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Abstract—Smart meters are integral to demand response in
emerging smart grids, by reporting the electricity consumption
of users to serve application needs. But reporting real-time usage
information for individual households raises privacy concerns.
Existing techniques to guarantee differential privacy (DP) of
smart meter users either are not fault tolerant or achieve (possibly
partial) fault tolerance at high communication overheads. In this
paper, we propose a fault-tolerant protocol for smart metering
that can handle general communication failures while ensuring DP
with significantly improved efficiency and lower errors compared
with the state of the art. Our protocol handles fail-stop faults
proactively by using a novel design of future ciphertexts, and
distributes trust among the smart meters by sharing secret
keys among them. We prove the DP properties of our protocol
and analyze its advantages in fault tolerance, accuracy, and
communication efficiency relative to competing techniques. We
illustrate our analysis by simulations driven by real-world traces
of electricity consumption.

I. INTRODUCTION AND RELATED WORK

The traditional power grid has a supply-follows-demand
usage model. Demand-response (DR) in emerging smart grids
holds promise for a demand-follows-supply alternative [2],
which has broad implications including (i) economically-
efficient electricity consumption in which elastic demand at
peak times is shifted to off-peak periods when supply is much
less expensive, and (ii) integration of intermittent green energy
sources (such as solar and wind) by managing demand on-line
to match fluctuating supply levels. By reporting essential load
information for key control decisions (e.g., how much load to
shed or shift when and where), smart metering is a critical
enabling technology for DR to succeed.

Smart meters report consumption for users at high frequency
(e.g., once per second) and in real time. This level of mon-
itoring can reveal much private information about the users
and subject them to various undesirable outcomes [10], [14],
e.g., whether they use the exercise room much (discriminating
pricing of health insurance), if they watch TV a lot (predatory
advertising), or even stealthy surveillance in general [7]. Public
outcry about privacy has led to the banning of smart meters in
North American cities [19], and derailed a planned mandatory
deployment of smart meters in the Netherlands [8]. Where
they are still deployed, users must now consent to opting in
voluntarily. It is clear that users will not opt in if the privacy
implications of doing so remain unclear.

In this paper, we aim to remove critical privacy barriers for
users to participate in DR, so that current advances in smart
grid technologies can fulfill their true promise of economic and
social impact. Our specific aim is to provide strong privacy
assurance for users who contribute their consumption data to
aggregators managing DR programs. We adopt differential pri-
vacy (DP) [4] as the privacy notion because as an information-
theoretic measure, it is independent of any attack methods or
indeed any assumed computational limitations of the adversary.
It is also a strong notion that guarantees the privacy of any
single value in a dataset even if the adversary knows all the
other values.

DP is a privacy approach of much current interest [5], [11]
and its use in DR aggregation protocols is mainly characterized
by the need to distribute the noise for privacy protection among
smart meters which report to the aggregator [1], [3], [15],
[18]. Certain of the prior aggregation protocols are not fault
tolerant [15], [18], meaning that they will fail if some partic-
ipating meter(s) fails to report. This presents clear difficulties
in practical deployments, since smart meters, as inexpensive
home devices in unprotected environments, are unreliable, and
their communication typically occurs over unreliable network
channels as well. It is unacceptable that the unavailability of
isolated parts of the network will prevent the operation of the
DR program as a whole.

To achieve fault tolerance in aggregation protocols, there are
two possible approaches: reactive and proactive. A reactive
protocol learns about failures after-the-fact and initiates recov-
ery actions from them afterwards. A state-of-the-art reactive
protocol [1] achieves small errors in spite of failures, but it
requires multiple rounds of message exchanges between the
smart meters and aggregator, which increases the required
network bandwidth and delay. More importantly, the protocol
is tolerant of partial failures only.

We now give a succinct account of how the reactive protocol
in [1] can fail under communication failures. A basis of the
protocol is that it distributes noise for privacy and keys for
message encryption among the meters, which report their
respective shares to the aggregator. When the aggregator sums
up the reported values, the noise should add up to that required
for differential privacy, and the keys must sum to zero. For fault
tolerance, the meters have set up prior partnership agreements
with each other, so that two partners share each other’s keys.
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The protocol works as follows (see [1] for details). In round
one, the meters report. In round two, the aggregator broadcasts
to all the meters an id list of the meters who did not report
(i.e., failed). In round three, a working meter, say i, who is a
partner of a failed meter, say j, reports j’s key on behalf of j.
It is clear that if either round two or three fails, the keys do
not cancel out and the aggregation fails.

In a proactive protocol, smart meters send redundant infor-
mation in anticipation of faults. Should a fault occur actually,
the needed information for recovery is already available, which
reduces the recovery time significantly. Indeed, a proactive
protocol may handle failures using one (unidirectional) com-
munication step from the working meters to the aggregator
only [3].

