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Abstract—Applications such as sensor network monitoring,
distributed intrusion detection, and real-time analysis of financial
data necessitate the processing of distributed data streams on
the fly. While efficient data processing algorithms enable such
applications, they require access to large amounts of often
personal information, and could consequently create privacy
risks. Previous works have studied how privacy risks could
be mitigated through the application of differential privacy to
continuous stream monitoring, focusing mostly on evaluating
simple aggregates over the streams, such as counts and sums.
However, many real world applications require monitoring a
complex value derived from the streams, e.g., detecting that the
correlation between the values of two stocks traded in different
exchanges has crossed a threshold.

In this paper we present a general framework that en-
ables monitoring arbitrary functions over statistics derived from
distributed data streams in a privacy-preserving manner. Our
solution allows the monitoring of complex values derived from
the streams, while preventing adversaries from learning about
any particular element in the processed streams. We study the
relationship between communication efficiency and privacy loss,
and demonstrate that for given privacy constraints, our approach
allows the system to be monitored over periods that are three
orders of magnitude longer than would be possible with a naive
approach. To the best of our knowledge, this work is the first
to tackle privacy-preserving distributed monitoring of arbitrary
functions, including non-linear functions, and to evaluate empir-
ically the applicability of privacy-preserving stream monitoring
in such settings.

I. INTRODUCTION

Distributed evaluation of functions is a fundamental prob-
lem in distributed computation, and monitoring queries consti-
tute a significant portion of the tasks carried over distributed
streams. In some cases, these queries can be as simple as
monitoring the sum of a distributed set of variables against
a predetermined threshold, or identifying frequent itemsets in
a set of distributed streams. In other cases, the queries require
more complicated computations, as in the case of non-linear
scoring functions (e.g., information gain or χ2) for the purpose

of feature selection, or monitoring the sum of square errors
with respect to some baseline to identify anomalous behavior.

While monitoring algorithms enable or improve appli-
cations such as fraud detection, early detection of disease
outbreaks, and fast reaction to security-related incidents, they
require access to large amounts of often personal information.
As the collection of such information becomes easier and
cheaper, there is growing awareness of the associated privacy
risks. For example, analysis of the privacy implications of col-
laborative recommender systems [1] showed that even aggrega-
tive algorithms that process large amounts of information could
leak sensitive information about particular individuals. Such
works demonstrate the importance of incorporating formal and
provable privacy guarantees into the design of algorithms.

The differential privacy framework [2], which we rely on
in this paper, has been proposed to prevent an adversary from
inferring private information from the output of a computation.
Differential privacy requires that the probability distribution
of the results of the computation be only marginally affected
by each input record. In differential privacy, each information
exchange that is derived from data on individuals incurs a
cost in privacy. With any new information exchange, the cost
accumulates. To restrict privacy leaks, information exchange
should be stopped whenever the accumulated cost grows
beyond a pre-determined bound (a privacy budget). Theoretical
infeasibility results suggest that these constraints are inherent
to privacy-preserving information processing [3]. However, the
lifetime of a stream monitoring system can be greatly extended,
without violating the privacy constraints. Moreover, even for
systems in which utility trumps privacy (where the system
should keep operating regardless of any privacy breaches),
privacy risks and potential harm could be reduced by using
algorithms that embed privacy protection in the monitoring
process in a cost-effective manner.

With the goal of efficient use of the privacy budget in mind,
much effort has been devoted to the application of differential
privacy to aggregation over centralized or distributed data
streams [3]–[8]. Those studies focused mostly on simple
aggregates, such as counts and sums, or showed how spe-
cialized monitoring tasks, such as the heavy hitters problem,
could be carried out in a privacy-preserving manner. However,
many real world applications [9]–[13] require monitoring a
complex value derived from the streams, e.g., detecting that the
correlation between the values of two stocks traded in different
exchanges has crossed a threshold.

Recently, Dwork et al. [3] studied continuous monitoring of
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a monotonically increasing or decreasing bounded range value
derived from a stream (e.g., a counter) in a privacy-preserving
manner. The proposed solution assumes that the monitored
value changes by an amount of at least d at most k times,
within a predetermined monitoring period T , and exploits this
assumption to update the output only after the value changes
“enough”. Consequently, the privacy cost is incurred only due
to update rounds, in contrast to a naive approach, which incurs
a fixed privacy cost for each item received on the stream.

However, in practice, many real-world application require
monitoring complex functions over statistics derived from
streams. The values of these functions may not necessarily be
monotonic, nor behave according to predetermined constraints.
In addition, the assumption of a predetermined time period
T for monitoring limits the ability to take advantage of
circumstances that allow monitoring the system for longer
periods of time (e.g., when the value of the function does
not change much over a long period of time). Finally, many
applications of interest are inherently distributed, and the
monitoring requirements at each of the nodes may depend on
the state of other nodes in the system.

In this work we study the problem of monitoring arbitrary
threshold functions over statistics derived from distributed
streams in a privacy-preserving manner. In this setup, data
arrives at fixed time intervals, referred to as rounds, where
at each round a new data item is received at each node. In
addition, each node derives a vector of statistics from its local
data stream. The goal is to determine when the value of an
arbitrary scoring function, applied to the average of these
vectors, exceeds a predetermined threshold.

We address the challenge of monitoring complex values
in a privacy-preserving manner by employing communication
minimization techniques to transform the monitored global
condition into local constraints that can be monitored inde-
pendently by each node in the system. These constraints are
expressed in the form of Safe Zones, which are subsets of the
input space. The safe zones are constructed such that as long as
the local vectors are in their respective safe zones, the global
condition is maintained. This reduces node synchronization,
resulting in many silent (communication-free) rounds. We then
leverage the reduction in communication costs towards fewer
privacy leaks by applying privacy protection to a series of
silent rounds simultaneously, thereby improving the privacy-
accuracy trade-off provided by the system. Effectively, this
protection is obtained by introducing noise to the safe zones.
Our work makes the following contributions:

• We present a framework for privacy-preserving mon-
itoring of general (possibly non-linear) functions over
statistics derived from a set of distributed streams
and conduct a theoretical analysis of the privacy and
accuracy guarantees provided within this framework.

• We conduct an experimental evaluation of the pro-
posed framework. We demonstrate that for given pri-
vacy constraints, our approach allows the system to
be monitored over periods that are three orders of
magnitude longer than would be possible with a naive
approach, while maintaining remarkable accuracy.

• We discuss and evaluate the different privacy-accuracy
trade-offs involved when monitoring distributed data

streams, and highlight additional possible improve-
ments of the proposed scheme.

To the best of our knowledge, our study is the first to
tackle privacy-preserving distributed monitoring of arbitrary
functions, and to evaluate empirically the applicability of
privacy-preserving stream monitoring in such settings.

The paper is organized as follows. Section II discusses
related work. Section III presents the problem statement and
goals. Section IV follows with background on tools used in
our solution. Section V presents our algorithm for privacy-
preserving distributed stream monitoring, and Section VI de-
scribes some of our experimental results and performance
analysis. Section VII concludes the work.

II. RELATED WORK

Communication-efficient monitoring of distributed streams
has been the subject of much research in recent years. Some
research has focused on anomaly detection [9], [14], while
other studies focused on monitoring specific types of functions,
including sums [15], [16], Boolean predicates [10], inner
products [11] and entropy [12]. Our work employs techniques
presented in the context of geometric monitoring [13]. These
techniques enable monitoring arbitrary threshold functions by
interpreting the monitoring task as a geometric problem.

