the same after that. This value is exactly
the value calculated by (11), which validates the upper limit
(11). We note Mεg and MB achieve this limit in different ways:
Mεg always chooses the same region 25 as pseudo-location for

any user’s location, but MB turns out to uniformly sample a
location from X as the pseudo-location. In essence, both break
the dependency between pseudo-locations and actual locations.

2) Bayesian inference attack: For Bayesian inference at-
tack, we are interested in the probability that Bayesian infer-
ence attack makes correct guesses about the actual location
for a user. We replace optimal inference attack in the above
simulation with Bayesian inference attack, repeat the simu-
lation 1000 times, and calculate the percentage of successful
guesses at every location. Note that MB is constructed with
using Euclidean distance based privacy metric. With using
Hamming distance, an optimal Bayesian mechanism against
Bayesian inference attack M′B can be derived in the same way
as MB. Since we focus on Euclidean distance based privacy
notions and Hamming distance does not guarantee it, M′B is
only used as a reference for examining the resilience of the
two other mechanisms constructed with Euclidean distance
based privacy notion against Bayesian inference attack. With
the same Qmax

loss = 0.89km, Figure 3 shows the attack success
probabilities of three mechanisms. As we can see, M′B has
zero attack success probabilities at all regions except region
25, which demonstrates M′B’s optimality with using Hamming
distance against Bayesian inference attack compared with MB
and Mεg . MB has at least 50% success probabilities at 50%
regions but Mεg has zero attack success probabilities at more
than 70% regions. The result demonstrates the improvement
introduced by geo-indistinguishability by limiting relative in-
formation gain from posterior distribution compared with prior
distribution, compared with MB.

For Mεg , there are multiple locations, i.e., region 48, 49
and 50, with high success probabilities close to 1. This is
because that the posterior probability Pr(x|x′) conditioned on
most pseudo-locations reported from these regions is much
higher on the actual locations (close to 1) than on others,
which also causes lowest inference error at these regions in
Figure 2. Intuitively, a region has weak protection against
inference attacks if the pseudo-locations generated from it
are highly associable with the true location, represented by
high posterior probability on the true location. Our result
demonstrates that no guarantee on the bounds (19) and (25)
for inference attacks allows such strong association to happen
to the skewed locations with Mεg , leading to weak protection
for these regions. Note that, because for M′B region 25 is
the maximum point of posterior distributions Pr(x|x′) for any
x′, the adversary always guess 25 no matter where the user
is, and thus region 25 has success probability 1. It is not
because of the weak protection as for regions 48-50 with

7
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Mεg . The posterior probability achieves maximum on region
25 but only up to 0.37, which is much smaller than that on
regions48-50 with Mεg . High posterior probability incurs both
low inference error and high success probability, and skewed
locations actually show the worst case vulnerabilities of that,
thus in our experiment we have particular discussion on such
regions.

Because the user has different probabilities to visit every re-
gion, we evaluate the expected success probability of Bayesian
inference attack as follows:

Ps =
∑
x∈X

∑
x′∈X

π(x) f (x′|x)c(x, x′) (26)

where c(x, x′) = 1 if the actual location x is correctly
inferred given pseudo-location x′, i.e., x = arg maxy∈X Pr(y|x′);
otherwise c(x, x′) = 0. We compute Ps for two mechanisms
shown in Figure 3, and obtain Ps = 0.19 for MB and Ps = 0.27
for Mεg . MB that is constructed with prior information against
Bayesian inference attack achieves better privacy than Mεg .
We also measure the expected attack success probability for
Mεg with different privacy parameter εg, shown in Figure 5.
Smaller εg indicates higher privacy. When εg gets close to
zero, the multiplicative distance between posterior and prior
distribution approaches to one, which means that the adversary
cannot do better than just guessing the actual location by
prior knowledge. That’s why the curve becomes flat when
εg approaches to zero in Figure 5. In contrast, when εg (as
also ε) increases, the upper bound of posterior probability (19)
increases, letting the mechanism truthfully report the locations
with higher probabilities under quality loss minimization.

D. Our Design Objective

From our formal and experimental analysis, we can see that
geo-indistinguishability limits the privacy leakage by bounding
the relative information gain of the adversary given observed
pseudo-locations, regardless of what kind of prior information
the adversary may have. But it does not ensure absolute
location privacy guarantee in terms of expected inference
error against inference attacks (6) and (7). Bayesian optimal
mechanisms protect location privacy by maximizing expected
inference error against inference attacks but require assuming
a prior location distribution that the adversary has, which is not
robust against adversaries with arbitrary knowledge. Thus, it is
desirable to have both privacy notions in a location obfuscation
mechanism. On the other hand, existing geo-indistinguishable
mechanisms suppose uniform differential privacy parameters
over every location, which may either cause unnecessarily
large noise level at some locations or insufficient noise level
at others leading to privacy disclosure, and their formulations
do not provide the user a straightforward way to customize his

privacy preference for his current location. Considering these
issues, we aim to design a location obfuscation mechanism that
can effectively combine geo-indistinguishability and expected
inference error, while operating adaptively with supporting
customizable privacy preferences for the users.