The state-of-the-art proactive protocol, the binary proto-
col [3], suffers from several important practical problems,
however. First, the binary protocol sends redundant information
for proactive recovery as a binary interval tree encoding of the
meters, which has O(logN) bandwidth cost even in normal
operation (i.e., no failures). Hence, it achieves low delay at the
expense of high bandwidth (if N = 4000, the bandwidth cost
is 12 times). Second, its bandwidth cost for supporting meter
join/leave is linear in N . Since N can be quite large in practice,
the overhead is of concern in dynamic environments where
there are non-negligible churns of participants for reasons such
as meters turned on and off, plugged in and unplugged, or
failing and recovering. Third, the error of the protocol grows
with N as well (see Table I). A large error will compromise
the effectiveness of the demand response. For example, if an
aggregator uses inexact aggregate consumption to determine
real-time electricity prices, the prices may not be fair or truly
market-efficient.

In this paper, our main contribution is the design, privacy
analysis, error analysis, and complexity analysis of a proactive
fault-tolerant aggregation protocol for privacy-assured demand-
response.
• Compared with the state of the art in reactive fault

tolerance [1], our protocol is significantly more efficient
in supporting meter join. Although it sends redundant
information for proactive recovery, in steady-state normal
operation (i.e., no failures), the redundancy is only one
future ciphertext (see Sec. IV-C), whose presence doubles
the message size, per time slot. In comparison, the re-
active protocol does not increase the message size, but
it requires three messages per slot, compared with one
in the proposed protocol. Hence, our protocol is more
bandwidth-efficient, by about 50%. More importantly, our
protocol is fully resilient against communication failures,
whereas the protocol in [1] is not as we discussed.

• Compared with a state-of-the-art binary protocol [3], our
protocol has the same level of fault tolerance. However,
our protocol (i) is significantly more efficient in normal
operation (constant bandwidth vs. logN ), (ii) is signifi-
cantly more efficient in supporting meter join/leave (con-
stant bandwidth vs. linear in N ), and (iii) has significantly
reduced error which grows with the number of failed
meters w only, but not N (Table I).

Table I compares our protocol with major related protocols
in the literature, in terms of fault tolerance, communication
complexity (bandwidth cost), communication model, and error.

Our other contributions are as follows. We present how the
division of a privacy budget in our protocol can be optimized
to minimize the aggregation error (i.e., the RMSE defined in
Sec. IV-E), and show how the error can be reduced further
by a notion of individual sensitivity. Furthermore, we present
simulation results based on real-world traces of electricity
consumption in the U.K. and Singapore to illustrate the per-
formance of the proposed protocol and its improvements over
the binary protocol in real-world environments.

II. PRELIMINARIES

We adopt differential privacy (DP) [4] as our privacy defini-
tion. For background, we discuss its meaning, noise generation
techniques, and composition properties.

A. Differential privacy
Definition 1. (ε-differential privacy) A randomized algorithm
A is ε-differentially private if for any two datasets D1 and D2

that differ on a single element, and for all S ⊆ Range(A),

Pr(A(D1) ∈ S) ≤ exp(ε) · Pr(A(D2) ∈ S).

A differentially private algorithm A provides privacy be-
cause, given any two datasets which differ on a single element
only, respective results of a same query on the datasets are
not distinguishable. Therefore, an adversary cannot infer the
value of any single element in the dataset. Here, ε represents
the level of privacy. A smaller value of ε means better privacy,
but it also implies lower accuracy of the query result.

B. Differential privacy via Laplace noise
Dwork [4] proves that adding i.i.d. Laplace noise Lap(λ) to

a query result achieves ε-differential privacy. The Laplace noise
Lap(λ) is sampled from a Laplace distribution of parameter λ
defined as

λ =
GSf
ε
,

where GSf denotes the global sensitivity of the function f .
In smart metering, f is the electricity consumption of say
a household, so GSf is the maximum amount that any one
household can consume over any reporting period. λ is also
called the noise scale. A random variable that follows the
Laplace distribution has standard deviation

√
2 ·λ and expected

absolute deviation λ. As a result, the smaller ε is, the noisier the
outputs and hence the higher the level of privacy guaranteed.

C. Distributed Laplacian noise generation
In demand-response (DR) smart metering, if there are ad-

versaries against the privacy of participating users, each meter
should generate shares of random noise in a distributed manner.
Dwork et al. [6] show that Gaussian noise provides (ε, δ)-DP,
where δ is the probability that the loss of privacy is not bounded
by ε. In [18], each meter adds Laplace noise probabilistically to
achieve (ε, δ)-DP. Alternatively, [1] makes use of the infinite
divisibility of the Laplace distribution to achieve ε-DP. It is
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TABLE I: Comparison between the proposed protocols and related aggregation protocols for smart metering.
Scheme Fault-tolerant? Bandwidth in Bandwidth for Comm. model Error Encryption

normal operation join, leave in reporting (RMSE)

[15] No O(1) O(1), O(1) C ⇔ S O(1) Homomorphic
[18] No O(1) O(N), O(N) C → S O(1) Exponentiation
[1] Partially O(1) O(N), O(1) C ⇔ S O(1) Modular addition
[3] Yes O(logN) O(N), O(N) C → S Õ

