
Secure k-Nearest Neighbor Query over Encrypted
Data in Outsourced Environments

Yousef Elmehdwi, Bharath K. Samanthula, and Wei Jiang

Department of Computer Science, Missouri S&T
500 West 15th Street, Rolla, MO 65409, USA

Email: {ymez76, bspq8, wjiang}@mst.edu

Abstract— For the past decade, query processing on relational
data has been studied extensively, and many theoretical and
practical solutions to query processing have been proposed under
various scenarios. With the recent popularity of cloud computing,
users now have the opportunity to outsource their data as well
as the data management tasks to the cloud. However, due to
the rise of various privacy issues, sensitive data (e.g., medical
records) need to be encrypted before outsourcing to the cloud.
In addition, query processing tasks should be handled by the
cloud; otherwise, there would be no point to outsource the data
at the first place. To process queries over encrypted data without
the cloud ever decrypting the data is a very challenging task. In
this paper, we focus on solving the k-nearest neighbor (kNN)
query problem over encrypted database outsourced to a cloud:
a user issues an encrypted query record to the cloud, and the
cloud returns the k closest records to the user. We first present
a basic scheme and demonstrate that such a naive solution is
not secure. To provide better security, we propose a secure kNN
protocol that protects the confidentiality of the data, user’s input
query, and data access patterns. Also, we empirically analyze the
efficiency of our protocols through various experiments. These
results indicate that our secure protocol is very efficient on the
user end, and this lightweight scheme allows a user to use any
mobile device to perform the kNN query.

I. INTRODUCTION

As an emerging computing paradigm, cloud computing
attracts many organizations to consider utilizing the benefits
of a cloud in terms of cost-efficiency, flexibility, and offload of
administrative overhead. In cloud computing model [1], [2],
a data owner outsources his/her database T and the DBMS
functionalities to the cloud that has the infrastructure to host
outsourced databases and provides access mechanisms for
querying and managing the hosted database. On one hand, by
outsourcing, the data owner gets the benefit of reducing the
data management costs and improves the quality of service.
On the other hand, hosting and query processing of data out
of the data owner control raises security challenges such as
preserving data confidentiality and query privacy.

One straightforward way to protect the confidentiality of
the outsourced data from the cloud as well as from the
unauthorized users is to encrypt data by the data owner before
outsourcing [3]. By this way, the data owner can protect the
privacy of his/her own data. In addition, to preserve query pri-
vacy, authorized users require encrypting their queries before
sending them to the cloud for evaluation. Furthermore, during
query processing, the cloud can also derive useful and sensitive
information about the actual data items by observing the data

access patterns even if the data and query are encrypted [4],
[5]. Therefore, following from the above discussions, secure
query processing needs to guarantee (1) confidentiality of the
encrypted data (2) confidentiality of a user’s query record and
(3) hiding data access patterns.

Using encryption as a way to achieve data confidentiality
may cause another issue during the query processing step in
the cloud. In general, it is very difficult to process encrypted
data without ever having to decrypt it. The question here is
how the cloud can execute the queries over encrypted data
while the data stored at the cloud are encrypted at all times.
In the literature, various techniques related to query processing
over encrypted data have been proposed, including range
queries [6]–[8] and other aggregate queries [9], [10]. However,
these techniques are either not applicable or inefficient to solve
advanced queries such as the k-nearest neighbor (kNN) query.

In this paper, we address the problem of secure processing
of k-nearest neighbor query over encrypted data (SkNN) in
the cloud. Given a user’s input query Q, the objective of
the SkNN problem is to securely identify the k-nearest data
tuples to Q using the encrypted database of T in the cloud,
without allowing the cloud to learn anything regarding the
actual contents of the database T and the query record Q.
More specifically, when encrypted data are outsourced to the
cloud, we observe that an effective SkNN protocol needs to
satisfy the following properties:

• Preserve the confidentiality of T and Q at all times
• Hiding data access patterns from the cloud
• Accurately compute the k-nearest neighbors of query Q
• Incur low computation overhead on the end-user

In the past few years, researchers have proposed various meth-
ods [1], [11]–[13] to address the SkNN problem. However,
we emphasize that the existing SkNN methods violate at least
one of the above mentioned desirable properties of a SkNN
protocol. On one hand, the methods in [1], [11] are insecure
because they are vulnerable to chosen and known plaintext
attacks. On the other hand, recent method in [13] returns non-
accurate kNN result to the end-user. More precisely, in [13],
the cloud retrieves the relevant encrypted partition instead of
finding the encrypted exact k-nearest neighbors. Furthermore,
in [1], [12], [13], the end-user involves in heavy computations
during the query processing step. By doing so, these methods
utilize cloud as just a storage medium, i.e., no significant work

TABLE I
SAMPLE HEART DISEASE DATASET T

record-id age sex cp trestbps chol fbs slope ca thal num

t1 63 1 1 145 233 1 3 0 6 0
t2 56 1 3 130 256 1 2 1 6 2
t3 57 0 3 140 241 0 2 0 7 1
t4 59 1 4 144 200 1 2 2 6 3
t5 55 0 4 128 205 0 2 1 7 3

is done on the cloud side. Additionally, the existing SkNN
methods do not protect data access patterns from the cloud.
More details about the existing SkNN methods are provided
in Section II.

Along this direction, with the goal of providing better
security, this paper proposes a novel SkNN protocol that satis-
fies the above properties altogether. The protocols developed
in this paper are secure under the semi-honest model [14].
However, they can easily be extended to secure protocols under
other adversary models, such as malicious and covert, using
threshold based cryptosystem and zero-knowledge proofs.

A. Problem Definition

Suppose the data owner Alice owns a database T of n
records, denoted by t1, . . . , tn, and m attributes. Let ti,j denote
the jth attribute value of record ti. In our problem setting,
we assume that Alice initially encrypts her database attribute-
wise, that is, she computes Epk(ti,j), for 1 ≤ i ≤ n and
1 ≤ j ≤ m, where Epk denotes the encryption function of a
public-key cryptosystem that is semantically secure [15]. Let
the encrypted database be denoted by Epk(T). We assume
that Alice outsources Epk(T) as well as the future querying
processing services to the cloud.

Consider an authorized user Bob who wants to ask the
cloud for k-neighbor records that are closest to his input query
Q = 〈q1, . . . , qm〉 based on Epk(T). During this process,
Bob’s query Q and contents of database T should not be
revealed to the cloud. In addition, the access patterns to the
data should be protected from the cloud. We refer to such a
process as Secure kNN (SkNN) query over encrypted data in
the cloud. Without loss of generality, let 〈t′1, . . . , t′k〉 denote the
k-nearest records to Q. Then, we formally define the SkNN
protocol as follows:

SkNN(Epk(T), Q)→ 〈t′1, . . . , t′k〉

We emphasize that, at the end of the SkNN protocol, the output
〈t′1, . . . , t′k〉 should be revealed only to Bob. We now present
a real-life application of the SkNN protocol.

Example 1: Consider a physician who wants to know the
risk factor of heart disease in a specific patient. Let T denote
the sample heart disease dataset with attributes record-id, age,
sex, cp, trestbps, chol, fbs, slope, ca, thal, and num as shown in
Table I. The heart disease dataset given in Table I is obtained
from the UCI machine learning repository [16].