V. Our Solution Approach

In this section we describe PIVE, a two-phase dynamic
approach to protect location privacy in terms of both geo-
indistinguishability and expected inference error. We first
present the PIVE two phase location obfuscation framework
and then describe each phase in detail. In the first phase, we
determine a set of locations (i.e., protection location set) to
protect user’s actual location, with guaranteeing the expected
location inference errors with the user-defined threshold and
the adversary’s prior knowledge with respect to the user’s
location. we develop a Hilbert curve based method and its
optimization for efficiently and accurately determining the
protection location set. In the second phase, we devise a
differentially private mechanism to generate pseudo-locations
with strong utility guarantee with respect to the service quality.

A. PIVE Two-Phase Framework

Our goal is to design a mechanism that achieves geo-
indistinguishability while providing lower bound on expected
inference error against optimal inference attacks. A chal-
lenging problem is how to integrate both privacy notions to
a mechanism designed to obfuscate locations instantly and
adaptively. Basically, our solution is to dynamically choose
a protection location set to guarantee expected inference error
and produce pseudo-locations in a differentially private way
for every location in the set.

To introduce our approach, we first define ε-differential
location privacy over an arbitrary region containing the actual
location, as opposed to geo-indistinguishability that is defined
over the circular neighborhood centered at the actual location.

Differential privacy requires that a query function has un-
substantial difference for the outputs over any two neighboring
datasets that differ only in a single element. The location
obfuscation mechanism for a user only involves a single
data record, i.e., his current location. Differentially private
location obfuscation requires the definition of “neighboring”
location points to the user’s location, such that they have
the similar probabilities to produce a pseudo-location. The
neighborhood consisting of all “neighboring” locations indeed
functions as “a minimum crowd” for the actual location to “be
hidden in a crowd”. As mentioned in Section IV-B, previous
geo-indistinguishabile mechanisms [2], [3] actually regard the
circular region centered at the user’s location with a uniform
radius as such neighborhood for protection. In this paper, we
define “neighboring” relationship over a set of locations in an
arbitrary region that contains the user’s actual location, referred
to as protection location set, and accordingly differentially
private location obfuscation is defined as follows:

Definition 4: A randomized location obfuscation mecha-
nism f (·|·) satisfies ε-differential privacy on protection location
set Φ, if for any locations x, y ∈ Φ, and any output x′,

f (x′|x)
f (x′|y)

≤ eε (27)
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Based on the upper bound of posterior probability (19), here
ε is chosen to achieve a desired bound of the multiplicative
distance between posterior distribution and prior distribution,
to limit the adversary’s posterior information gain.

Then, we consider how to guarantee the expected inference
error via protection location set. Let

ExpEr(x′) = min
x̂∈X

∑
x∈X

Pr(x|x′)d(x̂, x) (28)

E(Φ) = min
x̂∈Φ

∑
x∈Φ

π(x)∑
y∈Φ π(y)

d(x̂, x) (29)

where we choose Euclidean distance as privacy metric as
previous works [3], ExpEr(x′) is the conditional expected
inference error given any observed pseudo-location x′. For
optimal inference attack with using x′, according to the lower
bound result for expected inference error in (25), we have

ExpEr(x′) ≥ e−εE(Φ) (30)

To ensure a lower bound for conditional expected inference
error ExpEr(x′), we introduce privacy parameter Em that
is specified by the user according to his current location’s
sensitivity, such that ∀x′, ExpEr(x′) ≥ Em. To ensure that,
it is sufficient to satisfy that

E(Φ) ≥ eεEm (31)

Then, we have the following theorem (with the above as a
proof):

Theorem 1: For a location obfuscation mechanism that
achieves ε-differential privacy on protection location set Φ, if
E(Φ) ≥ eεEm, the optimal inference attack using any observed
pseudo-location x′, ExpEr(x′) ≥ Em.

Based on (31), we regard Φ as a variable and propose to
dynamically search a region of Φ where the user is located
to satisfy E(Φ) ≥ eεEm. Then, with the protection location
set Φ, we propose an exponential mechanism that generates a
pseudo-location in the way that achieves ε-differential privacy
on Φ, defined in Definition 4. Because the maximum change
of the user’s location is within the range of Φ, the sensitivity
method to achieve differential privacy introduces the noise
perturbation proportional to Φ’s diameter D(Φ), as shown in
Section V-C. To maximize the utility, the noise magnitude
should be minimized, and thus it is desired to find Φ that
satisfies (31) with a minimum diameter.