(
(logN)1.5

√
w + 1

)
Exponentiation

This paper Yes O(1) O(k ×B), O(k) C → S O(
√
w + 1) Modular addition

N is the total number of meters and w is the number of failed meters. The Õ(·) notation hides a log logN factor. C ⇔ S means bi-
directional communication between client and server, C → S means client-to-server uni-directional communication. k and B are constant
design parameters of the protocol; k � N and B � N in practice. Our scheme achieves true fault tolerance against communication failures,
unlike [1], [15], [18]. It has the same fault tolerance as [3], but much reduced errors and bandwidth overheads (see Sec. IV-C for details).
It also requires uni-directional communication only when smart meters report to the aggregator. Our scheme uses modular addition-based
encryption, which is much more efficient than homomorphic or exponentiation-based encryption.

known that the Laplace distribution can be assembled from the
sum of i.i.d. gamma distributions [9].
Infinite divisibility of Laplace distribution [9, Proposition
2.4.1] Let Lap(λ) denote a random variable which is sampled
from a Laplace distribution with pdf f(x, λ) = 1

2λe
|x|/λ. Then

the distribution Lap(λ) is infinitely divisible. Furthermore, for
every integer n ≥ 1, Lap(λ) =

∑n
i=1 (G(n, λ)−G′(n, λ)),

where G(n, λ) and G′(n, λ) are i.i.d. with gamma density
g(x, n, λ). The gamma density is defined as

g(x, n, λ) =
(1/λ)

1/n

Γ (1/n)
x

1
n−1e−x/λ,

where Γ (1/n) is the Gamma function evaluated at 1/n.
In our case, if the number of smart meters in an aggregation

group is N , each smart meter, say i, adds Gi(N,λ)−G′i(N,λ)
to its consumption data xi before reporting. Then the sum of
the reported data is given by

N∑
i=1

xi +

N∑
i=1

(Gi(N,λ)−G′i(N,λ)) =

N∑
i=1

xi + Lap(λ).

Therefore, ε-differential privacy is provided.

D. Composability

The composition of differentially private algorithms also
provides differential privacy, but it produces different results
depending on the data to which the queries are applied.
Sequential composition [12, Theorem 3] Let Ai each pro-
vide εi-differential privacy. The sequence of Ai(X) provides
(
∑
i εi)-differential privacy.

Parallel composition [12, Theorem 4] Let Ai each provide
εi-differential privacy. Let Di be arbitrary disjoint subsets of
the input domain D. The sequence of Ai(X ∩ Di) provides
ε-differential privacy.

In other words, if we run an ε-DP algorithm t times on
a dataset X , the result becomes ε × t-differentially private.
However, if we run an ε-DP algorithm t times on disjoint
subsets of the dataset X , the result remains ε-differentially
private.

III. SYSTEM MODEL AND PROBLEM DEFINITION

A. Problem definition

We assume that in a DR deployment, there are one aggrega-
tor and N smart meters. Each smart meter, say i, measures its
electricity consumption xi,t in each time slot t, and sends it to
the aggregator at the end of the time slot. The aggregator only
needs to know

∑N
i=1 xi,t, i.e., the total power consumption in

t, in order to control the demand response, e.g., reduce peak
loads of the power grid or match the aggregate consumption
to available supply. The aggregator does not need to know
the electricity consumption of individual users, and we aim to
protect this private information from possible privacy attacks
by a “curious” aggregator. To do so, we need to design
a differentially private protocol to aggregate the electricity
consumption reported by individual smart meters in real time.
We seek the following desirable features for the protocol.
• Privacy protection with small errors. The protocol

should allow the aggregator to know the total electricity
consumption of users with little loss of accuracy to ensure
the performance of the demand response, while protecting
the privacy of individual consumption data.

• Cost effectiveness. Smart meters are home devices that
must have low cost, either for consumer adoption or for
utility companies to pay for them at large scales. As such,
their computing power is limited. Therefore, the protocol
should have low computational requirements at the meters.
Similarly, the protocol should have low communication
overheads and bandwidth requirements, to reduce the cost
of the supporting network infrastructure.

• Scalability. The communication overhead of the protocol
should remain small even if the number of participating
smart meters is big in large-scale deployments.

• Fault tolerance. As low-cost devices running in unpro-
tected environments, smart meters are prone to failures.
Transient or longer-term communication failures are also
not uncommon, due to say network congestions, routing
changes, and faulty network connections. Therefore, the
protocol should be tolerant of device and communication
failures (fail-stop faults), so that the DR program may
remain operational as a whole even if parts of the infras-
tructure should become unavailable.
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B. Trust model
In this paper, we consider a semi-honest (honest-but-curious)

trust model [1], [3], [15], [18]. The aggregator is untrusted in
that a curious aggregator may try to compromise someone’s
private information through the aggregation protocol. A small
fraction of the smart meters may collude with the curious
aggregator. Smart meters will in general hide the information
they have before reporting it to the aggregator. To assist the
curious aggregator, however, colluders may deviate from the
protocol by providing their own information in the clear to the
aggregator. In general, the aggregator will follow the prescribed
protocol, except that a curious aggregator may try to exploit
illegitimate information provided by colluders.