Initially, the data owner (hospital) encrypts T attribute-
wise, outsources the encrypted database Epk(T) to the cloud
for easy management. In addition, the data owner delegates
the future query processing services to the cloud. Now, we

consider a doctor working at the hospital, say Bob, who would
like to know the risk factor of heart disease in a specific
patient based on T . Let the patient medical information be
Q = 〈58, 1, 4, 133, 196, 1, 2, 1, 6〉. In the SkNN protocol,
Bob first need to encrypt Q (to preserve the privacy of his
query) and send it to the cloud. Then the cloud searches on
the encrypted database Epk(T) to figure out the k-nearest
neighbors to the user’s request. For simplicity, let us assume
k = 2. Under this case, the 2 nearest neighbors to Q are t4
and t5 (by using Euclidean distance as the similarity metric).
After this, the cloud sends t4 and t5 (in encrypted form) to
Bob. Here, the cloud should identify the nearest neighbors
of Q in an oblivious manner without knowing any sensitive
information, i.e., all the computations have to be carried over
encrypted records. Finally, Bob receives t4 and t5 that will
help him to make medical decisions. �

B. Our Contribution

In this paper, we propose a novel SkNN protocol to facilitate
the k-nearest neighbor search over encrypted data in the cloud
that preserves both the data privacy and query privacy. In our
protocol, once the encrypted data are outsourced to the cloud,
Alice does not participate in any computations. Therefore, no
information is revealed to Alice. In particular, the proposed
protocol meets the following requirements:

• Data confidentiality - Contents of T or any intermediate
results should not be revealed to the cloud.

• Query privacy - Bob’s input query Q should not be
revealed to the cloud.

• Correctness - The output 〈t′1, . . . , t′k〉 should be revealed
only to Bob. In addition, no information other than
t′1, . . . , t

′
k should be revealed to Bob.

• Low computation overhead on Bob - After sending
his encrypted query record to the cloud, our protocols
incur low computation overhead on Bob compared with
the existing works [1], [11]–[13].

• Hidden data access patterns - Access patterns to the
data, such as the records corresponding to the k-nearest
neighbors of Q, should not be revealed to Alice and the
cloud (to prevent any inference attacks).

We emphasize that the intermediate results seen by the cloud
in our protocol are either newly generated randomized encryp-
tions or random numbers. Thus, which data records correspond
to the k-nearest neighbors of Q are not known to the cloud.
Also, after sending his encrypted query record to the cloud,
Bob does not involve in any computations (low cost on Bob).
Hence, data access patterns are further protected from Bob.

The rest of the paper is organized as follows. We discuss
the existing related work and some background concepts in
Section II. A set of security primitives that are utilized in
the proposed protocols and their possible implementations are
provided in Section III. The proposed protocols are explained
in detail in Section IV. Section V discusses the performance
of the proposed protocols based on various experiments. We
conclude the paper along with future work in Section VI.

II. RELATED WORK AND BACKGROUND

In this section, we present an overview of the existing secure
k-nearest neighbor techniques. Then, we discuss the security
definition adopted in this paper along with the homomorphic
properties of the Paillier cryptosystem as a background.

A. Existing SkNN Techniques

Retrieving the k-nearest neighbors to a given query Q is one
of the most fundamental problem in many application domains
such as similarity search, pattern recognition, and data mining.
In the literature, many techniques have been proposed to
address the SkNN problem, which can be classified into two
categories based on whether the data are encrypted or not:
centralized and distributed.

1) Centralized Methods: In the centralized methods, we
assume that the data owner outsources his/her database and
DBMS functionalities (e.g., kNN query) to an untrusted ex-
ternal service provider which manages the data on behalf of
the data owner where only trusted users are allowed to query
the hosted data. By outsourcing data to an untrusted server,
many security issues arise, such as data privacy (protecting the
confidentiality of the data from the server and query issuer).
To achieve data privacy, data owner is required to use data
anonymization models (e.g., k-anonymity) or cryptographic
(e.g., encryption and data perturbation) techniques over his/her
data before outsourcing them to the server.

Encryption is a traditional technique used to protect the
confidentiality of sensitive data such as medical records. Due
to data encryption, the process of query evaluation over
encrypted data becomes challenging. Along this direction,
various techniques have been proposed for processing range
[6]–[8] and aggregation queries [9], [10] over encrypted data.
However, in this paper, we restrict our discussion to secure
evaluation of kNN query.

In the past few years, researchers have proposed different
methods [1], [11]–[13] to address the SkNN problem. Wong et
al. [11] proposed a new encryption scheme called asymmetric
scalar-product-preserving encryption (ASPE) that preserves
scalar product between the query vector Q and any tuple
vector ti from database T for distance comparison which is
sufficient to find kNN. In [11], data and query are encrypted
using slightly different encryption schemes before outsourcing
to the server and all the query users know the decryption
key. As an improvement, Zhu et al. [12] proposed a novel
SkNN method in which the key of the data owner is not
disclosed to the user. However, their architecture requires the
participation of data owner during query encryption. As an
alternative, Hu et al. [1] proposed a method based on provably
secure privacy homomorphism encryption scheme from [17]
that supports modular addition, subtraction and multiplication
over encrypted data. They addressed the SkNN problem under
the following setting: the client has the ciphertexts of all data
points in database T and the encryption function of T whereas
the server has the decryption function of T and some auxiliary
information regarding each data point. However, both methods
in [1], [11] are not secure because they are vulnerable to

chosen-plaintext attacks. Also, all the above methods leak data
access patterns to the server.

Recently, Yao et al. [13] proposed a new SkNN method
based on partition-based secure Voronoi diagram (SVD). In-
stead of asking the cloud to retrieve the exact kNN, they
required, from the cloud, to retrieve a relevant encrypted parti-
tion Epk(G) for Epk(T) such that G is guaranteed to contain
the k-nearest neighbors of Q. However, in our work, we are
able to solve the SkNN problem accurately by letting the cloud
to retrieve the exact k-nearest neighbors of Q (in encrypted
form). In addition, most of the computations during the query
processing step in [1], [12], [13] are performed locally by the
end-user which conflicts the very purpose of outsourcing the
DBMS functionalities to the cloud. Furthermore, the protocol
in [13] leaks data access patterns, such as the partition ID
corresponding to a user query, to the cloud.

2) Data Distribution Methods: In the data distributed meth-
ods, data are assumed to be partitioned either vertically or
horizontally and distributed among a set of independent, non-
colluding parties. In the literature, the data distributed meth-
ods rely on secure multiparty computation (SMC) techniques
that enable multiple parties to securely evaluate a function
using their respective private inputs without disclosing the
input of one party to the others. Many efforts have been
made to address the problem of kNN query in a distributed
environment. Shaneck et al. [18] proposed privacy-preserving
algorithm to perform k-nearest neighbor search. The protocol
in [18] is based on secure multiparty computation for privately
computing kNN points in a horizontally partitioned dataset. Qi
et al. [19] proposed a single-step kNN search protocol that is
provably secure with linear computation and communication
complexities. Vaidya et al. [20] studied privacy-preserving
top-k queries in which the data are vertically partitioned.
Ghinita et al. [21] proposed a private information retrieval
(PIR) based framework for answering kNN queries in location-
based services. We emphasize that, in [21], the data residing
at the server are in plaintext format. However, if the data are
encrypted to ensure data confidentiality, it is not clear how a
user can obliviously retrieve the output records because he/she
does not know the indexes that match his/her input query.
Nevertheless, even if a user can retrieve the records using PIR,
the user still needs to perform local computations to identify
the k-nearest neighbors. However, in our framework, the users
computation is completely outsourced to a cloud.

In summary, we emphasize that the above data distribution
methods are not applicable to perform kNN queries over
encrypted data for two reasons: (1). In our work, we deal with
encrypted form of database and query which is not the case in
the above methods (2). The database in our case is encrypted
and stored on the cloud whereas in the above methods it is
partitioned (in plaintext format) among different parties.