Figure 6 illustrates the workflow of PIVE. It shows two
components with their inputs: the algorithm F for generat-
ing the protection location set and the differentially private
mechanism K for producing a pseudo-location. In essence, via

protection location set that is determined with prior distribution
π and eεEm, PIVE achieves differential privacy while guaran-
teeing a lower bound for the adversary’s expected inference
error. This framework offers adaptive location protection for
users according to their current locations and requirements on
two privacy notions (expressed by Em and ε), and the latest
prior distribution the adversary could have known (e.g., by
inference with the mobility model of users). Previous geo-
indistinguishable mechanisms [2], [3] can be regarded as the
special cases of our framework with F using the circular
neighborhood with a fixed radius as the protection location
set without considering any prior distribution and inference
error bound.

PIVE provides two privacy control knobs: 1) the minimum
inference error Em and 2) the differential privacy parameter
ε. Through these parameters, we allow users to define their
desired privacy preferences at different locations. The min error
parameter Em aims to bound the expected inference error in
the worst case. The differential privacy parameter ε allows
users to constrain the posterior information leakage via the
provisioning of differential privacy. Given that ε-differential
privacy is the property of the random mechanism K producing
pseudo-locations, one possible way for a user to set these two
parameters is to use a fixed ε forK and set Em according to this
user’s tolerance estimation on the lowest bound of expected
inference error of the adversary against the protection region,
for example, Em=0.1km.

B. Determining Protection Location Set

Given the user’s location x, the problem is how to effi-
ciently determine its protection location set Φ (x ∈ Φ) that
satisfies E(Φ) ≥ eεEm with a diameter as small as possible.
Meanwhile, we note the diameter of the protection location
set cannot be less than eεEm, given by the following theorem.

Theorem 2: Let D(Φ) be the diameter of protection loca-
tion set Φ that is the largest distance between any two locations
in Φ. If E(Φ) ≥ eεEm, we have D(Φ) ≥ eεEm.

Proof: D(Φ) ≥ d(x̂, x) for ∀x̂, x in Φ, so

eεEm ≤ E(Φ) ≤ min
x̂∈Φ

∑
x∈Φ

π(x)∑
y∈Φ π(y)

D(Φ) = D(Φ)

A simple way to determine the protection location set is
to gradually increase the radius of circular region centered
at the user’s location from eεEm/2 (given by Theorem 2)
until it satisfies E(Φ) ≥ eεEm. However, this approach may
produce unnecessarily large diameter, leading to significant
service quality loss. Figure 7 shows an example in which the
desired protection location set is obtained by increasing radius
to r to include four location points, resulting in 2r diameter.
However, in this way we cannot find another qualified set that
is the rectangle area in the figure with a much smaller diameter.

Hilbert Curve based Search: To efficiently search over the
plane for the protection location set, we propose a Hilbert
curve based search algorithm. Hilbert curve [13] is a popular
member in the family of space-filling curves. It provides a
mapping from a data point in a 2-D space to a point in one
dimensional space that preserves the proximity of data. That
is, points which are close to one another in the 2-D space
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will also remain close to each other in the transformed 1-D
space. It has been shown that Hilbert curves have the superior
distance preserving properties [15]. Figure 8 shows the Hilbert
curves for 4 × 4 and 16 × 16 grids in 2-D space. The Hilbert
curve maps a location point x to a 1-D value denoted by H(x).
We call H(x) as the Hilbert value of x. The locations in X is
sorted by their Hilbert values, and the rank of a location x in
the sorted X is denoted by R(x).

Given user’s location x, our algorithm searches the neigh-
borhood of x along the Hilbert curve to find a protection
location set Φ that satisfies x ∈ Φ and E(Φ) ≥ eεEm. The basic
search strategy in the algorithm can be generally described
as follows. Let x−l, x−l+1, . . ., x0(= x), x1, x2, . . . , xr be the
sequence of locations in the searching neighborhood of x along
the Hilbert curve, sorted by their Hilbert values. For each xi (
−l ≤ i ≤ 0), the algorithm checks every interval from xi to x j
for 0 ≤ j ≤ r in the sequence, denoted by [xi, x j], and evaluate
E([xi, x j]) by (29). Once an interval that has E([xi, x j]) ≥ eεEm
is found for xi, the algorithm stops interval check for xi, adds
location set in [xi, x j] to a candidate list, and repeats with the
next xi. Finally, the set having the smallest diameter in the list
is returned, with breaking ties by a random choice.