C. Network model
We assume that smart meters have a bi-directional commu-

nication channel with the aggregator. The smart meters are
not connected to each other directly, but they can exchange
encrypted messages among themselves via the aggregator or
intermediate routers through end-to-end secure channels. Al-
though the communication links between smart meters and
the aggregator are fairly reliable, loss of communication may
still happen occasionally, due to reasons such as network
congestions and routing changes. Of course, we may also lose
communication if the source of the communication, i.e., a
smart meter, fails. We refer to the loss of communication as a
communication failure, whether the problem is with the meter
or the communication channel.

IV. PROTOCOL DESCRIPTION AND ANALYSIS

A. Initial setup
Each smart meter is configured with a private key and em-

bedded with a corresponding certificate issued by a certification
authority. The certificates are issued by trusted manufacturers
when they produce the meters. When a new meter joins
the network, it sends its certificate to the aggregator. The
aggregator assigns identification numbers sequentially for all
the smart meters as they join. After registering a new meter
that joined, the aggregator broadcasts the new meter’s id, as
well as the (possibly changed) maximum id N , so that every
meter knows N . We assume that meter ids are reused once their
old owners left the system and their associated keys expired,
so that N is approximately equal to the total number of smart
meters participating in the protocol.

After a new meter, say i, joins, it randomly selects k other
meters as partners, and requests their certificates (public keys)
from the aggregator. Here, k is a system parameter that should
be large enough so that the probability that all the k partners
of i are colluders is negligible. We assume that secure channels
between partnering smart meters are established based on
public key encryption. Hence, for each partner meter, say m, i
chooses a random number ski,m to be the encryption key that
it shares with m, and sends the shared key to m.

To avoid the case that many meters select (randomly) the
same meter m as partner and hence share secret keys with
it, which strains m’s local memory to store the keys, each
meter will only accept shared keys from at most k + C other

meters, where C is a small constant and k � C. After this
limit is reached, the meter will refuse to accept more partners.
In general, meter i will try to select another meter as a new
partner if (i) i sent a partner request to an original meter m but
either m refuses or i does not get an acknowledgment from m,
or (ii) an existing partner of i’s, say m, leaves the system (see
Sec. IV-C).

B. Secure aggregation without fault tolerance
In this section we describe how a meter reports its readings

to the aggregator in a secure way. As an initial step, a smart
meter, say i, calculates x̃i,t = xi,t +Gi,t(N,λ)−G′i,t(N,λ),
where xi,t is its consumption in time slot t, G(N,λ) and
G′(N,λ) are i.i.d. random variables with gamma density, and
the sum of the random variables from all the meters guarantees
differential privacy, due to the infinite divisibility of the Laplace
distribution stated in Sec. II-C.

However, x̃i,t by itself is not enough to ensure the privacy
of meter i because the noise of Gi,t(N,λ) − G′i,t(N,λ) may
not perturb xi,t sufficiently [1]. As a result, x̃i,t should be
encrypted as a ciphertext before being sent to the aggregator –
the aggregator can only decrypt the sum of ciphertexts from
all the meters but not the individual ciphertexts. We adopt
modular addition-based encryption. This is because a smart
meter has limited computing power and modular addition-
based encryption is significantly faster than exponentiation-
based encryption. Moreover, modular addition-based encryp-
tion produces smaller ciphertexts in general.

In the encryption step, a meter, say i, encrypts x̃i,t by adding
a random number ri,t. The random number is formed from
component random numbers generated by a secure pseudo
random number generator (PRNG) with the meter’s shared
keys as seeds. Specifically,

ri,t =
∑
m∈M

PRNG(ski,m, t)−
∑
l∈L

PRNG(skl,i, t),

where M denotes the set of partners i chose and L denotes the
set of partners that chose i. Note that the encryption uses the
sum operation because it is addition-based. Also, t is a global
and public time slot number that increases after every reporting
time interval of consumption. Since t changes at every time
slot, ri,t also changes at every time slot. Note that

∑N
i=1 ri,t =

0 since PRNG(ski,m, t) in ri,t is equal to PRNG(ski,m, t)
in rm,t and they cancel out in the summation performed by the
aggregator. Smart meter i then sends x̃i,t + ri,t as a ciphertext
to the aggregator.

If the aggregator receives all the ciphertexts, it can calculate
the aggregated sum as follows:
N∑
i=1

(x̃i,t + ri,t) =

N∑
i=1

x̃i,t +

N∑
i=1

ri,t =

N∑
i=1

xi,t + Lapt(λ).

This protocol satisfies ε-differential privacy due to Lapt(λ).
If we assume that a fraction pc of the smart meters are
colluders in that they supply clear information without adding
the prescribed Gamma noise, then each smart meter adopts
Gi,t(N−N ·pc, λ)−G′i,t(N−N ·pc, λ) instead of Gi,t(N,λ)−
G′i,t(N,λ). This protocol is in fact an all-or-nothing protocol
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aggregator	  

sm1	  

c1,t	   ,	  ĉ1,t+B 	  	   ĉ1,t	   …	  
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ĉ1,t+1	   ĉ1,t+B-‐2	   ĉ1,t+B-‐1	  

ĉ2,t	   …	  ĉ2,t+1	  

ĉ3,t	   …	  ĉ3,t+1	   ĉ3,t+B-‐2	   ĉ3,t+B-‐1	  

ĉ4,t	   …	  ĉ4,t+1	   ĉ4,t+B-‐2	  

ĉ5,t	   …	  ĉ5,t+1	   ĉ5,t+B-‐2	   ĉ5,t+B-‐1	  

t	   t+1	   t+B-‐2	   t+B	  t+B-‐1	  

Fig. 1: Illustration of future ciphertext buffering.

since if the aggregator fails to receive one or more ciphertexts
from the meters, it cannot obtain any useful information
because the sum of ri,t will not be zero.