B. Security Definition

In this paper, privacy/security is closely related to the
amount of information disclosed during the execution of a
protocol. There are many ways to define information disclo-

TABLE II
COMMON NOTATIONS

Epk(T) Attribute-wise encryption of T

〈n,m〉 Number of data records and attributes in T

〈ti, Q〉 ith record in T and Bob’s query record

t′i ith nearest record to Q based on T

l Domain size (in bits) of the squared Euclidean distance

〈z1, zl〉 The most and least significant bits of integer z

[z] Vector of encryptions of the individual bits of z

sure. To maximize privacy or minimize information disclosure,
we adopt the security definitions in the literature of secure
multiparty computation (SMC) first introduced by Yao’s Mil-
lionaires’ problem for which a provably secure solution was
developed [14]. In this paper, we assume that parties are semi-
honest (or honest-but-curious); that is, a semi-honest party
follows the rules of the protocol using its correct input, but is
free to later use what it sees during execution of the protocol
to compromise security. In general, secure protocols under
the semi-honest model are more efficient than those under
the malicious adversary model, and almost all practical SMC
protocols proposed in the literature are secure under the semi-
honest model. Due to space limitations, we refer the reader to
[14] for detailed security definitions and models.

C. Paillier Cryptosystem

The Paillier cryptosystem is an additive homomorphic and
probabilistic asymmetric encryption scheme [15]. Let Epk be
the encryption function with public key pk given by (N, g),
where N is a product of two large primes and g is in Z∗N2 .
Also, let Dsk be the decryption function with secret key sk.
Given a, b ∈ ZN , the Paillier encryption scheme exhibits the
following properties:
a. Homomorphic Addition

Epk(a+ b)← Epk(a) ∗ Epk(b) mod N2;

b. Homomorphic Multiplication
Epk(a ∗ b)← Epk(a)b mod N2;

c. Semantic Security - The encryption scheme is semanti-
cally secure [22], i.e., given a set of ciphertexts, an adver-
sary cannot deduce any information about the plaintext.

In this paper, we assume that a data owner encrypted his or
her data using Paillier cryptosystem before outsourcing them
to a cloud. Some common notations that are used extensively
in this paper are shown in Table II.

III. BASIC SECURITY PRIMITIVES

In this section, we present a set of generic protocols that
will be used as sub-routines while constructing our proposed
SkNN protocol in Section IV-B. All of the below protocols are
considered under two-party semi-honest setting. In particular,
we assume the existence of two semi-honest parties P1 and
P2 such that the Paillier’s secret key sk is known only to P2

whereas pk is treated as public.

• Secure Multiplication (SM) Protocol:
This protocol considers P1 with input (Epk(a), Epk(b))
and outputs Epk(a ∗ b) to P1, where a and b are not
known to P1 and P2. During this process, no information
regarding a and b is revealed to P1 and P2. The output
Epk(a ∗ b) is known only to P1.

• Secure Squared Euclidean Distance (SSED) Protocol:
P1 with input (Epk(X), Epk(Y)) and P2

securely compute the encryption of squared
Euclidean distance between vectors X and Y .
Here X and Y are m dimensional vectors
where Epk(X) = 〈Epk(x1), . . . , Epk(xm)〉 and
Epk(Y) = 〈Epk(y1), . . . , Epk(ym)〉. At the end, the
output Epk(|X − Y |2) is known only to P1.

• Secure Bit-Decomposition (SBD) Protocol:
P1 with input Epk(z) and P2 securely compute the
encryptions of the individual bits of z, where 0 ≤ z < 2l.
The output [z] = 〈Epk(z1), . . . , Epk(zl)〉 is known only
to P1. Here z1 and zl denote the most and least significant
bits of integer z respectively.

• Secure Minimum (SMIN) Protocol:
P1 with input ([u], [v]) and P2 with sk securely compute
the encryptions of the individual bits of minimum number
between u and v. That is, the output is [min(u, v)] which
will be known only to P1. During this protocol, no
information regarding u and v is revealed to P1 and P2.

• Secure Minimum out of n Numbers (SMINn) Protocol:
P1 has n encrypted vectors ([d1], . . . , [dn]) and P2 has
sk. Here [di] = 〈Epk(di,1), . . . , Epk(di,l)〉 such that
di,1 and di,l are the most and least significant bits of
integer di respectively, for 1 ≤ i ≤ n. P1 and P2

jointly compute the output [min(d1, . . . , dn)]. At the end,
[min(d1, . . . , dn)] is known only to P1. During SMINn,
no information about di’s is revealed to P1 and P2.

• Secure Bit-OR (SBOR) Protocol:
P1 with input (Epk(o1), Epk(o2)) and P2 securely com-
pute Epk(o1 ∨ o2), where o1 and o2 are two bits. The
output Epk(o1 ∨ o2) is known only to P1.

We now discuss each of these protocols in detail. Also, we
either propose new solution or refer to the most efficient
known implementation to each one of them.

Secure Multiplication (SM). Consider a party P1 with
private input (Epk(a), Epk(b)) and a party P2 with the secret
key sk. The goal of the secure multiplication (SM) protocol
is to return the encryption of a ∗ b, i.e., Epk(a ∗ b) as output
to P1. During this protocol, no information regarding a and b
is revealed to P1 and P2. The basic idea of SM is based on
the following property which holds for any given a, b ∈ ZN :

a ∗ b = (a+ ra) ∗ (b+ rb)− a ∗ rb − b ∗ ra − ra ∗ rb (1)

where all the arithmetic operations are performed under
ZN . The overall steps in SM are shown in Algorithm 1.
Briefly, P1 initially randomizes a and b by computing
a′ = Epk(a) ∗ Epk(ra) and b′ = Epk(b) ∗ Epk(rb), and
sends them to P2. Here ra and rb are random numbers in

Algorithm 1 SM(Epk(a), Epk(b))→ Epk(a ∗ b)
Require: P1 has Epk(a) and Epk(b); P2 has sk

1: P1:
(a). Pick two random numbers ra, rb ∈ ZN
(b). a′ ← Epk(a) ∗ Epk(ra)
(c). b′ ← Epk(b) ∗ Epk(rb); send a′, b′ to P2

2: P2:
(a). Receive a′ and b′ from P1

(b). ha ← Dsk(a′); hb ← Dsk(b′)
(c). h← ha ∗ hb mod N
(d). h′ ← Epk(h); send h′ to P1

3: P1:
(a). Receive h′ from P2

(b). s← h′ ∗ Epk(a)N−rb

(c). s′ ← s ∗ Epk(b)N−ra

(d). Epk(a ∗ b)← s′ ∗ Epk(ra ∗ rb)N−1

ZN known only to P1. Upon receiving, P2 decrypts and
multiplies them to get h = (a+ ra) ∗ (b+ rb) mod N . Then,
P2 encrypts h and sends it to P1. After this, P1 removes extra
random factors from h′ = Epk((a+ ra) ∗ (b+ rb)) based on
Equation 1 to get Epk(a∗b). Note that, for any given x ∈ ZN,
“N − x” is equivalent to “−x” under ZN . Hereafter, we use
the notation r ∈R ZN to denote r as a random number in ZN .

Secure Squared Euclidean Distance (SSED). Suppose
P1 holds two encrypted vectors (Epk(X), Epk(Y)) and
P2 holds sk. Here X and Y are two m-dimensional
vectors such that Epk(X) = 〈Epk(x1), . . . , Epk(xm)〉 and
Epk(Y) = 〈Epk(y1), . . . , Epk(ym)〉. The goal of SSED is to
securely compute Epk(|X−Y |2), where |X−Y | denotes the
Euclidean distance between X and Y . During this protocol,
no information regarding X and Y is revealed to P1 and P2.
The basic idea of SSED follows from the following equation:

|X − Y |2 =

m∑
i=1

(xi − yi)2 (2)

The main steps involved in SSED are shown in Algorithm 2.
Briefly, for 1 ≤ i ≤ m, P1 initially computes Epk(xi − yi)
by using the homomorphic properties. Then P1 and P2

jointly compute Epk((xi − yi)2) using the SM protocol, for
1 ≤ i ≤ m. Note that the outputs of SM are known only to
P1. By applying homomorphic properties on Epk((xi− yi)2),
P1 computes Epk(|X − Y |2) locally based on Equation 2.