In the case that all locations in Φ have zero prior proba-
bilities, i.e.,

∑
y∈Φ π(y) = 0 in (29), we define π(x)∑

y∈Φ π(y) = 1
|Φ|

,
because a uniform distribution is assumed in an area when
the adversary does not have any prior information about it.
Accordingly, the algorithm searches Φ for locations with zero
and non-zero prior probability in X in different ways. Because
over the plane any locations outside X (e.g., the un-numbered
regions in Figure 1) indeed have zero prior probabilities,
the protection location set Φ for the user’s location x with
π(x) = 0 can involve them with E(Φ) being computed in
the defined way. Thus, the searching range is determined as
all the locations on the plane with Hilbert values in a range
[H(x) − range,H(x) + range]. For the protection location set
of x with π(x) > 0, the locations with zero prior probabilities
contribute zero to E(Φ) in (29) and thus the locations outside
X are not considered. The searching range is defined as the
locations with ranks in [R(x) − range,R(x) + range] over the

Algorithm 1: Protection Location Set Search Algorithm
Input: x: user’s location Em: error bound, ε: privacy parameter

1 if π(x) = 0 then
2 S ← {l | H(l) ∈ [H(x) − range,H(x) + range] on H };
3 else
4 S ← {l | H(l) ∈ [R(x) − range,R(x) + range] on sorted X};
5 Let S be x−l, x−l+1, . . ., x0 = x, x1, x2, . . . , xr;
6 L← ∅;
7 for i from −l to 0 do
8 for j from 0 to r do
9 Φ = {xk | i ≤ k ≤ j} ;

10 Calculate E(Φ) by(29) ;
11 if E(Φ) ≥ eεEm then
12 Add Φ to L;
13 break ;
14 return a set having the smallest diameter in L;

sorted sequence of X. The algorithm applies the search strategy
mentioned above to the searching range to obtain the protection
location set. The pseudo-code is given in Algorithm 1.

The range must be large enough to have better chance to
find a qualified protection location set. Given T = eεEm and
Theorem 2, range can be decided heuristically. We can traverse
along the Hilbert curve in both directions from user’s location
x. Once reaching the locations a and b in each direction with
their distances to x being some multiple of T , we set range =
max(|H(a) − H(x)|, |H(b) − H(x)|). In our implementation we
simply choose sufficiently large range that incurs low failure
rate for finding protection location set. We can also specify an
upper bound for range to limit the searching cost and avoid
large region that causes unacceptable quality loss. Note the
algorithm may not find any qualified protection location set,
for example, in the case that the user’s current location is only
possible location for him and all other locations has zero prior
probabilities on the plane. Thus, if an empty set is returned,
which indicates the location privacy cannot be protected, the
user can choose to suppress location report.

Improvement with Multiple Rotated Hilbert Curves: Al-
though using Hilbert curve enables efficient search over 2-
D plane, a drawback is that the search is conducted along a
single direction and the searched regions can only be ones that
consist of neighboring locations on the curve. A cell actually
can have four neighbors on the plane while two neighboring
cells may be far apart on the curve (e.g., location 2 and 15
in Figure 8). Since there are regions where locations are not
adjacent on the curve, we propose to use multiple different
Hilbert curves to connect locations in different ways such that
more possible regions can be involved, which can improve
the chance to find the protection location set with a smaller
diameter. Previous works have utilized multiple Hilbert curves
to improve the quality of k-Nearest Neighbor queries [12] and
reduce cloaking area [16]. In PIVE, given a Hilbert curve H
over 2n × 2n grid, other three Hilbert curves are generated by
rotating it 90, 180, 270 degrees clockwise about the center
point. We use Algorithm 1 to find the protection set of the
user’s location x for each Hilbert curve, and choose the one
with smallest diameter among four results.
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C. Differentially Private Mechanism

Given the protection location set Φ, PIVE achieves differ-
ential privacy on it through the exponential mechanism [14].
Considering the set X as the output range of location obfus-
cation, the utility of output x′ is measured by the distance
between x′ and user’s location x in Φ. Smaller distance has
higher utility. As the protection location set decides “neigh-
boring” locations to the user’s location, the sensitivity of the
utility function u is

∆u = max
x′∈X

max
x,y∈Φ
|d(x, x′) − d(y, x′)| (32)

It is easy to see, according to triangle inequality, for any x, y ∈
Φ, |d(x, x′) − d(y, x′)| ≤ d(x, y) ≤ D(Φ), so ∆u = D(Φ) where
D(Φ) is the diameter of Φ.

Exponential mechanism K: Given the user’s location x and
location protection set Φ, the exponential mechanism K selects
and outputs a location x′ ∈ X with probability proportional to
exp(−εd(x,x′)

2D(Φ) ).

The mechanism K samples each location x′ from X with
the probability wxexp(−εd(x,x′)

2D(Φ) ) where wx is the normalization
factor for the probability distribution over X,

wx = 1
/( ∑

x′∈X

exp
(−εd(x, x′)

2D(Φ)
))

(33)

Following the proof of Theorem of McSherry and Tal-
war [14], we can easily obtain the theorem below,

Theorem 3: The exponential mechanism K preserves ε-
differential privacy on the protection location set Φ.