C. Secure aggregation with fault tolerance

In this section, we present a secure proactive aggregation
protocol with fault tolerance, using a novel design of future
ciphertext buffering.

Future ciphertext buffering. Each smart meter i sends two
kinds of ciphertexts to the aggregator, namely current cipher-
texts and future ciphertexts. The current ciphertext is given by

ci,t = x̃i,t + ri,t = xi,t + Ĝi,t(N,λ) + ri,t,

where Ĝi,t(N,λ) denotes Gi,t(N,λ)−G′i,t(N,λ). The future
ciphertext is given by

ĉi,t = Ĝi,t(N,λ) + ri,t + Lapi,t(λ).

Note that Lapi,t(λ) is a Laplace noise generated solely by i.
We assume that the aggregator has a memory buffer so that it
can store B future ciphertexts per meter. In a time slot, each
meter i sends one current ciphertext and b future ciphertexts
(0 < b ≤ B). The purpose is for i to always try to fill the ag-
gregator’s buffer with its future ciphertexts, as shown in Fig. 1.
Suppose, for example, that in time slot t, the aggregator already
has B − 1 future ciphertexts: ĉi,t, ĉi,t+1, ĉi,t+2, . . . ĉi,t+B−1.
Then, i sends just two ciphertexts in t: one current cipher-
text ci,t and one future ciphertext ĉi,t+B . If the aggregator
successfully receives the ciphertexts, it stores ĉi,t+B in its
buffer. If i fails in time slot t, so it does not report in
that round, then in the next time slot t + 1, it will try to
send one current ciphertext ci,t+1 and two future ciphertexts
ĉi,t+B and ĉi,t+1+B . In steady-state normal operation (i.e.,
without failures), the protocol sends one current ciphertext and
one future ciphertext per time slot. Hence, although it adds
redundancy for proactive recovery, it is in fact more bandwidth
efficient than the reactive protocol in [1].

Note that current ciphertexts and future ciphertexts contain
two random numbers in common: Ĝi,t(N,λ) and ri,t. Assume
that in time slot t − B, i sends a future ciphertext ĉi,t.
After B time slots, i will send a current ciphertext ci,t. If a
current ciphertext and a future ciphertext contain the same t,
Ĝi,t(N,λ) in ci,t is equal to Ĝi,t(N,λ) in ĉi,t and ri,t in ci,t
is equal to ri,t in ĉi,t.

Buffer size requirements. Assume that electricity consump-
tion measured by a smart meter is a 32-bit value, and the

number of meters is 220. Then, the modulus value for modular
addition is 252, which means that the size of a future ciphertext
is 52bits. Therefore, if we assume that B is 210, the total buffer
size required for the future ciphertexts is 52 × 220 × 210 bits
which is approximately equal to 6.5GB. By the standard of
today’s consumer device technologies, it is a low memory
requirement (for reference, portable terabyte disk drives sell
at about US$50).

Decryption. In the case that the aggregator receives the current
ciphertexts from all the meters, it can decrypt the sum using
only the current ciphertexts:

N∑
i=1

ci,t =

N∑
i=1

x̃i,t +

N∑
i=1

ri,t =

N∑
i=1

xi,t + Lapt(λ).

If the aggregator fails to receive a current ciphertext cj,t from
meter j in time slot t, it can use j’s future ciphertext ĉj,t
buffered to decrypt the sum. Particularly, if only one smart
meter j failed and did not report, the aggregator gets the sum
as follows:

N∑
i=1,i6=j

ci,t + ĉj,t =

 N∑
i=1,i 6=j

x̃i,t +

N∑
i=1,i 6=j

ri,t


+
(
Ĝj,t(N,λ) + rj,t + Lapj,t(λ)

)
=

N∑
i=1,i 6=j

xi,t +
N∑

i=1,i6=j

Ĝi,t(N,λ) + Ĝj,t(N,λ)

+
N∑

i=1,i 6=j

ri,t + rj,t + Lapj,t(λ)

=
N∑

i=1,i 6=j

xi,t +

N∑
i=1

Ĝi,t(N,λ) +

N∑
i=1

ri,t + Lapj,t(λ)

=
N∑

i=1,i 6=j

xi,t + Lapt(λ) + Lapj,t(λ).

The aggregator will obtain the sum not including xj,t, and
the accuracy degrades by Lapj,t(λ) as a result. In general,
the aggregator is still able to calculate the sum when more
meters fail, albeit at the cost of a larger error. Specifically,
if w smart meters failed, w + 1 values of Laplace noise will
remain. Therefore, the proposed scheme generates O(

√
w + 1)

error when w smart meters failed to report.