The practical implications of differentially private analysis
were studied in many application domains, including network
trace analysis [17], health data [18], intelligent transportation
systems [19] and collaborative security mechanisms [20].
Monitoring of distributed data streams is an important scenario
in many of these domains. The application of differential
privacy to data stream processing was studied initially in
[4], which introduced the concept of pan-private data stream
algorithms – algorithms that retain their privacy properties
even when intrusions expose the internal state of the system.
Two independent works [3], [5] studied continuous release
of differentially-private counts, optionally while ensuring pan-
privacy. While we do not aim to obtain pan-privacy, our frame-
work could be extended to support it through straightforward
application of the technique of [3]. Dwork et al. [3] showed
also how these techniques could be used to convert any single-
output differentially-private algorithm to a T -round continual
output algorithm, provided that the evaluated function is mono-
tonically increasing or decreasing, or “close to” monotonic.
Mir et al. [6] relied on sketches to track statistics such as
distinct count, cropped first moment, and heavy hitters count
over fully dynamic data while preserving pan-privacy. Fan and
Xiong [7] addressed the dynamic nature of the data by adaptive
sampling of the time-series data and use of Kalman filters for
estimating the data in non-sampling points.

Early works on differential privacy in a distributed setting
[21], [22] studied how differential privacy could be combined
with cryptographic protocols to allow one-off computations to
be carried out both securely and privately. Chen et al. [23] used
the noise generation mechanism of [21] to allow analysts to
pose histogram queries to a subset of distributed clients with
the help of an honest but curious proxy. Rather than halting the
system when the privacy budget is exhausted, the proxy merely
tracks the overall consumed budget. Hsu et al. [8] proposed
efficient differentially-private algorithms for solving the heavy
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hitters problem in the fully distributed local model, in which
each peer has a single element.

Several works studied differentially private aggregation
over distributed time-series data, focusing mostly on simple
aggregates, such as counts and sums. Rastogi and Nath [24]
relied on the Discrete Fourier Transform to compress historical
time-series data, and leveraged threshold homomorphic en-
cryption to run a distributed version of the Laplace mechanism
on the compressed data. As the compression requires access
to all the query results in advance, this method is not adequate
for processing data streams on the fly. Shi et al. [25] applied
cryptographic techniques to allow an untrusted aggregator
to compute differentially-private sums over distributed peers
without learning anything but the outcome. While the proposed
scheme was designed to reduce the overhead of cryptographic
operations in periodical communications, it did not address the
cumulative privacy loss. Chan et al. [26] considered the prob-
lem of private tracking of heavy hitters over a sliding window,
where each node maintains a small number of differentially-
private counters for the most frequent items and notifies the
aggregator when the approximate counts change significantly.

III. SCENARIO AND GOALS

As a motivating example for our work, consider the
following scenario: in order to improve their spam filtering
capabilities, several e-mail service providers have agreed to
report aggregated data about the patterns of spam messages
they receive to an external spam filtering service. The spam
filtering service is interested in monitoring a fixed list of
terms (keywords) to determine how well they separate spam
messages from benign messages. More technically, the spam
filtering service would like to determine when the information
gain score of a given term crosses a predetermined threshold.
Information gain scores are between 0 and 1, where a score of
1 is received when the term perfectly separates spam messages
from non-spam messages, i.e., all the spam messages contain
the term and all the non-spam messages do not contain it,
or vice versa. A score of 0 is received when the term is
completely useless in separating spam from non-spam, i.e.,
the presence of the term is equally probable in both spam and
non-spam messages. The information gain score is a function
of the fraction of mail messages that contain the term for each
category (spam or benign), and the fraction of messages that
do not contain it for each category.

In general, we consider a system consisting of k nodes,
n1, . . . , nk. We assume that data arrives at fixed time intervals,
referred to as rounds, where at each round a new data item (in
our example, an e-mail message) is received at each node.
Specifically, each node ni processes a stream of elements
Si = {q1, q2, . . . } from some domain D. In each round t,
the node ni can access the local stream prefix Si(t) seen so
far (or a subset of it within a sliding window) and process
the data to derive a vector ~vi(t) ∈ Rd. We refer to these
vectors as local statistics vectors. The global vector is then
given by ~vg(t) =

∑
i ~vi(t)/k.1 Our goal is to identify when

f(~vg) > T for some predetermined function f : Rd → R
and threshold T ∈ R. When this condition is met, we

1Our work can also be easily extended to weighted mean vectors; see, e.g.,
the discussion in [13].

say that a global breach of the threshold has occurred. In
many important practical applications, a distributed monitoring
problem can be expressed as the monitoring of a general
function evaluated at the average vector, either directly [27],
[28], or after augmenting it by various functions of the raw
data [29].

We assume the existence of a coordinator, with whom the
nodes communicate so that they do not need to communicate
with each other. The coordinator can either be a central entity
separate from the nodes (e.g., the spam filtering service in
our motivating example), or one of the nodes could act as
coordinator.

Example 3.1: Denote the k e-mail service providers as
n1,n2, . . . , nk, and consider a monitored term t. Each provider
ni monitors a window consisting of the last w e-mail messages
processed by ni. Let W i be the set of e-mail messages
in the monitoring window of ni, with W i

spam denoting the
subset of W i comprising spam and W i

benign denoting the
subset comprising benign messages. We can similarly denote
by W i

t (W i
¬t) the messages that contain (do not contain)

the term t. The local contingency table for the term t can
then be defined by the four terms: ci1,1 = |W i

spam ∩W i
t |
/
w,

ci1,2 = |W i
benign∩W i

t |
/
w, ci2,1 = |W i

spam∩W i
¬t|
/
w and ci2,2 =

|W i
benign ∩ W i

¬t|
/
w. The vector ~vi = [ci1,1; ci1,2; ci2,1; ci2,2],

derived by processing the e-mail messages in the monitoring
window of ni, forms the local statistics vector of the node.
The global vector ~vg =

∑
i ~vi/k then provides the corre-

sponding contingency table over the whole set of messages
W =

⋃
W i, where each element in the global vector is given

by cα,β =
∑
i c
i
α,β/k. The (global) information gain of the

term t is then provided by

IG(t,W ) = f(~vg) = f([c1,1; c1,2; c2,1; c2,2]) = (1)

=
∑

α∈{1,2}
β∈{1,2}

cα,β · log
cα,β

(cα,1 + cα,2) · (c1,β + c2,β)
.

The goal is to detect when the information gain of a term
crosses a given threshold T , indicating a new term that has
been targeted by spammers.

Due to the dynamic nature of spam patterns, it is crucial
that the spam filtering service detect on the fly that a term
has come into or dropped out of use (i.e., its information gain
score crossed the threshold). A naive approach for meeting
this requirement is for each provider to notify the filtering
service each time a new e-mail message is received. However,
as discussed in the next section, this approach increases the
privacy risks.

A. Threat Model and Privacy Goals

In this work we assume that each participating node is se-
cure (e.g., each service provider’s database is protected against
intrusions), and all the communication channels are encrypted
and authenticated. The public keys that are used to secure the
communication channels are correct, and the corresponding
private keys are secure. However, the communication channels
may be monitored by an adversary, who may have arbitrary
background knowledge. We do not assume secrecy of the
distributed monitoring protocol (no security by obscurity), so
the adversary might exploit traffic patterns to learn about the
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decisions made by the protocol, and consequently about the
inputs that affected them.