Proof:

f (x′|x)
f (x′|y)

=
wxexp

(
− εd(x, x′)/(2D(Φ))

)
wyexp

(
− εd(y, x′)/(2D(Φ))

)
≤

wx

wy
eε |d(x,x′)−d(y,x′)|/(2D(Φ)) ≤

wx

wy
eεd(x,y)/2D(Φ)

≤
wx

wy
eε/2 ≤

(∑
x′∈X exp

( −εd(y,x′)
2D(Φ)

))(∑
x′∈X exp

( −εd(x,x′)
2D(Φ)

)) eε/2

≤

(∑
x′∈X exp

( −ε(d(x,x′)−D(Φ))
2D(Φ)

))(∑
x′∈X exp

( −εd(x,x′)
2D(Φ)

)) eε/2

≤

(∑
x′∈X exp

( −εd(x,x′)
2D(Φ)

))(∑
x′∈X exp

( −εd(x,x′)
2D(Φ)

)) eε/2eε/2 ≤ eε

(34)

The exponential mechanism provides strong utility guar-
antees since it discounts the pseudo-locations exponentially
quickly as their distances to the actual location increase. To
see that, we have the following theorem

Theorem 4: Given the actual location x, let x′ be the
pseudo-location randomly sampled from X by the exponential
mechanism K , with probability at least 1 − δ we will have

d(x, x′) ≤
2D(Φ)
ε

(
ln |X| +

ε

2
− ln |Φ| − ln δ

)
(35)

Proof: For any x′ that has d(x, x′) ≥ c, the probability

it is sampled with is at most wxexp( −εc2D(Φ) ). Thus, the total
probability of d(x, x′) ≥ c for all x′ is at most wx|X|exp( −εc2D(Φ) ).
On the other hand,

wx = 1
/( ∑

x′∈Φ

exp
(−εd(x, x′)

2D(Φ)
)

+
∑

x′∈X\Φ

exp
(−εd(x, x′)

2D(Φ)
))

≤ 1
/( ∑

x′∈Φ

exp
(−εd(x, x′)

2D(Φ)
))
≤ 1

/( ∑
x′∈Φ

e−ε/2
)

=
eε/2

|Φ|

Thus, we have Pr(d(x, x′) ≥ c) ≤ |X|eε/2

|Φ|
exp( −εc2D(Φ) ). Let δ be

the right-hand side and we can derive (35).

Because the searching range is limited in Algorithm 1,
ln |Φ| is bounded by ln(2range) that is a small constant (e.g,
at most 4 in our experiment), while D(Φ) can vary a lot given
possible sparse location distribution. Therefore, the value of
right hand side of (35) mainly depends on D(Φ)

ε
. Given fixed

Em, increasing ε can incur a protection location set with a
larger diameter since D(Φ) ≥ eεEm given by Theorem 2.
Because D(Φ) increases exponentially with ε, with increasing
ε from the value close to zero, D(Φ)

ε
will decrease first and

then increase. Therefore, we expect that the service quality and
also location privacy will exhibit the similar changing pattern,
which is demonstrated in our evaluation.

VI. Evaluation

In this section we first evaluate the performance of our
PIVE mechanism, and compare PIVE approach with other
mechanisms on location privacy and service quality. Our
evaluation shows that PIVE effectively combines two privacy
notions, and efficiently addresses the issues of existing location
obfuscation mechanisms.

We use the dataset provided by authors of [3]. The dataset
was extracted from the GeoLife GPS Trajectories dataset [22]–
[24], which contains 17621 traces collected from 182 users
in Beijing, China, during a period of over five years. The
traces record users outdoor movements with locations being
logged every 1-5 seconds or every 5-10 meters. The details
of data processing can be found in [3] and here we provide
a brief description. The map of Beijing is divided into a grid
of regions 0.658km wide and 0.712km high, the 50 “most
popular” regions of the grid is used as the set of all locations
X, as shown in Figure 1, and the users who have few recorded
points for each time period at these regions are filtered out.
The final dataset contains 84 users. The prior for each user is
computed by counting and normalizing the number of points
falling in each of 50 regions with in different time periods
(all day, morning, afternoon and night). In this paper we use
all-day prior to construct mechanisms. In order to demonstrate
the performance in a single user setting, at default we always
choose the user with id 0, as in Section IV-C.