Join of new meter. Assume that a smart meter, say i, joins
just before time slot t. i will have to send its shared keys
to k meters it chooses to partner with and upload B future
ciphertexts to the aggregator: ĉi,t, ĉi,t+1, ĉi,t+2, . . . ĉi,t+B−1,
before it sends the first current ciphertext ci,t in time slot
t. Let m be a chosen partner of i’s who accepts a new
shared key from i. m will also need to upload new ciphertexts
ĉm,t, ĉm,t+1, ĉm,t+2, . . . ĉm,t+B−1 to the aggregator. Thus, the
communication cost of supporting meter join is O(k ×B).

Leave of existing meter. Suppose that i decides to leave the
network with effect in time slot t. In time slot t−B, i will have
to inform the aggregator of its leave decision in advance, and
the aggregator will broadcast a leave announcement message
containing the id of i and t, denoted by leave(i,t).
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Fig. 2: Our fault-tolerant secure aggregation protocol. At time
t, smart meters send both current ciphertext (ci,t) and future
ciphertexts (ĉi,t′ ).

The leave decision of i will affect two types of meters: those
chosen by i to be partners, and those who chose i to be a
partner. Let m be a partner of i’s (whether m chose i or was
chosen by i). It shares a key ski,m with i. Before time slot t,
m will still use the shared key for its current ciphertext and
any future ciphertexts before t, but it will discard the key in t
and stop using it for future ciphertexts starting from that time
slot.

Let l be a smart meter which chose i as a partner, and hence
shares key skl,i with i. When l receives the leave notification
about i, it will need to find another partner to replace i starting
from time slot t and maintain the number of meters it chooses
to partner with at k. Since there are at most k + C smart
meters, where C is a constant and k � C, which chose i
as a partner, at most k + C meters will need to find another
partner. Therefore, the total communication cost for meter leave
is O(1 + k + C) = O(k).

Note that a meter, say i, that failed will leave the system
abruptly, without executing the proper procedure. In this case,
the aggregator detects the failure after not hearing from i for
some time duration. It then initiates handling of the abrupt
leave, by broadcasting a leave message on behalf of i with t
set to the time slot of the last future ciphertext the aggregator
has from i.

D. Privacy analysis of proposed secure aggregation protocol

Theorem 1. Our secure aggregation protocol with fault toler-
ance, which is shown in Fig. 2, provides 2ε-DP if λ = GSf/ε.

Proof: To analyze the privacy of the protocol, the main
task is to account for the information available in the future
ciphertexts. To do so, suppose that based on the information it
receives in the protocol, the aggregator performs N+1 queries
on the data. The first query is on the entire dataset about all
the meters. Let Z denote the set of smart meters that have
failed. If Z is empty, the query result is

∑N
i=1 xi,t +Lapt(λ),

which satisfies ε-differential privacy. Otherwise, the aggregator
obtains

∑N
i=1,i6∈Z xi,t +

∑
z∈Z Lapz,t(λ) + Lapt(λ) which

satisfies ε-differential privacy as well, albeit with a larger error
than in the case of no failures. We refer to the result of the
first query as the primary result.

The other N queries are run on disjoint datasets, specifically
one for each of the N smart meters. A curious aggregator can

abuse meter i’s future ciphertext ĉi,t in time slot t to infer xi,t,
by computing

ci,t − ĉi,t =
(
xi,t + Ĝi,t(N,λ) + ri,t

)
−
(
Ĝi,t(N,λ) + ri,t + Lapi,t(λ)

)
= xi,t − Lapi,t(λ),

even if it successfully received ci,t and should not have to use
ĉi,t. By doing this, for each i, the aggregator can calculate i’s
xi,t perturbed by Lapi,t(λ), i.e., xi,t − Lapi,t(λ). Since the
Laplace distribution has a symmetric shape about the mean
zero, xi,t−Lapi,t(λ) also provides ε-DP on data xi,t. We refer
to the results of the N queries as the sly results. The xi,t’s on
which the N queries are performed are disjoint datasets, Hence,
ε-differential privacy is achieved by the parallel composition
rule ([12, Theorem 4]). In time slot t, from the perspective
of meter i, the two query results which contain xi,t satisfy
ε-DP. As a result, by the sequential composition rule ([12,
Theorem 3]), 2ε-DP is satisfied.

E. Error optimization by meter failure probability
The privacy budget of the proposed protocol is a sum of

two parts, one given to the primary result and the other given
to the sly results (see proof of Theorem 1). Assume that in
each time slot, meters fail independently with probability p.
In this section, we describe how to reduce the errors of query
results by optimizing the division of the DP budget given p.
For example, in the proof of Theorem 1, we divided the privacy
budget ε equally between the primary result and the sly results,
and achieved 2ε-DP overall. However, we can achieve the same
2ε-DP by a different division of the budget, for example, 1.5ε
for the primary result and 0.5ε for the sly results. In general,
for our fault-tolerant aggregation protocol to support ε-DP, the
s.d. of noise needed is√

2

(
GSf
α

)2

+ 2 ·N · p ·
(
GSf
ε− α

)2

, (ε > α > 0), (1)

where N ·p is the expected number of smart meters that failed
to transmit. α is the privacy share of the primary result and
ε−α is that of the sly results, so that ε-DP is achieved overall.
Note that the s.d. quantity (1) is in fact equal to the root mean
square error (RMSE) of the per-period aggregation results. As
such, it quantifies the overall error of the aggregation protocol.