We rely on differential privacy [2] to formulate the desired
privacy properties. Intuitively speaking, given a randomized
algorithm Alg, we can say that differential privacy requires
limiting the effect that each record in the input can have on
the output distribution of the computation. In fact, we rely
in this work on a variant of this concept, presented in [3] to
account for privacy in continuous processing of streams. In
this variant of differential privacy, replacing one element in
the stream with another should have only marginal effect on
the output stream, and the node should produce any possible
output sequence with almost the same probability when any
particular element changes. Formally:

Definition 3.1 (Adjacent Streams [3]): We say that two
stream prefixes S and S′ are adjacent, and write S ≈ S′,
if there exist q, q′ ∈ D such that replacing an occurrence of q
in S with q′ will result in S′.

For example, replacing one e-mail message with another in
a stream of processed messages, would result in an adjacent
stream.

Definition 3.2 (Differential Privacy [3]): A randomized
stream processing algorithm Alg provides ε-differential
privacy if for any adjacent stream prefixes S and S′ and any
set of possible output sequences O,

Pr[Alg(S) ∈ O] ≤ Pr[Alg(S′) ∈ O]× eε .

The probability is taken over the coin flips of Alg.

For example, a differentially private algorithm would pro-
vide the same output over a stream of e-mail messages with
almost the same probability, even if one of the messages in
the stream were to be replaced with another. The parameter ε
controls the effect that any element in the stream might have
on the outcome. A smaller value of ε means a lesser effect –
and better privacy.

Differential privacy maintains composability, meaning that
a series of b computations that are ε/b-differentially private is
ε-differentially private. Composability gives rise to the concept
of a privacy budget, in which a constraint on ε is determined
in advance. A series of differentially private computations con-
ducted by algorithms A1, A2, . . . , each with a corresponding
privacy parameter ε1, ε2, . . . , can then be issued and processed
as long as

∑
εi ≤ ε.

Example 3.2: This example follows up on Example 3.1.
Recall that each e-mail service provider processes a stream
consisting of w e-mail messages, {q1, . . . , qw}. The service
providers do not object to sending an aggregated statistics
vector that reflects the appearance of terms in the messages
they process. However, they would like to prevent any ex-
ternal entity, including other service providers and the spam
filtering service, from inferring the presence of the term in
any particular mail message. For example, consider a clinic
that receives e-mail messages from patients. The clinic would
obviously like to prevent an adversary from learning that a
particular e-mail message contained a term such as “diabetes”.
An adversary who knows that a client sent an e-mail message
at a certain time may learn that it contained that term directly
from accurate statistics sent by the service provider (e.g., the

adversary tracks the change in the value of the local statistics
vector at the time the e-mail message was sent), or indirectly
from the system behavior (e.g., if right after the client message
was processed, the system identified that the monitored thresh-
old was crossed). Moreover, the adversary could circumvent
or weaken protections that rely on aggregates (“hiding in
the crowd”) by generating fake mail messages. The service
provider can prevent such leaks by using a differentially private
algorithm to process the data stream, since any resulting output
sequence communicated to the coordinator (and consequently,
any resulting system behavior) would be obtained with almost
the same probability even if any particular e-mail message
were to be replaced with a different e-mail message.

The privacy guarantee presented above considers only a
single appearance of the elements q and q′ (e.g., the effect of
a single e-mail message), and consequently amounts to event-
level privacy [4], where privacy is preserved with respect to
each element in the stream, regardless of other elements that
may be associated with the same individual. For example, in
the context of the spam message scenario, this ensures that the
contents of any particular mail message remain private, and
have little effect on the probability of any output sequence.
However, the system can still learn information concerning
an aggregate of messages pertaining to the same user, for
example, an analysis based on all the spam messages sent by
the same spammer.

We note that no assumptions on the trustworthiness of the
coordinator or other nodes are required to ensure that privacy
is maintained. However, a rogue coordinator could lead to
inefficient execution of the algorithm, and quick exhaustion
of the privacy budget. In other words, privacy is guaranteed
even if the coordinator and all other nodes are malicious,
but correctness and efficiency guarantees hold only if the
coordinator and nodes are honest (yet possibly curious).

B. Performance Goals

Differential privacy constrains the privacy risk inherent in
information exchange. It is typically guaranteed by introducing
noise to the computation process, and consequently incurs a
cost in accuracy. To evaluate the trade-off between privacy
and utility, we frame the following performance goals for the
monitoring problem:

Recall We would like the system to identify global
breaches of the threshold with as few misses as possible.2

Specificity We would like the system to give as few false
alerts as possible.

Uptime When the differential privacy budget is exhausted,
no further output updates are possible, and the system should
be halted to maintain privacy. We would like to keep the
monitoring process alive as long as possible within a given
privacy budget.

IV. BACKGROUND

In this section we present some tools that will be used in
Section V.

2This property is also known as sensitivity; however, we avoid using this
term in this context as it is also used in the differential privacy literature with
a different meaning.
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A. Differential Privacy Tools

We start by presenting two mechanisms that were used
extensively in the differential privacy literature.

1) The Laplace Mechanism: To maintain differential pri-
vacy, the Laplace mechanism [2] adds noise sampled from the
Laplace distribution when evaluating the value of a function.
The noise is intended to mask the influence of any single
element on the outcome, and is calibrated so as to hide this
influence. Formally, this influence is bounded by the global
sensitivity of the function, which is the largest possible change
in the outcome for any pair of adjacent streams:

Definition 4.1 (Global Sensitivity [2]): The Lk-sensitivity
of a function g : S → Rd over a stream prefix S is

∆k(g) = max
S≈S′

‖g(S)− g(S′)‖k .

The Laplace distribution with mean 0 and variance 2z2 has
probability density function Pr(x|z) = 1

2z exp(− |x| /z). As
was shown in [2], sampling noise from the Laplace distribution
with scale z = ∆1(g)/ε and adding it to the value of the
function results in a differentially-private computation:

Theorem 4.1 (Laplace Mechanism [2]): Given a function
g : S → Rd over a stream prefix S, the single-output
computation g′(S) = g(S) + Laplace(∆1(g)/ε)d maintains
ε-differential privacy.

Example 4.1: Consider the function countp(S), which re-
turns the number of elements in the stream S that fulfill a
predicate p. The L1-sensitivity of countp(S) is 1, and the com-
putation countp(S) + Laplace(1/ε) maintains ε-differential
privacy.

We also use in this paper the following property for the
sum of independent Laplace distributions, which follows from
[30, Theorem 6.5]:

Lemma 4.2 ( [30]): Suppose γi’s are n independent ran-
dom variables, where each γi has Laplace distribution Lap(z).
Suppose Y :=

∑
i γi. Then with probability of at least 1− δ,

the quantity |Y | is at most
√

6n · z log 2
δ .

2) The Exponential Mechanism: The exponential mecha-
nism [31] is useful for sampling one of several options in
a differentially-private way, while taking into account the
desirability of each option. A quality function q assigns a
score to each of the options. This score is determined by
the input of the algorithm, and higher scores signify more
desirable outcomes. These scores, together with the privacy
parameter ε, are then used to induce a probability distribution
over the outcomes in a way that ensures differential privacy,
while favoring outcomes with high scores.