A. Performance of Protection Location Set Search

Given ε and Em, a threshold T = eεEm is determined and
Algorithm 1 searches a location protection set Φ for user’s
location that has E(Φ) in (29) no less than T while with the
smallest diameter. In this section we study the performance of
our search algorithm in terms of the diameter D(Φ) and value
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E(Φ). In the algorithm, we choose sufficient large range=50
at default. The searching range range decides the chance to
find a qualified location protection set for a location. To see its
impact, we test range with values 20, 40, 50 and 60 for T = 2
that is corresponding to the largest average diameter in Figure
9. The number of regions for which the algorithm fails to find
qualified protection location set is 19, 8, 6, 6 for each range
value respectively. We can see that from range=50 that is the
size of X, the number of such regions remains to be 6. Smaller
range 40 has approximate number of failures as 50. Since the
size of 50 regions is small, in our experiment we choose 50
that incurs smallest number of failures. Within a large size of
X, range can be a relatively smaller value.

We vary T from 0.1 and 2.0 and measure the diameters of
protection (location) sets obtained by our algorithm for user’s
location at each of 50 regions. The results are shown in Figure
9 where the whiskers represents minimum and maximum
diameters in each group. It is clear that the average diameter
of all regions increases with the threshold T . The diameters for
isolated region 48, 49, and 50 remain between 4km and 5km
under different T . They are maximum ones in the results from
T=0.1 to 0.8. For some regions like 24, 25, 32, 33 and 34,
the diameters become higher than 12km from T=1.2. From
T=1.4 to 2.0, the algorithm cannot find qualified protection
sets for regions like 24, 25, 26, 32 and 33. Figure 10 shows
the corresponding E(Φ) values of obtained protection sets for
every region under different T . As we can see, the average
E(Φ) value increases linearly with T and is approximate to T .
This indicates that our algorithm effectively finds the qualified
protection location set with E(Φ) ≥ T as desired. We also
observe that the maximum E(Φ) for each T is about 2km
from T=0.1 to 1.5, which is because that the protection set
for region 49 always has maximum E(Φ) 2km. By further
looking into the results, we find that for both region 49 and
50, the protection location set remains the same from T=0.1 to
1.5, resulting the same diameter and E(Φ). Region 49 always
has protection set {47, 49}, and 50 has {48, 50}. From Figure
1, we can see the reason is that they are isolated regions and
their nearest neighbors are 47 and 48 respectively that provide
qualified protection sets. For T > 1.5, region 50 has to involve
another region 45 to satisfy E(Φ) ≥ T .

To see how the diameter of protection location set varies
among different regions, we show the results of T=0.5, 1.0 and
1.5 in Figure 11a. It is clear that the diameter of protection
location set for each region increases with T . The curve is
discontinuous at some points for T=1.5 because the algorithm
cannot find qualified set at those locations. The diameters for
regions 49 and 50 remains the same with three different T due
to the reasons mentioned above.

Improvement with Multiple Hilbert curves: Our algorithm
utilizes multiple Hilbert curves that are generated by the
rotation of the original Hilbert curve to find protection location
set with the smallest diameter. To see the effectiveness of
such improvement, we compare the diameter of every region
with the search algorithm using one single Hilbert curve
and multiple ones respectively, under a given T . Figure 11b
shows the result with T=1.0. We can see that using multiple
Hilbert curves effectively reduces the diameter of protection
location set. At some regions the improvement is significant.
For example, the diameter is reduced by more than half at
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region 31 and 50. Such improvement holds for different T
values.

We further investigate the diameters for all 84 users in
the dataset and show the result with T=1 in Figure 12. All
users have approximate average diameters between 2km and
4km, but the maximum diameter for some users can be as
large as 14km. Large diameter will incur significant noise
and extremely low utility. To avoid that, a maximum tolerable
diameter Dm can be specified in the mechanism, such that
the mechanism can use the location set with maximum E(Φ)
among those with diameters no larger than Dm if the diameter
of the produced protection location set exceeds Dm.

B. Location Privacy and Service Quality

In this section, we evaluate the impact of differential
privacy parameter ε and inference error threshold Em on
location privacy and service quality under a single user setting.
Although PIVE allows different privacy parameters at different
locations, we use uniform parameters over all locations and
unconditional expected inference error (8) and quality loss (10)
as privacy and quality metric, in order to examine the effects
of different ε and Em on the performance.
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Fig. 13: Impact of privacy parameters ε and Em

Figure 13a and 13b show that under different ε, both
location privacy and quality loss monotonically increase with
Em. This is because that higher Em leads to larger diameter
of the protection location set, and the pseudo-location is more
likely to be further from the actually location and thus incurs
lower utility, which is indicated by Theorem 4. The mono-
tonic relationship between Em and the corresponding location
privacy (i.e., expected inference error) indicates that Em is
an effective control knob to guarantee the expected inference
error. The difference in order of magnitude between Em and
corresponding expected inference error is because Em is the
lower bound of the expected inference error given any pseudo-
locations in the worst case that the adversary have identified
the protection set. Therefore, Em should be determined with
consideration of such worst case to protect location privacy in
terms of unconditional expected inference error.