Secure Bit-Decomposition (SBD). Suppose P1 has
Epk(z) and P2 has sk, where z is not known to both
parties and 0 ≤ z < 2l. The goal of SBD is to compute the
encryptions of the individual bits of binary representation of
z [23]. The output is [z] = 〈Epk(z1), . . . , Epk(zl)〉, where
z1 and zl denote the most and least significant bits of z
respectively. At the end, the output [z] is known only to
P1. Since the goal of this paper is not to investigate the
existing SBD protocols, we simply use the most efficient
SBD protocol that was recently proposed in [23].

Algorithm 2 SSED(Epk(X), Epk(Y))→ Epk(|X − Y |2)

Require: P1 has Epk(X) and Epk(Y); P2 has sk
1: P1, for 1 ≤ i ≤ m do:

(a). Epk(xi − yi)← Epk(xi) ∗ Epk(yi)
N−1

2: P1 and P2, for 1 ≤ i ≤ m do:
(a). Compute Epk((xi − yi)2) using the SM protocol

3: P1 computes Epk(|X − Y |2)←
∏m
i=1Epk((xi − yi)2)

Secure Minimum (SMIN). In this protocol, P1 with
input ([u], [v]) and P2 with sk securely compute the
encryptions of the individual bits of min(u, v), i.e., the
output is [min(u, v)]. Here [u] = 〈Epk(u1), . . . , Epk(ul)〉 and
[v] = 〈Epk(v1), . . . , Epk(vl)〉, where u1 (resp., v1) and ul
(resp., vl) are the most and least significant bits of u (resp.,
v). At the end, the output [min(u, v)] is known only to P1.

We assume that 0 ≤ u, v < 2l and propose a novel SMIN
protocol. The basic idea of the proposed SMIN protocol is
for P1 to randomly choose the functionality F (by flipping a
coin), where F is either u > v or v > u, and to obliviously
execute F with P2. Since F is randomly chosen and known
only to P1, the output of the functionality F is oblivious to P2.
Based on the output and chosen F , P1 computes [min(u, v)]
locally using homomorphic properties.

The overall steps involved in the SMIN protocol are shown
in Algorithm 3. To start with, P1 initially chooses the func-
tionality F as either u > v or v > u randomly. Then, using
SM, P1 computes Epk(ui ∗ vi) with the help of P2. Now,
depending on F , P1 proceeds as follows, for 1 ≤ i ≤ l:
• If F : u > v, compute

Wi = Epk(ui) ∗ Epk(ui ∗ vi)N−1 = Epk(ui ∗ (1− vi))
Γi = Epk(vi − ui) ∗ Epk(r̂i) = Epk(vi − ui + r̂i)

• If F : v > u, compute:

Wi = Epk(vi) ∗ Epk(ui ∗ vi)N−1 = Epk(vi ∗ (1− ui))
Γi = Epk(ui − vi) ∗ Epk(r̂i) = Epk(ui − vi + r̂i)

where r̂i is a random number in ZN
• Observe that if F : u > v, then Wi = Epk(1) only if
ui > vi, and Wi = Epk(0) otherwise. Similarly, when
F : v > u, we have Wi = Epk(1) only if vi > ui, and
Wi = Epk(0) otherwise. Also, depending of F , Γi stores
the encryption of randomized difference between ui and
vi which will be used in later computations.

• Compute the encrypted bit-wise XOR between the bits ui
and vi as Gi = Epk(ui⊕vi) using the below formulation:

Gi = Epk(ui) ∗ Epk(vi) ∗ Epk(ui ∗ vi)N−2

In general, for any two given bits o1 and o2, we have
o1 ⊕ o2 = o1 + o2 − 2(o1 ∗ o2)

• Compute an encrypted vector H by preserving the first
occurrence of Epk(1) (if there exists one) in G by
initializing H0 = Epk(0). The rest of the entries of H
are computed as Hi = Hri

i−1 ∗Gi. We emphasize that at
most one of the entry in H is Epk(1) and the remaining

Algorithm 3 SMIN([u], [v])→ [min(u, v)]

Require: P1 has [u] and [v], where 0 ≤ u, v < 2l; P2 has sk
1: P1:

(a). Randomly choose the functionality F
(b). for i = 1 to l do:

• Epk(ui ∗ vi)← SM(Epk(ui), Epk(vi))
• if F : u > v then:

– Wi ← Epk(ui) ∗ Epk(ui ∗ vi)N−1
– Γi ← Epk(vi − ui) ∗ Epk(r̂i); r̂i ∈R ZN
else
– Wi ← Epk(vi) ∗ Epk(ui ∗ vi)N−1
– Γi ← Epk(ui − vi) ∗ Epk(r̂i); r̂i ∈R ZN

• Gi ← Epk(ui ⊕ vi)
• Hi ← Hri

i−1 ∗Gi; ri ∈R ZN and H0 = Epk(0)
• Φi ← Epk(−1) ∗Hi

• Li ←Wi ∗ Φ
r′i
i ; r′i ∈R ZN

(c). Γ′ ← π1(Γ)
(d). L′ ← π2(L); send Γ′ and L′ to P2

2: P2:
(a). Receive Γ′ and L′ from P1

(b). Mi ← Dsk(L′i), for 1 ≤ i ≤ l
(c). if ∃ j such that Mj = 1 then α← 1

else α← 0
(d). M ′i ← Γ′i

α, for 1 ≤ i ≤ l
(e). Send M ′ and Epk(α) to P1

3: P1:
(a). Receive M ′ and Epk(α) from P2

(b). M̃ ← π−11 (M ′)
(c). for i = 1 to l do:

• λi ← M̃i ∗ Epk(α)N−r̂i

• if F : u > v then Epk(min(u, v)i)← Epk(ui)∗λi
else Epk(min(u, v)i)← Epk(vi) ∗ λi

entries are encryptions of either 0 or a random number.
Also, if there exists an index j such that Hj = Epk(1),
then index j is the first position (from the most significant
bit) at which the corresponding bits of u and v differ.

• Then, P1 computes Φi = Epk(−1) ∗ Hi. Note that
“−1” is equivalent to “N − 1” under ZN . From the
above discussions, it is clear that Φi = Epk(0) at most
once since Hi is equal to Epk(1) at most once. Also, if
Φj = Epk(0), then index j is the position at which the
bits of u and v differ first.

• Compute an encrypted vector L by combining W and
Φ. Note that Wi stores the result of ui > vi or vi > ui
which depends on F known only to P1. Precisely, P1

computes Li = Wi ∗ Φ
r′i
i , where r′i is a random number

in ZN . The observation here is if ∃ an index j such that
Φj = Epk(0), denoting the first flip in the bits of u and
v, then Wj stores the corresponding desired information,
i.e., whether uj > vj or vj > uj in encrypted form.