Definition 4.2 (Exponential Mechanism [31]): Let q :
(Dn × O) → R be a quality function that, given a stream
prefix S of length n, assigns a score to each outcome r ∈ O.
Let ∆1(q) = maxr,S≈S′ |q(S, r)− q(S′, r)|. Let M be a
mechanism for choosing an outcome r ∈ O given a stream
prefix S. Then the mechanism M , defined by

M(S, q) =

{
return r with probability ∝ exp

(
εq(S, r)

2∆1(q)

)}
,

maintains ε-differential privacy.

B. Communication-Efficient Monitoring and Safe Zones

The problem of monitoring a function over distributed
streams in a communication-efficient way was studied by
Sharfman et al. [13], [28]. One of the key steps in the proposed
solution was to define the problem in terms of the input domain
rather than the output range.

Definition 4.3 (Admissible Region): Given a function f :
Rd → R and a threshold T , we define the admissible region
A as the region where the value that f takes is at or below
the threshold T :

Af (T ) = {~v ∈ Rd|f(~v) ≤ T} . (2)

Given a set of local statistics vectors ~vi(t) obtained from
k nodes at time t, and the average vector ~vg(t) =

∑
i ~vi(t)/k,

recall that a global breach of the threshold T occurs when
f(~vg) > T . As long as the average vector ~vg(t) is within the
admissible region, no global breach has occurred. To reduce
communication costs, the global constraint imposed by the
admissible region over the global vector is mapped to local
constraints evaluated by each of the nodes over the local
vectors. These constraints are expressed in the form of Safe
Zones: they are constructed such that as long as all the local
statistics vectors are within their respective safe zones, their
average is guaranteed to be inside the admissible region, and
thus no communication is required.

In general, safe zones can take any shape, though simple
shapes, such as polygons with a small number of vertices,
allow for more efficient algorithms. The techniques described
in this paper are applicable to any chosen shape, but for sim-
plicity we concentrate on ball-shaped safe zones. Specifically,
we model each safe zone as a ball B(~ci, r), centered at ~ci with
radius r. The ball is chosen so that (a) it will be large, and (b)
the local statistics vector will be far from its boundary. These
two properties contribute to lower communication costs (and
in our case, allow the privacy budget to be extended over a
longer period, resulting in a longer lifetime of the system).

To assign safe zones to nodes, we start with an initial
global vector ~vg(0), which serves as a reference point, and use
geometric techniques to fit a ball such that B(~c, r) ⊆ Af (T )
and ~vg(0) ∈ B(~c, r). A description of the geometric methods
used to fit the ball is out of the scope of this paper; we refer
the reader to [28] for a full description of such techniques.
Then we evaluate for each node i the drift vector ~vi−~vg , and
assign to the node the ball B(~c+ ~vi − ~vg, r). Essentially, this
assignment aims to keep each local vector as far as possible
from the boundary of the ball, while ensuring that the ball will
function as a safe zone. The following theorem guarantees that
as long as each of the local vectors ~vi is within the respective
assigned ball, the global average will remain in the admissible
region.

Theorem 4.3: Let Af (T ) be the admissible region formed
by the function f and a threshold T , and let B(~c, r) be a ball
with center ~c and radius r, such that B(~c, r) ⊆ A. Given a set
of k node-specific centers ~c1, . . . ,~ck such that

∑
i ~ci/k = ~c, if

for each node i, ~vi ∈ B(~ci, r), the mean vector ~vg =
∑
i ~vi/k

is within the admissible region Af (T ).

Proof: Denote by 0 the origin of Rn. Then we can write
B(~c, r) = {~c+ ~x| ~x ∈ B(0, r)} (i.e., B(~c, r) is the translation
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of B(0, r) by ~c). Let ~vi ∈ B(~ci, r). Then

~v1 + · · ·+ ~vk
k

=
(~c1 + ~x1) + · · ·+ (~ck + ~xk)

k
,

where ~xi ∈ B(0, r), and then

~c1 + · · ·+ ~ck
k

+
~x1 + · · ·+ ~xk

k
= ~c+ ~x .

B(0, r) is convex, hence closed under averaging. Since ~xi ∈
B(0, r), and ~x is the average of ~xi, it follows that ~x ∈ B(0, r).
Hence, the mean vector

∑
i ~vi/k is in B(~c, r), and therefore

within the admissible region Af (T ).

Once the safe zones are assigned, each node can monitor its
safe zone independently of the other nodes. If a node detects a
local breach, it notifies the coordinator, who then collects the
local statistics vectors from all the nodes in the system, and
checks whether the new global vector breaches the admissible
region. After the check, new safe zones can be assigned to the
nodes on the basis of the new data. Figure 1 illustrates this
process.

Fig. 1. A schematic description of the safe zones used in this paper, for two
nodes. Depicted are the admissible region Af (T ), the initial average vector
~vg(0), and B(~c, r), a maximal sphere containing ~vg(0), which is contained
in Af (T ). The safe zones at the two nodes are spheres of the same size as
B(~c, r). As long as ~vi is in its safe zone (left), no communication is initiated;
if it wanders outside its safe zone (right), the coordinator initiates a “violation
recovery” procedure.

Once the admissible region is breached, we can continue
to monitor the streams to detect when the threshold is crossed
back (i.e., the admissible region is “flipped”). Moreover, as
discussed in [32], the threshold can be augmented with error
margins to reduce communication costs due to thrashing when
the global average is close to the threshold. The augmented
threshold is used to set the admissible region and the safe
zones, but once a local constraint is breached and the nodes
synchronize to check for a global breach, the check is made
against the original threshold. In other words, with a margin
m, given the estimated global vector ~vg(t), if the value of
f(~vg(t)) is below the original threshold T , the system uses
T ′ = (T + m) to set the admissible region and assign safe
zones. When f(~vg(t)) is above the threshold, the system
uses T ′ = (T − m) to set the new admissible region. For
presentation purposes we assume without loss of generality
that the monitored admissible region condition is always as in
Equation 2; however, our results apply also when the threshold
condition is flipped and when the threshold is augmented with
error margins.

V. DISTRIBUTED STREAM MONITORING WITH
DIFFERENTIAL PRIVACY

In this section we present an algorithm for distributed
stream monitoring with differential privacy. But first we de-
scribe a naive monitoring algorithm, which is easier to analyze.

A. Naive Algorithm

In a simple monitoring algorithm, each node releases in
each round a noisy version of the local statistics vector, using
the Laplace mechanism. The coordinator averages all these
vectors, and checks whether the function of the global average
has crossed the threshold T , in which case a global breach
is identified. Because a new output is shared by each node
every round, the number of rounds b that the process will run
should be determined in advance and the differential privacy
noise calibrated accordingly. In each round t, given the stream
prefix Si(t) of node ni, an aggregation function g is applied
to derive the local statistics vector ~vi(t) = g(Si(t)). The ε/b-
differentially private output of each node is then given by
~oi(t) = ~vi(t) + Laplace(b ·∆1(g)/ε)d.

Privacy guarantees of the naive algorithm follow from
the Laplace mechanism and the composability property of
differential privacy. The naive algorithm implies a direct trade-
off between the monitoring period and the accuracy of the
outcome, controlled by the parameter b. The following theo-
rems state the recall and specificity guarantees for the naive
algorithm:3

Theorem 5.1 (Naive algorithm – recall): If the global
vector exceeds the admissible region Af (T ) by more than

(log 2d
δ ·
√

6d
k · b ·∆1(g)/ε), the naive algorithm will identify

the global breach with probability of at least (1− δ).