For smallest ε=0.5 indicating the strongest privacy guar-
antee, eεEm increases linearly with Em with a small factor
eε , that is to say, the impact of diameter changes on the
privacy and quality is much smaller compared with that of ε. In
contrast, under larger ε like 1.9 that incur weak requirement for
differential privacy, E(Φ) increases with Em with a much larger
factor eε , which incurs larger diameter variance. Therefore, Em
has more significant impact on location privacy and quality loss
for ε=1.9, indicating by its highest curve steepness in Figure
13a and 13b. Also, in Figure 13a, location privacy for different
ε increases to the same upper limit 1.178 as in Section IV-C1.
ε=0.5 achieves this limit regardless of Em. Other cases have
location privacy approximate to the upper limit starting from
Em=0.1. Therefore, we can choose Em no larger than 0.1 for
improving utility. Accordingly, in our comparison experiment
we focus on Em=0.05 and 0.09.

We further examine the impact of ε on location privacy
and quality loss with given Em. The results are shown in
Figure 13c and 13d. We can see that the relationship between ε
and location privacy as well as quality loss is not monotonic.
Location privacy and quality loss first decrease with ε and
then increase. This result confirms our discussion following
Theorem 4. The reason is that, at first ε takes control of

location privacy and quality loss, and thus increasing ε incurs
lower location privacy and quality loss. As the diameter
increases exponentially with ε, the diameter takes effects, thus
increasing ε causes higher privacy and quality loss. Comparing
Figure 13c and 13d, we can see that the turning points of both
metrics under the same Em occurs at the same ε values.

C. Comparison with other mechanisms

In this section we compare PIVE with typical geo-
indistinguishable mechanisms to verify the advantage of in-
troducing inference error bound. Because PIVE focuses on
local performance of privacy protection for every region rather
than the global average performance examined in previous
works [3], [17], [19], we compare PIVE with other mecha-
nisms mostly in a single user setting, in order to check the
privacy protection performance at each individual region. We
examine the performance of PIVE for every user, and only
show results with regard to user with id 0 due to the similar
behaviors of these mechanisms for other users. It is worth to
note that PIVE provides the users a way to specify different
privacy requirements for different locations through two pri-
vacy parameters Em and ε. Given that the existing mechanisms
like optimal geo-indistinguishable mechanism do not support
different privacy specifications for different locations, we set
the same privacy parameters everywhere for PIVE in order to
make meaningful comparisons.

We first consider an exponential mechanism EM, that is
like the one proposed in PIVE except using uniform constant
diameter for every location’s protection location set. It rep-
resents geo-indistinguishable mechanisms like discrete Planar
Laplace Mechanism that ensure ε-differential privacy in the
circular neighborhood centered at the user’s location. To make
a fair comparison, for each user, we run PIVE with different ε
and Em, and obtain its location privacy (i.e., expected inference
error (8)). Then, given the same ε, we derive EM by choosing
the diameter to achieve the same location privacy. To deal with
floating point comparisons, two values with less than 0.005
difference are regarded to be equal for location privacy. Figure
14 shows boxplots of the quality losses of all users for PIVE
and EM respectively under different pairs of ε and Em. In
each subfigure, we can see that overall PIVE achieves smaller
quality loss than EM, though they have the same location
privacy. This is because that PIVE adaptively determines
protection location sets to implement geo-indistinguishability
but EM uses protection regions of uniform radius everywhere.
At some locations with sufficient number of possible locations
in their neighborhood, PIVE can use smaller diameters than
at locations in sparse areas for providing the same level of
location privacy. Comparing these subfigures, we can see
that lower ε or higher Em, both indicating higher privacy
requirements, incur larger quality loss.

We further look into the level of privacy protection for a
single user at every region, with using the same simulation
approach described in Section IV-C1. Suppose Em = 0.05 and
ε = 1.5 for PIVE. We derive EM with ε = 1.5 and also
the optimal geo-indistinguishable mechanism Opt-geo (Mεg

in Section IV-C) with εg = 0.7 such that they achieve the
same expected inference error as PIVE. Figure 15a and 15b
show the average error of optimal inference attack and success
probability of Bayesian inference attack against each region for
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Fig. 14: Boxplot of quality loss of 84 users