After this, P1 permutes the encrypted vectors Γ and L using
two random permutation functions π1 and π2. Specifically,

TABLE III
P1 CHOOSES F AS v > u WHERE u = 55 AND v = 58

[u] [v] Wi Γi Gi Hi Φi Li Γ′
i L′

i Mi λi mini

1 1 0 r 0 0 −1 r 1 + r r r 0 1
1 1 0 r 0 0 −1 r r r r 0 1
0 1 1 −1 + r 1 1 0 1 1 + r r r −1 0
1 0 0 1 + r 1 r r r −1 + r r r 1 1
1 1 0 r 0 r r r r 1 1 0 1
1 0 0 1 + r 1 r r r r r r 1 1

All column values are in encrypted form (Epk(.)) except Mi column.
Also, r is a random in ZN which is different for each row and column.
P1 computes Γ′ = π1(Γ) and L′ = π2(L), and sends them
to P2. Upon receiving, P2 decrypts L′ component-wise to
get Mi = Dsk(L′i), for 1 ≤ i ≤ l, and checks for index
j (decide the output of F). That is, if Mj = 1, then the
output of F is 1, and 0 otherwise. Let the output be α. Note
that since F is not known to P2, the output α is oblivious
to P2. In addition, P2 computes a new encrypted vector M ′

where M ′i = Γ′i
α, for 1 ≤ i ≤ l, sends M ′ and Epk(α) to

P1. After receiving M ′ and Epk(α), P1 computes the inverse
permutation of M ′ as M̃ = π−11 (M ′). Then, P1 performs the
following homomorphic operations to compute the encryption
of ith bit of min(u, v), i.e., Epk(min(u, v)i), for 1 ≤ i ≤ l:
• Remove the randomness from M̃i by computing

λi = M̃i ∗ Epk(α)N−r̂i

• If F : u > v, compute the ith encrypted bit of min(u, v)
as Epk(min(u, v)i) = Epk(ui) ∗λi = Epk(ui+α ∗ (vi−
ui)). Otherwise, compute Epk(min(u, v)i) = Epk(vi) ∗
λi = Epk(vi + α ∗ (ui − vi)).

In the SMIN protocol, one main observation (upon which we
can also justify the correctness of the final output) is that if
F : u > v, then min(u, v)i = (1 − α) ∗ ui + α ∗ vi always
holds, for 1 ≤ i ≤ l. Similarly, if F : v > u, then min(u, v)i =
α ∗ ui + (1− α) ∗ vi always holds.

Example 2: Consider that u = 55, v = 58,
and l = 6. We assume that P1’s random permuta-
tion functions are given as below. Suppose P1 holds

i = 1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

π1(i) = 6 5 4 3 2 1
π2(i) = 2 1 5 6 3 4

[55] = 〈Epk(1), Epk(1), Epk(0), Epk(1), Epk(1), Epk(1)〉 and
[58] = 〈Epk(1), Epk(1), Epk(1), Epk(0), Epk(1), Epk(0)〉.
Without loss of generality, suppose P1 chooses the function-
ality F : v > u. Then, various intermediate results based on
the SMIN protocol are as shown in Table III. Following from
Table III, we observe that:
• At most one of the entry in H is Epk(1) (= H3) and the

remaining entries are encryptions of either 0 or a random
number in ZN . Index j = 3 is the first position at which
the corresponding bits of u and v differ.

• Φ3 = Epk(0) since H3 is equal to Epk(1). Also, since
M5 = 1, P2 sets α to 1.

At the end, only P1 knows [min(u, v)] = [u] = [55]. �

Algorithm 4 SMINn([d1], . . . , [dn])→ [dmin]

Require: P1 has ([d1], . . . , [dn]); P2 has sk
1: P1:

(a). [d′i]← [di], for 1 ≤ i ≤ n, and num← n

2: P1 and P2, for i = 1 to dlog2 ne:
(a). for 1 ≤ j ≤

⌊
num
2

⌋
:

• if i = 1 then:
– [d′2j−1]← SMIN([d′2j−1], [d′2j])

– [d′2j]← 0

else
– [d′2i(j−1)+1]← SMIN([d′2i(j−1)+1], [d′2ij−1])

– [d′2ij−1]← 0

(b). num←
⌈
num
2

⌉
3: P1 sets [dmin] to [d′1]

Secure Minimum out of n Numbers (SMINn). Consider
P1 with private input ([d1], . . . , [dn]) and P2 with sk, where
0 ≤ di < 2l and [di] = 〈Epk(di,1), . . . , Epk(di,l)〉, for
1 ≤ i ≤ n. The goal of the SMINn protocol is to compute
[min(d1, . . . , dn)] = [dmin] without revealing any information
about di’s to P1 and P2. Here we construct a new SMINn pro-
tocol by utilizing SMIN as the building block. The proposed
SMINn protocol is an iterative approach and it computes the
desired output in an hierarchical fashion. In each iteration,
minimum between a pair of values is computed and are fed
as input to the next iteration. Therefore, generating a binary
execution tree in a bottom-up fashion. At the end, only P1

knows the final result [dmin].
The overall steps involved in the proposed SMINn protocol

are highlighted in Algorithm 4. Initially, P1 assigns [di] to a
temporary vector [d′i], for 1 ≤ i ≤ n. Also, he/she creates
a global variable num and initialize it to n, where num
represents the number of (non-zero) vectors involved in each
iteration. Since the SMINn protocol executes in a binary tree
hierarchy (bottom-up fashion), we have dlog2 ne iterations,
and in each iteration, the number of vectors involved varies.
In the first iteration (i.e., i = 1), P1 with private input
([d′2j−1], [d′2j]) and P2 with sk involve in the SMIN protocol,
for 1 ≤ j ≤

⌊
num
2

⌋
. At the end of the first iteration, only P1

knows [min(d′2j−1, d
′
2j)] and nothing is revealed to P2, for

1 ≤ j ≤
⌊
num
2

⌋
. Also, P1 stores the result [min(d′2j−1, d

′
2j)]

in [d′2j−1], updates [d′2j] to zero and num to
⌈
num
2

⌉
.

During the ith iteration, only the non-zero vectors are
involved, for 2 ≤ i ≤ dlog2 ne. For example, during
second iteration (i.e., i = 2), only [d′1], [d′3], and so on
are involved. Note that in each iteration, the output is
revealed only to P1 and num is updated to

⌈
num
2

⌉
. At

the end of SMINn, P1 assigns the final encrypted binary
vector of global minimum value, i.e., [min(d1, . . . , dn)]
which is stored in [d′1] to [dmin]. For example, assume
that P1 holds 〈[d1], . . . , [d6]〉 (i.e., n = 6). Then, based
on the SMINn protocol, the binary execution tree (in a
bottom-up fashion) to compute [min(d1, . . . , d6)] is as shown
in Figure 1. Note that, [d′i] is initially set to [di], for 1 ≤ i ≤ 6.

[dmin]← [d′1]← [min(d′1, d
′
5)]

[d′5]

[d′5]← [min(d′5, d
′
6)]

[d′6][d′5]

[d′1]← [min(d′1, d
′
3)]

[d′3]← [min(d′3, d
′
4)]

[d′4][d′3]

[d′1]← [min(d′1, d
′
2)]

[d′2][d′1]

Fig. 1. Binary execution tree for n = 6 based on SMINn

Secure Bit-OR (SBOR). P1 holds (Epk(o1), Epk(o2))
and P2 holds sk, where o1 and o2 are two bits not known to
both parties. The goal of the SBOR protocol is to securely
compute Epk(o1 ∨ o2). At the end of this protocol, only P1

knows Epk(o1 ∨ o2). During this process, no information
related to o1 and o2 is revealed to P1 and P2. Using SM, P1

and P2 compute Epk(o1 ∨ o2) as follows:
• P1 with input (Epk(o1), Epk(o2)) and P2 with sk involve

in the SM protocol. At the end of this step, the output
Epk(o1 ∗ o2) is known only to P1. Note that, since o1
and o2 are bits, Epk(o1 ∗ o2) = Epk(o1 ∧ o2).

• Epk(o1 ∨ o2) = Epk(o1 + o2) ∗ Epk(o1 ∧ o2)N−1.
We emphasize that, for any given two bits o1 and o2, the
property o1 ∨ o2 = o1 + o2 − o1 ∧ o2 always holds.

It is worth pointing out that SMIN, SMINn and SBOR are
completely new and are not based on any existing protocols.
On the other hand, SSED is not new, but our implementation
is more efficient. Also, SM and SBD are directly adopted from
the literature.