Proof: According to Lemma 4.2, with probability 1−δ/d,
the sum of k Laplace variables across each dimension is at
most (

√
6k log 2d

δ · b ·∆1(g)/ε), and their average is at most

(
√

6
k ·log 2d

δ ·b·∆1(g)/ε). By the union bound, with probability
1 − δ this holds across all d dimensions. Therefore the noisy
global vector is within Euclidean distance (log 2d

δ

√
6d
k · b ·

∆1(g)/ε) from the real global vector. If the distance of the
global vector from the admissible region is more than that,
then the noisy global vector will stray out of the admissible
region as well, and a breach will be detected.

Using a similar proof, a specificity guarantee follows:

Theorem 5.2 (Naive algorithm – specificity): If the global
vector is more than (log 2d

δ

√
6d
k ·b·∆1(g)/ε) inside the interior

of the admissible region Af (T ), the naive algorithm will report
a (false) global breach with probability of at most δ.

B. Safe-Zone-Based Algorithm Outline

Our goal is to monitor the local statistics vectors derived
from the distributed input streams, and detect when a given

3The accuracy guarantees refer to the input domain and to the admissible
region. When the monitored function f is a Lipschitz function, i.e., ∃C s.t.
|f(x) − f(y)| ≤ C|x − y| for all x and y, these guarantees also map to
bounds that apply to the output range and the distance of f(~vg) from the
threshold T .
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function of the mean of these vectors crosses a given threshold.
When monitoring streams in the distributed system, each node
applies a local monitoring algorithm against a local safe zone.

In the local monitoring process we distinguish between
two kinds of rounds. Silent rounds are ones in which the
local statistics vector is within the safe zone, and the node
does not produce any output. Violation rounds are ones in
which the local statistics vector breaches the safe zone, and
consequently the node notifies the coordinator. The coordinator
then initiates a process of violation recovery to determine
whether the global threshold was crossed. While violation
rounds require an explicit exchange of information, privacy
leaks should also be accounted for in silent rounds, as the
fact that the local statistics vector is within the safe zone also
conveys information to an adversary.

A change in a single element in the stream could affect
the value of the local statistics vector in a sequence of
rounds. To preserve differential privacy, the algorithm should
produce any possible output sequence with almost the same
probability when any particular element changes. Specifically,
silent rounds should remain silent, violation rounds should still
result in an alert, and the violation recovery process should
produce similar outputs.

The algorithm starts with an initialization phase, detailed
in Section V-C, where the nodes establish their initial local
statistics vectors and send noisy versions of them to the
coordinator. The coordinator then uses these vectors to assign
a safe zone to each node. Each node then monitors the
local safe zone in a privacy-preserving way, as detailed in
Section V-D, and alerts the coordinator if a local safe zone
breach is detected. In that case, the coordinator launches a
violation recovery process, which is described in Section V-E.
In the recovery process the coordinator collects noisy statistics
vectors from the nodes to check for a global violation (i.e., to
evaluate whether f(~vg(t)) > T ), and then re-assigns safe zones
to the nodes.

C. Initialization phase

The initialization phase takes place during the first time
period (t = 0), and its goal is to assign safe zones to each
of the nodes. Each of the nodes (Algorithm 1) establishes the
initial local statistics vector and sends a noisy version of it to
the coordinator. The coordinator then verifies that the initial
global vector is within the admissible region (a global breach
is declared otherwise). To assign safe zones, the coordinator
(Algorithm 2) finds the largest ball B(~c, r) that can fit within
the admissible region while containing the global vector. Then,
in accordance with Theorem 4.3, each node is assigned a center
~ci such that the centers average at ~c.

D. Local Monitoring of Safe Zones

The local monitoring process is described in Algorithm 3.

Once a local node obtains a safe zone from the coordinator,
it monitors the local statistics vector against that safe zone.
To maintain privacy, three noise elements are introduced in
the algorithm. First, the safe zone is perturbed by adding
noise to the radius to obtain the ball B(~ci, r̂). The same
perturbed safe zone is used until a new safe zone is assigned

Fig. 2. Algorithm 1: NodeInitialization(Si, g, b, ε)
Input:

Si – a local input stream
g – a function that generates a d-dimensional local
statistics vector from Si
b – bound on the number of violation rounds
ε – privacy parameter

1: ~vi(0)← g(Si(0))

2: Sample ~ni,0 ∼ Laplace
(

3(b+1)·∆1(g)
ε

)d
3: Send to the coordinator ~oi(0) = ~vi(0) + ~ni,0

Fig. 3. Algorithm 2: CoordinatorInitialization(f , T , k)
Input:

f – a global function to monitor
T – a threshold for f
k – number of nodes

1: Obtain ~oi(0) from the nodes
2: ~vg(0)←

∑
~oi(0)/k

3: if f(~vg(0)) > T then report a global breach
4: ~c, r ← arg max~c,r(V ol(B(~c, r))) subject to B(~c, r) ⊆
Af (T ) and ~vg(0) ∈ B(~c, r)

5: ∀i : ~ci ← ~c+ ~oi(0)− ~vg(0)
6: Assign to each node i the safe zone B(~ci, r)

by the coordinator, and it protects privacy during a sequence of
silent rounds. Second, in each round, the node checks whether
its local statistics vector is within the perturbed safe zone,
using the exponential mechanism. Fresh noise is used in each
inclusion check, and it protects privacy when local violations
occur. Finally, when the coordinator initiates violation recovery
following a local breach in one or more of the nodes, each node
uses the Laplace mechanism to send the coordinator a noisy
version of its local statistics vector. The Laplace mechanism
maintains privacy throughout violation recovery.

Algorithm 4 details how the exponential mechanism is
applied to evaluate whether a given local statistics vector ~vi(t)
is within the (noisy) safe zone B(~ci, r̂). The quality function
is set to q(true) = r̂ − dist(~vi(t),~ci) (the distance from the
boundary of the safe zone) for a result indicating inclusion in
the safe zone and q(false) = −(r̂−dist(~vi(t),~ci)) otherwise.
The L1-sensitivity of q is ∆2(g).

E. The Coordinator Algorithm and Violation Recovery

The global monitoring algorithm is orchestrated by the
coordinator, as shown in Algorithm 5. To check whether the
global threshold was crossed following a local breach, the
coordinator gathers the noisy local statistics vectors from all
the nodes in the system, and evaluates whether their average
is within the admissible region. The global average vector is
used also to reassign safe zones to the nodes in the system,
regardless of whether a global breach is detected.

F. Accuracy and Privacy Guarantees

In this section we state the accuracy and privacy guarantees
provided by the system.
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Fig. 4. Algorithm 3: LocalMonitoring(Si, g, b, ε)
Input:

Si – a local input stream
g – a function that generates a d-dimensional local
statistics vector from Si
b – bound on the number of violation rounds
ε – privacy parameter

1: m← 1
2: Acquire new safe zone B(~ci, r) from the coordinator
3: Sample αi ∼ Laplace

(
3b·∆2(g)

ε

)
4: for each round t do
5: ~vi(t) = g(Si(t))
6: if Evaluate(~vi(t) ∈ε B(~ci, r + αi)) returns false then

report a local breach
7: if the coordinator initiates violation recovery then
8: Sample ~ni,t ∼ Laplace( 3(b+1)·∆1(g)

ε )d

9: Send ~oi(t) = ~vi(t) + ~ni,t to the coordinator
10: if m < b then m← m+ 1 else HALT
11: Continue from step 2
12: end if
13: end for

Fig. 5. Algorithm 4: Evaluate(~vi(t) ∈ε B(~ci, r̂))

Input:
~vi(t) = g(Si(t)) – a local statistics vector
B(~ci, r̂) – a ball with center ~ci and radius r̂ denoting a
(perturbed) safe zone
ε – privacy parameter

1: µ = ε
6b ·

r̂−dist(~vi(t),~ci)
2∆2(g)

2: Sample ui,t ∼ U [0, 1]

3: return true if ui,t ≤ exp(2µ)
1+exp(2µ) , and false otherwise

1) Accuracy Guarantees:

Theorem 5.3 (Accuracy – recall): With probability of at
least (1 − 2δ), if a local node has not halted, and its local
statistics vector exceeds the safe zone assigned by the coor-
dinator by more than 6b · ∆2(g) log 1−δ

δ1.5 /ε, Algorithm 3 will
identify the breach.