The first term inside the square root of (1) is the variance of
noise generated in a distributed manner to perturb the primary
result, which depends on α. The second term is the variance of
noise introduced by the future ciphertexts of individual smart
meters that failed, which depends on p and α. Intuitively, if p is
small, most of the time the aggregator successfully receives the
current ciphertexts from all the meters, so that it can calculate
the sum without any future ciphertexts. Hence, if we set α
larger approaching ε, the s.d. of noise becomes smaller. On
the other hand, if p is high, α should be smaller to reduce the
impact of the second term. The optimal α for minimizing the
s.d., which is the aggregation error, can be calculated given p.

Fig. 3 illustrates analytical results for the aggregation error
when ε is 1, GSf is 33,000W, and N is 2,000. Fig. 3 (a) shows
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Fig. 3: Minimizing the RMSE by dividing the overall privacy budget between the primary result and the sly results, when
supporting ε-DP.

the optimal α values that minimize the error with respect to
p. The optimal α decreases from 0.787 to 0.386 as the failure
probability increases from 0.0001 to 0.002. Fig. 3 (b) compares
the aggregation errors for different p when α is fixed at 0.5,
versus when the optimal α values are applied. As shown in
Fig. 3 (c), by using the optimal α, the aggregation error is
reduced by 29% when p is 0.0001 and 7% when p is 0.002.

F. Error reduction by individual sensitivity
As shown in (1), when p is large, the noise for protecting

the sly results dominates that for the primary result. In this
section, we show that the noise for protecting the sly results
can be further reduced using a notion of individual sensitivity.

Definition 2. (Individual sensitivity) The individual sensitivity
of a smart meter, say i, is the quantity

Si = max
−∞<t<∞

xi,t,

where xi,t is the consumption data measured by i in time slot
t.

Hence, if i measures the electricity consumption of a house-
hold, Si is the maximum amount that the household can
consume in a time period. It is related to GSf by

GSf = max
1≤i≤N

Si. (2)

In the previous section, in order to perturb the sly results,
every smart meter adopts the same system parameter, GSf ,
to generate noise in the future ciphertexts. However, we can
reduce the noise by replacing the GSf in future ciphertexts by
Si. The s.d. of noise is then given by√√√√2

(
GSf
α

)2

+ 2 · p ·
N∑
i=1

(
Si

ε− α

)2

, (ε > α > 0). (3)

It is obvious that (3) is less than or equal to (1) due to (2).

Theorem 2. Our fault-tolerant secure aggregation protocol
based on individual sensitivity, shown in Fig. 4, supports ε-
DP, if λ1 = GSf/α and λ2 = Si/(ε− α), where ε > α > 0.

Proof: In time slot t, the aggregator obtains the primary
result and N sly results. Since the primary result is perturbed
by Laplace noise whose noise scale is λ1, α-DP is satisfied.
Since the N sly results obtained are parallel in terms of privacy,

Node 
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Node 
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...
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i
ti Lapx +∑
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primary result sly result of node i
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Fig. 4: Our fault-tolerant secure aggregation protocol based on
individual sensitivity in future ciphertexts ĉi,t′ .
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Fig. 6: Histogram of maximum power consumed, as recorded
for 39 electricity branches at a research center in Singapore.

and they are perturbed by Laplace noise whose noise scale is
λ2, each sly result guarantees (ε − α)-DP ([12, Theorem 4]).
Consequently, by the sequential composition rule ([12, Theo-
rem 3]), ε-DP is assured.

Fig. 5 and Fig. 6 illustrate the reduction in error made
possible by individual sensitivity based on real-world traces
of electricity consumption. Fig. 5 shows a histogram of the
maximum power1 consumed by 22 households in the U.K.

1Since the reporting time period is fixed, power is directly proportional to
electricity by a fixed scaling factor.
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Fig. 7: The computed aggregated sum of power loads for different α as a function of time, when p = 0.00001, GSf = 33kW,
and ε = 1. The optimal α is 0.787.
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Fig. 8: The computed aggregated sum of power loads using global sensitivity vs. individual sensitivity as a function of time,
when p = 0.001, GSf = 33kW, and ε = 1. The optimal α is 0.442.

from January 2008 to December 2009 [16]. In the histogram,
the largest value is 19,681W and the sum of all the maximum
powers is 242,015W. If we take the largest of the maximum
powers as the global sensitivity, and each maximum power
itself as the individual sensitivity, then if the expected number
of failed meters is one (i.e., p = 1/22) and α = 0.5, we can
obtain the ratio of (3) to (1) as:√

2 · (GSf/α)2 + 2 · p ·
∑N

i=1 (Si/(ε− α))2

2 · (GSf/α)2 + 2 · p ·N · (GSf/(ε− α))2
≈
√
0.67 ≈ 0.82

Therefore, we can expect an 18% reduction in the aggregation
error, by using individual sensitivity instead of global sensitiv-
ity.