IV. THE PROPOSED PROTOCOLS

In this section, we first present a basic SkNN protocol and
demonstrate why such a simple solution is not secure. Then,
we discuss our second approach, a fully secure kNN protocol.
Both protocols are constructed using the security primitives
discussed in Section III as building blocks.

As mentioned earlier, we assume that Alice’s database
consists of n records, denoted by T = 〈t1, . . . , tn〉, and m
attributes, where ti,j denotes the jth attribute value of record
ti. Initially, Alice encrypts her database attribute-wise, that is,
she computes Epk(ti,j), for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Let
the encrypted database be denoted by Epk(T). We assume
that Alice outsources Epk(T) as well as the future query
processing service to the cloud. Also, we assume that all
attribute values and their Euclidean distances lie in [0, 2l).

In our proposed protocols, we assume the existence of two
non-colluding semi-honest cloud service providers, denoted
by C1 and C2, which together form a federated cloud. We
emphasize that such an assumption is not new and has been
commonly used in the related problem domains (e.g., [24]).
The intuition behind such an assumption is as follows. Most of
the cloud service providers in the market are well-established
IT companies, such as Amazon and Google. Therefore, a
collusion between them is highly unlikely as it will damage
their reputation which in turn effects their revenues.

Under this setting, Alice outsources her encrypted database
Epk(T) to C1 and the secret key sk to C2. The goal of the
proposed protocols is to retrieve the top k records that are
closest to the user query in an efficient and secure manner.
Briefly, consider an authorized user Bob who wants to find k
records that are closest to his query record Q = 〈q1, . . . , qm〉
based on Epk(T) in C1. Bob initially sends his query Q (in
encrypted form) to C1. After this, C1 and C2 involve in a set
of sub-protocols to securely retrieve (in encrypted form) the
set of k records corresponding to the k-nearest neighbors of
the input query Q. At the end of our protocols, only Bob will
receive the k-nearest neighbors to Q as the output.

A. Basic Protocol

In the basic secure k-nearest neighbor query protocol, de-
noted by SkNNb, we relax the desirable properties to produce
an efficient protocol (more details are given in the later part
of this section).

The main steps involved in the SkNNb protocol are given
in Algorithm 5. Bob initially encrypts his query Q attribute-
wise, that is, he computes Epk(Q) = 〈Epk(q1), . . . , Epk(qm)〉
and sends it to C1. Upon receiving Epk(Q) from Bob,
C1 with private input (Epk(Q), Epk(ti)) and C2 with the
secret key sk jointly involve in the SSED protocol, where
Epk(ti) = 〈Epk(ti,1), . . . , Epk(ti,m)〉, for 1 ≤ i ≤ n. The
output of this step, denoted by Epk(di), is the encryption
of squared Euclidean distance between Q and ti, i.e., di =
|Q − ti|2. As mentioned earlier, Epk(di) is known only
to C1, for 1 ≤ i ≤ n. We emphasize that computation
of exact Euclidean distance between encrypted vectors is
hard to achieve as it involves square root. However, in our
problem, it is sufficient to compare the squared Euclidean
distances as it preserves relative ordering. After this, C1

sends {〈1, Epk(d1)〉 , . . . , 〈n,Epk(dn)〉} to C2, where entry
〈i, Epk(di)〉 correspond to data record ti, for 1 ≤ i ≤ n.
Upon receiving 〈1, Epk(d1)〉 , . . . , 〈n,Epk(dn)〉, C2 decrypts
the encrypted distance in each entry to get di = Dsk(Epk(di)).
Then, C2 generates an index list δ = 〈i1, . . . , ik〉 such
that 〈di1 , . . . dik〉 are the top k smallest distances among
〈d1, . . . , dn〉. After this, C2 sends δ to C1. Upon receiving
δ, C1 proceeds as follows:

• Select the encrypted records Epk(ti1), . . . , Epk(tik) as
the k-nearest records to Q and randomize them attribute-
wise. More specifically, C1 computes Epk(γj,h) =
Epk(tij ,h) ∗ Epk(rj,h), for 1 ≤ j ≤ k and 1 ≤ h ≤ m.
Here rj,h is a random number in ZN and tij ,h denotes
the column h attribute value of data record tij . Send γj,h
to C2 and rj,h to Bob, for 1 ≤ j ≤ k and 1 ≤ h ≤ m.

Upon receiving γj,h, for 1 ≤ j ≤ k and 1 ≤ h ≤ m, C2

decrypts it to get γ′j,h = Dsk(γj,h) and sends them to Bob.
Note that, due to randomization by C1, γ′j,h is always a random
number in ZN .

Finally, upon receiving rj,h from C1 and γ′j,h from C2, Bob
computes the attribute values of jth nearest neighbor to Q as
t′j,h = γ′j,h − rj,h mod N , for 1 ≤ j ≤ k and 1 ≤ h ≤ m.

Algorithm 5 SkNNb(Epk(T), Q)→ 〈t′1, . . . , t′k〉
Require: C1 has Epk(T); C2 has sk; Bob has Q

1: Bob:
(a). Compute Epk(qj), for 1 ≤ j ≤ m
(b). Send Epk(Q) = 〈Epk(q1), . . . , Epk(qm)〉 to C1

2: C1 and C2:
(a). C1 receives Epk(Q) from Bob
(b). for i = 1 to n do:

• Epk(di)← SSED(Epk(Q), Epk(ti))

(c). Send {〈1, Epk(d1)〉 , . . . , 〈n,Epk(dn)〉} to C2

3: C2:
(a). Receive {〈1, Epk(d1)〉 , . . . , 〈n,Epk(dn)〉} from C1

(b). di ← Dsk(Epk(di)), for 1 ≤ i ≤ n
(c). Generate δ ← 〈i1, . . . , ik〉, such that 〈di1 , . . . , dik〉

are the top k smallest distances among 〈d1, . . . , dn〉
(d). Send δ to C1

4: C1:
(a). Receive δ from C2

(b). for 1 ≤ j ≤ k and 1 ≤ h ≤ m do:
• γj,h ← Epk(tij ,h) ∗ Epk(rj,h), where rj,h ∈R ZN
• Send γj,h to C2 and rj,h to Bob

5: C2:
(a). for 1 ≤ j ≤ k and 1 ≤ h ≤ m do:

• Receive γj,h from C1

• γ′j,h ← Dsk(γj,h); send γ′j,h to Bob
6: Bob:

(a). for 1 ≤ j ≤ k and 1 ≤ h ≤ m do:
• Receive rj,h from C1 and γ′j,h from C2

• t′j,h ← γ′j,h − rj,h mod N

B. Fully Secure kNN Protocol

The above-mentioned SkNNb protocol reveals the data
access patterns to C1 and C2. That is, for any given Q,
C1 and C2 know which data records correspond to the k-
nearest neighbors of Q. Also, it reveals di values to C2.
However, leakage of such information may not be acceptable
in privacy-sensitive applications such as medical data. Along
this direction, we propose a fully secure protocol, denoted
by SkNNm(where m stands for maximally secure), to retrieve
the k-nearest neighbors of Q. The proposed SkNNm protocol
preserves all the desirable properties of a secure kNN protocol
as mentioned in Section I.