three mechanisms. We can see that for both EM and Opt-geo,
the skewed regions 48, 49 and 50 suffer strong association
between pseudo-locations and true locations, manifested by
approximate zero inference error for the optimal inference
attack and high success probability for Bayesian inference
attack simultaneously. PIVE is resilient to such vulnerable
cases due to the skewed probability distribution on these
isolated regions by finding a sufficient protection location set
and ensuring the lower bound of inference error in the worst
cases. By using a protection region to include other possible
locations, PIVE avoids the strong association between pseudo-
location and true location for skewed cases that happen to
EM and Opt-geo. That is the reason of why PIVE has much
larger inference error and approximate zero attack success
probabilities at these isolated locations. Furthermore, with
PIVE, the Bayesian inference attack success probability is
capped to be no more than 60% as shown in Figure 15b.
To see the PIVE’s difference compared with others against
Bayesian inference attack, in Table I we show the percentage
of regions that have the Bayesian inference attack success
probability higher than X% with X range 50%∼90% for all
mechanisms. As we can see, given different threshold X,
PIVE obtains the least percentage of regions that have success
probability larger than X. Comparing the service quality losses
of three mechanisms, we have EM=1.49 > PIVE=1.32 > Opt-
geo=1.02. PIVE has smaller quality loss than EM, which has
been explained above, and Opt-geo achieves smallest quality
losses due to its global optimization on service quality. Here
we also note that region 25 is not skewed location and does
not have as strong association issue (high posterior probability)
as the skewed locations, thus with just satisfying minimum
lower bound 0.05, PIVE does not have much effect on the
inference error and success probability on region 25, compared
with others mechanisms.

Next, we compare PIVE with the joint optimization mech-
anism [17] in terms of effectivess for privacy protection by
combining geo-indistinguishability and expected inference er-
ror. We choose the same parameters for PIVE as in the previous
expeirments, and then use its expected inference error as the
minimum desired distortion privacy level dm for constructing
the optimal joint mechanism. εg in the joint mechanism is
chosen to achieve the same location privacy as PIVE in terms
of unconditional expected inference error. Figure 16 shows the
average inference error and success probability for two infer-
ence attacks respectively at each region, with dm=0.9986km
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Fig. 15: Comparison of local privacy protection at every region
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Fig. 16: Comparison of PIVE and joint mechanism
X. PIVE EM Opt-geo Joint

> 50% 6% 8% 14% 12%
> 70% 0% 6% 8% 10%
> 90% 0% 6% 6% 4%

TABLE I: The percentage of locations exceeding given success
probability

and εg=0.8. It can be seen that (1) the joint mechanism
and PIVE exhibit similar performance at most locations with
small variation; and (2) the joint mechanism incurs the weak
regions, e.g., region id 48, 49 and 50, against inference attacks,
despite having bound on global expected distortion metric.
These weak regions represent some skewedness as they are
far away from the rest of the regions. Concretely, PIVE has
the average inference error bounded to be no lower than 0.22
and at the same time the Bayesian inference attack success
probability capped to be no higher than 60% (Table I shows
PIVE has smaller percentage of regions compared to the
joint mechanisms with different X). In comparison, the joint
optimization achieves good privacy in most of the locations
but fail to avoid the worst case scenarios when the location
dataset contains some skewed locations.

Note for the joint mechanism, when εg increases, its
performance gets close to the optimal Bayesian mechanism,
since its linear model is equal to the optimal Bayesian mech-
anism with geo-indistinguishability constraint and larger εg
will relax the constraint of geo-indistinguishability. But it will
cause less robustness against the adversary with arbitrary prior
information. PIVE shows the benefits of both privacy notions
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against optimal inference attack simultaneously: similar (or
sometimes slightly lower) expected inference error as the joint
mechanism under strong geo-indistinguishability (with εg=0.8)
except regions 48-50 where PIVE provides similar privacy
protection as the optimal Bayesian mechanism given in Figure
2. We would like to make two remarks: (1) The level of privacy
protection offered by both PIVE and joint optimization are
exceeding the user-defined lower error bound at most locations,
thus are acceptable for users as good privacy protection, even
though the inference error of PIVE can be slightly lower at
some locations. (2) For the weak locations, PIVE shows high
resilience and adaptivity to the skewed distribution against
inference attacks, compared to all three existing approaches
(see Figure 15 and Figure 16).

VII. Conclusions

We have presented PIVE, a two-phase dynamic differential
location privacy framework for providing stronger notion of
location privacy in terms of background knowledge based
inference attacks. This paper makes three novel contribu-
tions. First, we formally study the relationship between geo-
indistinguishability and expected inference error, and demon-
strate inherent problems of using geo-indistinguishability alone
as the ultimate goal of location privacy protection through for-
mal analysis and experimental illustration. Second, we propose
a dynamic differential location privacy protection framework,
where we first determine a set of protection locations by
guaranteeing the expected inference error bound defined by
a mobile user with respect to her service request by taking
into account the adversary’s prior distribution of the user’s
locations. Then, we generate the pseudo-locations in a differen-
tially private way. Third, this two-phase framework constructs
location obfuscation dynamically by capturing the relationship
between two privacy notions based on adversary’s current prior
information and user-specific privacy requirements for different
spatial-temporal contexts. Our experimental evaluation shows
that the proposed PIVE approach effectively guarantees the
two privacy notions simultaneously and outperforms the ex-
isting mechanisms that either offer geo-indistinguishability or
quantify location privacy by expected inference errors in terms
of adaptive privacy protection and computation efficiency.
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