Proof: Assume that for a given node Algorithm 3 has not
halted by time t. The error in the evaluation step in Line 6
stems from the randomness ui,t in Algorithm 4, as well as
from the perturbation of the safe zone radius with αi. With
probability of at least 1 − δ, the value of |αi| is at most 3b ·
∆2(g) log 1

δ /ε. Moreover, with probability of at least 1− δ, if
the local statistics vector exceeds the perturbed safe zone by
more than 6b ·∆2(g) log 1−δ

δ /ε, Algorithm 4 will identify the
breach. Taking a union bound, we obtain that with probability
of at least 1 − 2δ, Algorithm 3 will declare a local breach if
the local vector’s distance from the original safe zone is more
than 6b ·∆2(g) log 1−δ

δ1.5 /ε.

A similar proof provides the specificity guarantees.

Theorem 5.4 (Accuracy – specificity): If a local node has
not halted, and its local vector is inside the safe zone assigned
by the coordinator, with distance of at least 6b·∆2(g) log 1−δ

δ1.5 /ε
from its boundary, Algorithm 3 will report a breach with

Fig. 6. Algorithm 5: Coordinator(f , T , b, k)
Input:

f – a global function to monitor
T – a threshold for f
b – bound on the number of violation rounds
k – number of nodes

1: m← 1
2: while m ≤ b do
3: if any node reports a local violation in round t then
4: Announce violation recovery and collect ~oi(t) from

the nodes
5: ~vg(t)←

∑
~oi(t)/k

6: if f(~vg(t)) > T then report a global breach
7: m← m+ 1
8: ~c, r ← arg max~c,r(V ol(B(~c, r))) subject to

B(~c, r) ⊆ Af (T ) and ~vg(t) ∈ B(~c, r)
9: ∀i : ~ci ← ~c+ ~oi(t)− ~v(t)

10: Assign to each node i the safe zone B(~ci, r)
11: end if
12: end while

probability of at most 2δ.

Once a local breach is detected and the coordinator has
checked for a global breach, similar accuracy guarantees to
those stated in Theorems 5.1 and 5.2 for the naive algorithm
apply also to Algorithm 5 (albeit with larger noise magnitude),
as the same mechanism is used to evaluate the global vector
and check for a breach.

2) Privacy Guarantees:

Theorem 5.5: Algorithm 3 maintains ε-differential privacy.

Proof:

To prove that Algorithm 3 maintains ε-differential privacy,
we follow the proof technique of [3, Theorem 5.2], which
incorporates several noise components to obtain privacy and
accuracy guarantees when a single-output differentially-private
algorithm is transformed to a T -round continual output algo-
rithm. We focus on a single node i and fix the execution of
the coordinator and all the other nodes in the system. Given
two adjacent streams Si ≈ S′i and an output sequence O,
consider an execution ESi

of node i over input stream Si, and
denote by R the series of random variables sampled throughout
this execution, such that AlgR(Si) = O (If no such R exists,
then Pr[Alg(Si) = O] = 0). Given R, we will describe a
corresponding execution ES′

i
over stream S′i with randomness

R′ such that AlgR′(S′i) = O, and the probability density of
R′ differs by a factor of at most exp(ε) from that of R. As
this holds for any choice of adjacent streams Si ≈ S′i, and
any possible output O, this proves ε-differential privacy for
Algorithm 3.

We consider the output sequence O as a concatenation
of several output sequences of the form [~oi(0), O(S)

1 , O(V )
1 ,

. . . , O(S)
b′ , O(V )

b′ ], as illustrated in Figure 7, where ~oi(0) is
the output of the initialization round, each O(S)

j is a (possibly
empty) sequence of silent rounds, and this sequence of silent
rounds is followed by a violation round O(V )

j (which includes
also violation recovery). We have b′ ≤ b due to the condition
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in line 10 of the algorithm. Any output stream that does not
conform to this format would have probability 0 regardless of
the input stream.

init

. . .

time

~oi (0) O(V )
1 O(V )

2 O(V )
3

O(V )
b′

HALT

O(S)
1

O(S)
2 O(S)

3 O(S)
4

Fig. 7. Breaking an output sequence into multiple sequences

We next focus on each of the components that comprise
the stream O, and show how the noise values sampled in the
executions ESi

and ES′
i

should be different from each other
if they are to result in the same output.

Initialization round In the initialization round of the
executions ESi and ES′

i
, the node generates the local statistics

vectors ~vi(0) = g(Si(0)) and ~v′i(0) = g(S′i(0)) respectively.
To obtain the output ~oi(0) in both executions, we have

|~ni,0 − ~n′i,0|1 = |~vi(0)− ~v′i(0)|1 ≤ ∆1(g) .

Since the noise vectors are sampled from the Laplace distribu-
tion with scale 3(b+1)·∆1(g)

ε on each dimension, the probability
density of generating ~n′i,0 differs by a factor of at most
exp( ε

3(b+1) ) from that of generating ~ni,0.

Silent rounds Consider an uninterrupted sequence of l
silent rounds O(S)

j over time periods tm, tm+1, . . . , tm+l−1.

We keep the noise elements ui,t the same for rounds
[tm, tm+l−1] in executions ESi

and ES′
i
, and show how the

same outcome (Algorithm 4 returns true) would be obtained
in both executions throughout those rounds.

The safe zone perturbation noise αi is generated in line 3
following the initialization round and any violation round, and
remains the same throughout any uninterrupted sequence of
silent rounds. Given the noise αi in time periods [tm, tm+l−1]
for execution ESi , we set α′i = αi + ∆2(g) for the same time
periods in execution ES′

i
(note that the same α′i applies also to

the violation recovery round at tm+l, which will be addressed
in the next paragraph). For each of the silent rounds t ∈
[tm, tm+l−1] on execution ESi

, the check Evaluate(~vi(t) ∈ε
B(~ci, r̂)) returns true, i.e., ui,t ≤ exp(2µ)

1+exp(2µ) , where

µ =
ε

6b
· r̂ − dist(~vi(t),~ci)

2∆2(g)
.

Since r̂′ = r + α′i = r + αi + ∆2(g), and

dist(~v′i,~ci) ≤ dist(~v′i, ~vi) + dist(~vi,~ci) ≤
≤ ∆2(g) + dist(~vi,~ci) ,

we get that r̂ − dist(~vi(t),~ci) ≤ r̂′ − dist(~v′i(t),~ci), and
therefore µ ≤ µ′, so that Evaluate(~v′i(t) ∈ε B(~ci, r̂

′) also
returns true for all t ∈ [tm, tm+l−1].