The main steps involved in the proposed SkNNm pro-
tocol are as shown in Algorithm 6. Initially, Bob sends
his attribute-wise encrypted query Q, that is, Epk(Q) =
〈Epk(q1), . . . , Epk(qm)〉 to C1. Upon receiving, C1 with pri-
vate input (Epk(Q), Epk(ti)) and C2 with the secret key sk
jointly involve in the SSED protocol. The output of this step
is Epk(di) = Epk(|Q − ti|2) which will be known only to
C1, for 1 ≤ i ≤ n. Then, C1 with input Epk(di) and C2

with sk securely compute the encryptions of the individual
bits of di using the SBD protocol. Note that the output of this
step [di] = 〈Epk(di,1), . . . , Epk(di,l)〉 is known only to C1,

Algorithm 6 SkNNm(Epk(T), Q)→ 〈t′1, . . . , t′k〉
Require: C1 has Epk(T) and π; C2 has sk; Bob has Q

1: Bob sends Epk(Q) = 〈Epk(q1), . . . , Epk(qm)〉 to C1

2: C1 and C2:
(a). C1 receives Epk(Q) from Bob
(b). for i = 1 to n do:

• Epk(di)← SSED(Epk(Q), Epk(ti))
• [di]← SBD(Epk(di))

3: for s = 1 to k do:
(a). C1 and C2:

• [dmin]← SMINn([d1], . . . , [dn])

(b). C1:
• Epk(dmin)←

∏l−1
γ=0Epk(dmin,γ+1)2

l−γ−1

• if s 6= 1 then, for 1 ≤ i ≤ n
– Epk(di)←

∏l−1
γ=0Epk(di,γ+1)2

l−γ−1

• for i = 1 to n do:
– τi ← Epk(dmin) ∗ Epk(di)

N−1

– τ ′i ← τ rii , where ri ∈R ZN
• β ← π(τ ′); send β to C2

(c). C2:
• Receive β from C1

• β′i ← Dsk(βi), for 1 ≤ i ≤ n
• Compute U , for 1 ≤ i ≤ n:

– if β′i = 0 then Ui = Epk(1)
– else Ui = Epk(0)

• Send U to C1

(d). C1:
• Receive U from C2 and compute V ← π−1(U)
• V ′i,j ← SM(Vi, Epk(ti,j)), for 1 ≤ i ≤ n and

1 ≤ j ≤ m
• Epk(t′s,j)←

∏n
i=1 V

′
i,j , for 1 ≤ j ≤ m

• Epk(t′s) = 〈Epk(t′s,1), . . . , Epk(t′s,m)〉
(e). C1 and C2, for 1 ≤ i ≤ n:

• Epk(di,γ)← SBOR(Vi, Epk(di,γ)), for 1 ≤ γ ≤ l
The rest of the steps are similar to steps 4-6 of SkNNb

where di,1 and di,l are the most and least significant bits of
di respectively. Note that 0 ≤ di < 2l, for 1 ≤ i ≤ n.

After this, C1 and C2 compute the top k (in encrypted
form) records that are closest to Q in an iterative manner.
More specifically, they compute Epk(t′1) in the first iteration,
Epk(t′2) in the second iteration, and so on. Here t′s denotes
the sth nearest neighbor to Q, for 1 ≤ s ≤ k. At the end
of k iterations, only C1 knows 〈Epk(t′1), . . . , Epk(t′k)〉. To
start with, in the first iteration, C1 and C2 jointly compute
the encryptions of the individual bits of the minimum value
among d1, . . . , dn using SMINn. That is, C1 with input
〈[d1], . . . , [dn]〉 and C2 compute [dmin], where dmin is the
minimum value among d1, . . . , dn. The output [dmin] is known
only to C1. Now, C1 performs the following operations locally:

• Compute the encryption of dmin from its encrypted

individual bits as below

Epk(dmin) =

l−1∏
γ=0

Epk(dmin,γ+1)2
l−γ−1

= Epk(dmin,1 ∗ 2l−1 + · · ·+ dmin,l)

where dmin,1 and dmin,l are the most and least significant
bits of dmin respectively.

• Compute the encryption of difference between dmin

and each di. That is, C1 computes τi = Epk(dmin) ∗
Epk(di)

N−1 = Epk(dmin − di), for 1 ≤ i ≤ n.
• Randomize τi to get τ ′i = τ rii = Epk(ri ∗ (dmin − di)),

where ri is a random number in ZN . Note that τ ′i is an
encryption of either 0 or a random number, for 1 ≤ i ≤ n.
Also, permute τ ′ using a random permutation function π
(known only to C1) to get β = π(τ ′) and send it to C2.

Upon receiving β, C2 decrypts it component-wise to get
β′i = Dsk(βi), for 1 ≤ i ≤ n. After this, he/she computes
an encrypted vector U of length n such that Ui = Epk(1) if
β′i = 0, and Epk(0) otherwise. Here we assume that exactly
one of the entries in β equals to zero and rest of them are
random. This further implies that exactly one of the entries in
U is an encryption of 1 and rest of them are encryptions of 0’s.
However, we emphasize that if β′ has more than one 0’s, then
C2 can randomly pick one of those indexes and assign Epk(1)
to the corresponding index of U and Epk(0) to the rest. Then,
C2 sends U to C1. After receiving U , C1 performs inverse
permutation on it to get V = π−1(U). Note that exactly one
of the entry in V is Epk(1) and the remaining are encryption of
0’s. In addition, if Vi = Epk(1), then ti is the closest record
to Q. However, C1 and C2 do not know which entry in V
corresponds to Epk(1).

Finally, C1 computes Epk(t′1), encryption of the closest
record to Q, and updates the distance vectors as follows:
• C1 and C2 jointly involve in the secure multiplication

(SM) protocol to compute V ′i,j = Vi ∗ Epk(ti,j), for
1 ≤ i ≤ n and 1 ≤ j ≤ m. The output V ′ from the
SM protocol is known only to C1. After this, by using
homomorphic properties, C1 computes the encrypted
record Epk(t′1) = 〈Epk(t1,1), . . . , Epk(t1,m)〉 locally,
Epk(t′1,j) =

∏n
i=1 V

′
i,j , where 1 ≤ j ≤ m. Note that

t′1,j denotes the jth attribute value of record t′1.
• It is important to note that the first nearest tuple to
Q should be obliviously excluded from further compu-
tations. However, since C1 does not know the record
corresponding to Epk(t′1), we need to obliviously elimi-
nate the possibility of choosing this record again in next
iterations. For this, C1 obliviously updates the distance
corresponding to Epk(t′1) to the maximum value, i.e., 2l−
1. More specifically, C1 updates the distance vectors with
the help of C2 using the SBOR protocol as Epk(di,γ) =
SBOR(Vi, Epk(di,γ)), for 1 ≤ i ≤ n and 1 ≤ γ ≤ l.
Note that when Vi = Epk(1), the corresponding distance
vector di is set to the maximum value. That is, under
this case, [di] = 〈Epk(1), . . . , Epk(1)〉. However, when
Vi = Epk(0), the OR operation has no affect on di.

The above process is repeated until k iterations, and in each
iteration [di] corresponding to the current chosen record is
set to the maximum value. However, since C1 does not know
which [di] is updated, he/she has to re-compute Epk(di) in
each iteration using the corresponding [di], for 1 ≤ i ≤ n. In
iteration s, Epk(t′s) is known only to C1.

At the end of the iterative step (i.e., step 3 of Algorithm 6),
C1 has 〈Epk(t′1), . . . , Epk(t′k)〉 - the list of encrypted records
of k-nearest neighbors to the input query Q. The rest of the
process is similar to steps 4 to 6 of Algorithm 5. Briefly, C1

randomizes Epk(t′j) attribute-wise to get γj,h = Epk(t′j,h) ∗
Epk(rj,h) and sends γj,h to C2 and rj,h to Bob, for 1 ≤ j ≤ k
and 1 ≤ h ≤ m. Here rj,h is a random number in ZN . Upon
receiving γj,h’s, C2 decrypts them to get the randomized k-
nearest records as γ′j,h = Dsk(γj,h) and sends them to Bob,
for 1 ≤ j ≤ k and 1 ≤ h ≤ m. Finally, upon receiving
rj,h from C1 and γ′j,h from C2, Bob computes the jth nearest
neighboring record to Q, as t′j,h = γ′j,h − rj,h mod N , for
1 ≤ j ≤ k and 1 ≤ h ≤ m.