Fig. 6 shows a histogram of the maximum powers we
recorded for 39 branches in the electricity network of the
Advanced Digital Sciences Center (ADSC), Singapore, from
May 28, 2012 to May 7, 2013. The measurement interval
is roughly two seconds and the largest measured value is
4,387W. In this setting, we can expect a 26% reduction in
the aggregation error, which is more than the 18% in the U.K.
household scenario. This is because at ADSC, one particular
branch of the electricity network consumed a lot more than the
other branches. In practice, it can be difficult for i to estimate
its own Si accurately beforehand. However, it is feasible to
exploit individual sensitivity by grouping smart meters by,
for example, the types of housing units (e.g., square footage,
construction technology, etc, of residential flats) they belong
to, and assign an individual sensitivity to each type.

V. EVALUATION

To evaluate our aggregation protocol, we make use of a state-
of-the-art generator for electricity traces [17]. The generator
produces synthetic electricity consumption for one household at
one minute resolution, based on realistic appliance and lighting
models, over one specific day of the year (so that typical sea-
sonal activities and weather conditions can be considered, for

example). Based on it, we produce traces for 2,000 households.
We specify the number of residents in each household using
U.K. statistics on household sizes in 2011 [13]. We select
the day to be a weekday in January. For the appliances in a
household, we choose them randomly among 33 available ones.
For differential privacy, ε is set to 1 and the global sensitivity
is set to 33kW, which is the sum of power demands of all
the appliances and lights. Each household also records its own
individual sensitivity, which is the sum of power demands of
its own appliances and lights.

Fig. 7 and Fig. 8 illustrate a trace of the actual total
consumption and the noisy total consumption for DP, from 7pm
to 8pm. The trace of actual sums is shown as the dashed line in
both figures. We run two separate simulations, corresponding
to a low communication failure scenario (p = 0.00001) and a
high failure scenario (p = 0.001), respectively2. Fig. 7 shows
the traces when p is 0.00001, and compares the two cases
when α = 0.5 and when α = 0.787, respectively. The latter
α value is the optimal α that minimizes the error according to
our analysis (Section IV-E). We measure the closeness between
the sequences of actual and noisy sums by the RMSE, i.e.,

RMSE =

√√√√ 1

T
·
T∑
t=1

(r̂t − rt)2,

where T = 1, 440 is the number of time slots in one day,
r̂ is the noisy sum, and r is the true sum. Fig. 9 shows the
RMSE of the proposed aggregation protocol under different
settings. For p = 0.00001, the RMSE is 65,928W when α =
0.5, whereas it is 46,166W when α is optimal (i.e., α∗ =
0.787). The optimal α provides a 30% reduction in RMSE
compared with the fixed α.

2As meters are sampled every minute, p = 0.00001 means a meter fails
once every 69.4 days on average, while p = 0.001 means a meter fails once
every 16.7 hours on average.
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Fig. 8 shows two traces when the optimal α (0.442) is used
with global sensitivity and individual sensitivity, respectively. p
is set to 0.001 in both cases. Because of more communication
failures in this setting, the DP-induced noise is generally higher
than in the case of p = 0.00001 in Fig. 7. As shown in
Fig. 9, for p = 0.001 and α = 0.442, the RMSE is 100,895W
under global sensitivity only, and 80,222W when individual
sensitivity is applied. Individual sensitivity contributes to an
approximately 20% reduction in the RMSE.

Fig. 10 compares the RMSE of our protocol under optimal
α and individual sensitivity, with a state-of-the-art proactive
binary protocol [3] whose fault tolerance is the same as our
protocol’s. The figure shows that the binary protocol generates
9.6 times and 18.7 times larger RMSE than our protocol when p
is 0.00001 and 0.001, respectively. Our significantly improved
accuracy is mainly because the amount of noise needed for
privacy in our protocol does not depend on N , whereas that of
the binary protocol does (see Table I).

VI. CONCLUSION

We have presented a fault-tolerant aggregation protocol for
smart meters to report consumption to an untrusted aggregator
with assured differential privacy. Our fault-tolerance approach
is proactive and based on a novel design of future ciphertexts.
We proved the differential privacy of our protocol. We also
analyzed its communication complexity in normal operation
and when meters join or leave. Although the proposed protocol
distributes trust and noise for differential privacy among the
meters, we showed that it can gracefully tolerate missing re-
ports due to communication failures. Computational efficiency
at the meters is assured by modular addition-based encryption.

Compared with a state-of-the-art proactive binary proto-
col [3], our protocol has the same fault tolerance but it is much
more bandwidth-efficient. Its aggregation error does not grow
with the total number of meters, unlike the binary protocol. We

presented minimization of the aggregation error based on the
communication failure probability and a notion of individual
sensitivity. Simulations driven by realistic energy traces showed
that the error reduction in practice is significant. Compared
with a state-of-the-art reactive protocol [1], our protocol is
bandwidth efficient. More importantly, the reactive protocol
will break when communication failures prevent encryption
keys to cancel out in a three-message exchange process. These
failures are quite possible in practical operation, but they will
not affect the fault tolerance of our protocol.
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