Because αi ∼ Laplace (3b ·∆2(g)/ε), the probability to
obtain α′i = αi+ ∆2(g) differs by a factor of at most exp( ε3b )
from that of obtaining αi.

Violation rounds Consider a time period t on execution
ESi

, in which violation recovery took place. The violation
recovery process could be triggered by the coordinator, due

to a local breach detected on another node, or it could be the
result of a safe zone breach on the local node.

In the first case, the choice of α′i = αi + ∆2(g) discussed
in the previous paragraph ensures that the violation recovery
event will not be triggered by the local node also for execution
ES′

i
. In the second case, privacy protection is ensured by the

differentially-private comparison (Algorithm 4), which relies
on the exponential mechanism. Since

r̂′ − dist(~v′i(t),~ci) ≤ r̂ − dist(~vi(t),~ci) + ∆2(g) ,

we have µ′ ≤ µ + ε
6b . It follows that the probability that

the algorithm will return false in ES′
i

differs by a factor
of at most exp( ε3b ) from that for ESi

. Example 5.1 below
demonstrates why a separate noise element is needed to
maintain ε-differential privacy in violation rounds.

It remains to show how the same output ~oi(t) for the
violation recovery can be maintained for execution ES′

i
. As

it does in the initialization round, the Laplace mechanism
ensures that the probability of obtaining the same output ~oi(t)
on each violation round in ES′

i
differs by a factor of at most

exp( ε
3(b+1) ) from that of execution ESi

.

Bringing it all together All the noise elements are sampled
independently, so the ratio of probabilities of obtaining the
output sequence O for the executions ESi and ES′

i
can be

bounded by multiplying the bounds of the individual steps
described above. As the initialization round occurs once, and
each of the other cases occurs at most b times, the overall
probability of obtaining the output sequence in execution ES′

i

differs by a factor of at most exp(ε) from that of execution
ESi

.

In the described algorithm, the privacy budget is distributed
evenly between the different components of the algorithm
(safe zone perturbation, the safe zone inclusion check, and
local statistics vector perturbation) – a privacy budget of ε

3b
is assigned to each check ( ε

3b+1 when perturbing the local
statistics vector, to account also for the initialization round).
However, it is also possible to assign a different portion of the
budget to each of components. For example, we could intro-
duce less noise when perturbing the safe zones, in exchange for
increased noise in the inclusion check, by assigning a budget of
4ε
9b to the first and a budget of 2ε

9b to the second. However, after
experimenting with different privacy budget distributions, we
found that an even distribution of the budget performed better
than the alternatives for our experimental setup.

The following example illustrates why protection of privacy
in violation rounds requires the use of a differentially-private
comparison (Algorithm 4), beyond safe zone perturbation.

Example 5.1: Consider a node that monitors locally a
(one-dimensional) counter over its data stream, and checks it
against a safe zone with center c and radius r (i.e., the safe
zone will be breached when the counter goes above c + r
or below c − r). Figure 8 shows the value of the counter
pi in three consecutive rounds in a certain execution. The
counter was within the safe zone in the first two rounds,
resulting in silent rounds, and outside the safe zone in the third
round, resulting in a breach of the safe zone. Now consider an
alternative execution, in which one of the counted events did
not occur, resulting in lower counts p′1, p′2 and p′3. To obtain
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the same output as in the former execution, the first round
should still be silent, and the third round should still result in
a breach. However, using only safe zone perturbation, there
is no perturbed safe zone radius r′ such that p′1 ∈ B(ci, r

′)
(requiring r′ > r) while p′3 6∈ B(ci, r

′) (requiring r′ < r)
simultaneously.

ci

Safe zone

ci − r ci + r

p1 p2 p3p ′
1 p ′

2 p ′
3

Fig. 8. A local node using a (one-dimensional) safe zone to monitor a counter

VI. EXPERIMENTAL EVALUATION

To evaluate the performance of the privacy-preserving
distributed monitoring algorithm, we used the Reuters Corpus
(RCV1-v2) [33] as a source of input streams. The test set in
the corpus contains 781,265 news stories, produced by Reuters
between August 20, 1996 and August 19, 1997. The stories
were processed to extract feature vectors, and each document
was also labeled as belonging to several categories. In the
experimental setup the stories were distributed by round robin
between 10 nodes, where each node processes in each round
a window containing the last 10,000 stories.

In the experiments our goals were to simulate monitoring
of the number of spam messages, and to simulate feature
selection for spam identification. To this end, we followed the
experimental setup described in [13], where a similar feature
selection scenario was evaluated without any privacy con-
straints. We chose the “CCAT” (Corporate/Industrial) category,
which is the most frequent category label in the dataset, as
denoting a spam message. In one experiment we monitored
the number of spam messages, and in another we monitored
the information gain of one of the extracted features (“febru”)
to determine its value in identifying a spam message. Figure 9
illustrates the global average values of the “CCAT” count and
the “febru” information gain in the processed rounds.

Monitoring the spam message count requires aggregating
1-dimensional vectors, g1(Si(t)) = |q ∈ Si(t) ∧ CCAT|, with

0 20,000 40,000 60,000

4200

4400

4600

4800

5000

5200

0

0.002

0.004

0.006

Count

Round number

C
ou

nt

Information gain

In
fo

rm
at

io
n

ga
in

Fig. 9. The monitored global average values of the “CCAT” category (count)
and the “febru” feature (information gain) in the Reuters dataset

global sensitivities ∆1(g1) = ∆2(g1) = 1. Monitoring the
information gain function requires aggregating 3-dimensional
vectors g2(Si(t)) = |Si(t)| · (c1,1, c1,2, c2,1) (see Example 3.1;
the 4th coordinate can be obtained from the other three because
of the fixed window size), with global sensitivities ∆1(g2) = 2
and ∆2(g2) =

√
2. We conducted experiments with different

values for the bound b on the number of violation rounds,
and report below results for b = 5. All the results reported
below were obtained by averaging over 10 executions of each
experiment with different random seeds.

As a baseline, we also conducted experiments where the
same data streams are consumed and processed by a single
node. These experiments simulate an “ideal” setting in which
a trusted third party aggregates all the local vectors and
determines whether the threshold was crossed. To ensure that
the output maintains privacy, the single node employs the same
(safe-zone-based) mechanism to evaluate whether the threshold
was breached.

Figure 10 shows the trade-off between the privacy param-
eter ε and the system lifetime in rounds when monitoring the
number of spam messages, for two different threshold values,
T = 4800 and T = 5000. Similar trade-offs were observed
also for other threshold values that we tested. When the
global vector is close to the threshold, the likelihood of local
breaches is much higher, requiring frequent communication
between the nodes, and faster depletion of the violation round
limit. Consequently, when monitoring for T = 4800 without
error margins, the system lifetime is much shorter than when
monitoring for T = 5000. Allowing for error margins (Figure
10 reports the results for a margin of 100) considerably
mitigates this problem. The margin reduces the likelihood of
local breaches in the absence of a global breach, and allows
global breaches to be detected with fewer violation rounds.
Thus the margin allows us to trade off monitoring accuracy
for longer system lifetime within the given privacy constraint.
Figure 10 also shows the trade-off for the baseline, in which
the streams are aggregated by a single trusted entity (while
still ensuring a differentially private output). In this setting,
the system can operate with the same privacy constraint over
longer periods of time than in the distributed setting, due to
two contributing factors: (i) since the privacy mechanism is
employed by a single node rather than by multiple nodes, a
local breach due to an “unlucky” coin toss that produces a
high level of noise is less likely to occur in any given round;
and (ii) regardless of the privacy protection mechanism, direct
monitoring of the global vector with a single safe zone results
in fewer breaches of the safe zone constraint than in the case
of monitoring ten different local statistics vectors with separate
local safe zones – changes in a local statistics vector that would
have caused a safe zone breach in the distributed case may
be offset by changes in other nodes when aggregated by a
trusted third party, thereby precluding a safe zone breach in
the baseline scenario.

Figure 11 illustrates the results for monitoring the informa-
tion gain with different threshold values (and the same error
margin 0.0005), and shows the three-way trade-off between
the privacy parameter ε, the system lifetime in rounds, and
the monitored threshold T . Note that the signal in the in-
formation gain experiment is much weaker than in the count
experiment: about half of the processed messages in the dataset
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Fig. 10. Monitoring the number of spam messages (count)
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Fig. 11. Monitoring the information gain of the “febru” feature with error
margin 0.0005

are categorized as spam, but there are an order of magnitude
fewer messages that have the “febru” feature. Monitoring for
the “febru” feature is thus much more sensitive to noise than
monitoring the number of messages. Generally, the effect of
the weaker signal could be mitigated by processing larger
amounts of data. In the experiment we used a larger value
of ε instead, to obtain a similar effect. The information gain
experiment reflects similar trade-offs between privacy and
system lifetime as those observed in the count experiment.
In addition, we varied the value of the threshold to evaluate
its impact on the system. The farther the monitored threshold
is from the actual values measured throughout typical system
operation, the less the likelihood of local breaches that require
communication between the nodes and further loss of privacy.

Figure 12 shows the three-way trade-off for the trusted-
third-party baseline. As before, this setting allows for longer
system lifetime within the same privacy constraint. Moreover,
since the aggregated signal is stronger, the effect of the privacy
parameter ε in the evaluated range is negligible with respect
to that of the monitored threshold.
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Fig. 12. Trusted-third-party baseline for monitoring the information gain of
the “febru” feature with error margin 0.0005

The outcome of the monitoring process was highly accu-
rate within the given error margins. Over all the conducted
experiments, there were on average 2.9 ± 1.2 false positives
and 8 ± 2.6 false negatives in the evaluation of the condition
on the global count, and 0.2±0.6 false positives and 3.6±10.8
false negatives in the evaluation of the condition on the global
information gain, out of hundreds and thousands of monitoring
rounds. The output of the privacy-preserving system reflected
the actual system state in more than 99.5% of the monitored
rounds.

The naive algorithm: we note that for any value of ε,
running the naive algorithm with the same accuracy guarantees
as in the setup described above (per Theorems 5.1 and 5.2)
would allow only for 18 rounds (the noise ~ni,t in Algorithm 3
is sampled from the distribution Laplace( 18∆1(g)

ε )).

A. Additional Trade-offs

Beyond the direct trade-off between privacy and system
lifetime, additional factors affect the balance between the two.
In this section we explore how setting different values for
the error margins and the number of violation rounds affects
system performance.

1) Varying Error Margins: As mentioned in Section IV-B,
the threshold can be augmented with error margins to mitigate
excessive communications when the global average vector is
close to the threshold. The augmented threshold is used to
set the admissible region and the safe zones, but once a local
constraint is breached and the nodes synchronize to check for a
global breach, the check is made against the original threshold.

Beyond the smaller communication costs, augmenting the
threshold with error margins also makes the monitoring al-
gorithm more resilient to the noise introduced for enhancing
privacy. The accuracy in evaluating the monitored global con-
dition can thereby be traded-off for increased system lifetime
or a stricter privacy constraint.

Figures 13 and 14 show the privacy accuracy trade-offs
when monitoring the spam messages count with thresholds
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T = 4800 and T = 5000 respectively. Similarly, figure 15
shows the trade-off when monitoring the information gain of
the “febru” feature with the threshold T = 0.002. Higher
error margins mean that the admissible region is larger, and
consequently the safe zones assigned to the nodes are larger.
The larger safe zones reduce the number of false positives
incurred due to the noisy monitoring process, such that there
are fewer synchronization rounds. Consequently, the system
can be monitored for longer periods of time with the same
privacy constraints.

0 50 100 150 200
0

10000

20000

30000

40000

Error margin

Sy
st

em
lif

et
im

e
in

ro
un

ds ε = 0.5
ε = 1.0
ε = 1.5
ε = 2.0

Fig. 13. Different error margins when monitoring the number of spam
messages against a threshold of T = 4800 with 5 violation rounds
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Fig. 14. Different error margins when monitoring the number of spam
messages against a threshold of T = 5000 with 5 violation rounds
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Fig. 15. Different error margins when monitoring the information gain of
the “febru” feature against a threshold of T = 0.002 with 5 violation rounds

2) Varying Number of Violation Rounds: The bound b on
the number of violation rounds has two opposing effects on
the system lifetime. Increasing the bound allows the system to
sustain more local breaches (and the resulting synchronization
rounds) before the privacy budget is exhausted. However, at
the same time, the privacy budget assigned for monitoring each
sequence of silent rounds that ends with a violation round will
be smaller. This in turn will introduce more noise into the
monitoring process, increasing the likelihood (and therefore
the frequency) of violation rounds.

Figures 16 and 17 show the effect of different bounds on
the number of violation rounds when monitoring the number
of spam messages with thresholds T = 4800 and T = 5000
respectively. Similarly, Figure 18 shows that effect when
monitoring the information gain of the “febru” feature with
the threshold T = 0.002. The aforementioned opposing effects
of the number of violation rounds are evident in the decrease
in system lifetime when the number of violation rounds is too
low or too high. The system lifetime peaks in the “sweet spot”
where these opposing effects are balanced. Furthermore, when
the privacy constraints are weaker and ε is higher, it is possible
to sustain more violation rounds without a large increase in
false positives, resulting in longer system lifetime.
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Fig. 16. Different number of violation rounds when monitoring the number
of spam messages. T = 4800 with an error margin of 100
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Fig. 17. Different number of violation rounds when monitoring the number
of spam messages. T = 5000 with an error margin of 100

VII. DISCUSSION AND FUTURE WORK

We demonstrated in this paper how communication-
efficient distributed monitoring algorithms can be leveraged
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Fig. 18. Different number of violation rounds when monitoring the informa-
tion gain of the “febru” feature. T = 0.002 with an error margin of 0.001

towards privacy-preserving monitoring of a global condition
over long periods of time. We provided theoretical analysis
of the proposed algorithm, and evaluated experimentally some
of the trade-offs between the privacy constraint, the system
lifetime, and the monitored threshold. Beyond these direct
trade-offs, we studied additional factors that affect the balance
between privacy and system performance: error margins that
augment the monitored threshold, and the bound on the number
of violation rounds.

For future research, we note that more sophisticated meth-
ods for violation recovery, such as local communication be-
tween nodes rather than global synchronization, could allow, in
some cases, further mitigation of privacy loss while monitoring
the system. Prediction models that tailor safe zones to nodes
[34], [35] also show promise in reducing the probability of lo-
cal safe zone breaches, allowing further increase in the system
lifetime. In addition, once the window of processed elements
advances beyond elements that contributed to violation rounds,
the privacy loss induced by those rounds can be discounted.
This gives rise to the option of replenishing the violation round
limit, allowing further extension of the system lifetime within
the given privacy constraint.
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