C. Security Analysis

First, due to the encryption of Q and by semantic security
of the Paillier cryptosystem, Bob’s input query Q is protected
from Alice, C1 and C2 in both protocols.

In the SkNNb protocol, the decryption operations at step
3(b) of Algorithm 5 reveal di values to C2. In addition, since
C2 generates the top k index list (at step 3(c) of Algorithm 5)
and sends it to C1, the data access patterns are revealed to C1

and C2. Therefore, our basic SkNNb protocol is secure under
the assumption that di values can be revealed to C2 and data
access patterns can be revealed to C1 and C2.

On the other hand, the security analysis of SkNNm is as
follows. At step 2 of Algorithm 6, the outputs of SSED and
SBD are in encrypted format, and are known only to C1.
In addition, all the intermediate results decrypted by C2 in
SSED are uniformly random in ZN . Also, as mentioned in
[23], the SBD protocol is secure. Thus, no information is
revealed during step 2 of Algorithm 6. In each iteration, the
output of SMINn is known only to C1 and no information
is revealed to C2. Also, C1 and C2 do not know which
record belongs to current global minimum. Thus, data access
patterns are protected from both C1 and C2. At step 3(c) of
Algorithm 6, a component-wise decryption of β reveals the
tuples that satisfy the current global minimum distance to C2.
However, due to permutation by C1, C2 cannot trace back
to the corresponding data records. Also, note that decryption
of β gives either encryptions of 0’s or random numbers in
ZN . Similarly, since U is an encrypted vector, C1 cannot
know which tuple corresponds to current global minimum
distance. Thus, data access patterns are further protected at
this step from C1. In addition, the update process at step
3(e) of Algorithm 6 does not leak any information to C1 and
C2. In summary, C1 and C2 do not know which data records
correspond to the output set 〈t′1, . . . , t′k〉.

Based on the above discussions, it is clear that the proposed

SkNNm protocol protects the confidentiality of the data, pri-
vacy of user’s input query, and hides the data access patterns.

D. Complexity Analysis

The computation complexity of SkNNb is bounded by
O(n ∗ m + k) encryptions, decryptions and exponentiations.
In practice k � n ∗m; therefore, the computation complexity
of SkNNb is bounded by O(n ∗m) encryptions and exponen-
tiations (assuming that encryption and decryption operations
under Paillier cryptosystem take similar amount of time). On
the other hand, the computation complexity of SkNNm is
bounded by O(n ∗ (l + m + k ∗ l ∗ log2 n)) encryptions and
exponentiations. Due to space limitations, we refer the reader
to our technical report [25] for a detailed complexity analyses.

Depending on the encryption key size, the overall com-
putation cost of the proposed SkNNm (more expensive than
SkNNb) is between 2 and 3 orders of magnitude higher than
the non-crypto cases (the related works acknowledged in the
paper). This is the cost we need to pay to maximize data
confidentiality. However, on the user or client side, the running
time is comparable to the non-crypto case since the user
only performs a very small number of encryption operations
(bounded by the number of attributes) which was done in less
than a second as shown in our experiments. Our goal is to
outsource all or most computations to the cloud so that the user
can issue queries using any mobile device with limited storage
and computing capability. Note that, data confidentiality is
fully protected under the proposed SkNNm protocol.

V. EMPIRICAL RESULTS

In this section, we discuss the performances of the proposed
protocols in detail under different parameter settings. We
used Paillier cryptosystem [15] and implemented the proposed
protocols in C. Various experiments were conducted on a
Linux machine with an Intel R© Xeon R© Six-CoreTM CPU 3.07
GHz processor and 12GB RAM running Ubuntu 10.04 LTS.

Since it is difficult to control the parameters in a real
dataset, we randomly generated synthetic datasets depending
on the parameter values in consideration. Using these synthetic
datasets we can perform a more elaborated analysis on the
computation costs of the proposed protocols under different
parameter settings. We encrypted these datasets attribute-wise,
using the Paillier encryption whose key size is varied in
our experiments, and the encrypted data were stored on our
machine. Based on the proposed protocols, we then executed
a random query over this encrypted data. For the rest of this
section, we do not discuss about the performance of Alice
since it is a one-time cost. Instead, we evaluate and analyze the
performances of SkNNb and SkNNm separately. In addition,
we compare the two protocols. In our experiments, the Paillier
encryption key size K is set to either 512 or 1024 bits.

A. Performance of SkNNb

In this sub-section, we analyze the computation costs of
SkNNb by varying the number of data records (n), number of
attributes (m), number of nearest neighbors (k), and encryption

 0

 100

 200

 300

 400

 500

 600

 700

 0 2000 4000 6000 8000 10000

T
im

e
 (

s
e
c
o
n
d
s
)

Number of data records (n)

m=6
m=12
m=18

(a) SkNNb for k = 5 and K = 512

 0

 15

 30

 45

 60

 75

 0 2000 4000 6000 8000 10000

T
im

e
 (

m
in

u
te

s
)

Number of data records (n)

m=6
m=12
m=18

(b) SkNNb for k = 5 and K = 1024

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25

T
im

e
 (

s
e
c
o
n
d
s
)

Number of nearest neighbors (k)

K=512

K=1024

(c) SkNNb for m = 6 and n = 2000

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

T
im

e
 (

m
in

u
te

s
)

Number of nearest neighbors (k)

l=6
l=12

(d) SkNNm for n = 2000 and K = 512

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25

T
im

e
 (

m
in

u
te

s
)

Number of nearest neighbors (k)

l=6
l=12

(e) SkNNm for n = 2000 and K = 1024

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25

T
im

e
 (

m
in

u
te

s
)

Number of nearest neighbors (k)

SkNNb
SkNNm

(f) Time Complexity: SkNNb vs. SkNNm

Fig. 2. Time complexities of SkNNb and SkNNm for varying values of n, m, l, k and encryption key size K

key size (K). Note that SkNNb is independent of the domain
size of attributes (l).

First, by fixing k = 5 and K = 512, we evaluated the
computation costs of SkNNb for varying n and m. As shown
in Figure 2(a), the computation costs of SkNNb grows linearly
with n and m. For example, when m = 6, the computation
time of SkNNb increases from 44.08 to 87.91 seconds when
n is varied from 2000 to 4000. A similar trend is observed for
K = 1024 as shown in Figure 2(b). For any fixed parameters,
we observed that the computation time of SkNNb increases
almost by a factor of 7 when K is doubled.

Next, by fixing m = 6 and n = 2000, we evaluated the
running times of SkNNb for varying k and K. The results
are shown in Figure 2(c). Irrespective of K, the computation
time of SkNNb does not change much with varying k. This
is because most of the cost in SkNNb comes from the SSED
protocol which is independent of k. E.g., when K = 512 bits,
the computation time of SkNNb changes from 44.08 to 44.14
seconds when k is changed from 5 to 25. Based on the above
discussions, it is clear that the running time of SkNNb mainly
depends on (or grows linearly with) n and m which further
justifies our complexity analysis in Section IV-D.

B. Performance of SkNNm

We also evaluated the computation costs of SkNNm for
varying values of k, l and K. Throughout this sub-section,
we fix m = 6 and n = 2000. However, we observed that the
running time of SkNNm grows almost linearly with n and m.

For K = 512 bits, the computation costs of SkNNm for
varying k and l are as shown in Figure 2(d). Following from
Figure 2(d), for l = 6, the running time of SkNNm varies from
11.93 to 55.65 minutes when k is changed from 5 to 25 re-
spectively. Also, for l = 12, the running time of SkNNm varies

from 20.68 to 97.8 minutes when k is changed from 5 to 25
respectively. In either case, the cost of SkNNm grows almost
linearly with k and l.

A similar trend is observed for K = 1024 as shown in
Figure 2(e). In particular, for any given fixed parameters, we
identified that the computation cost of SkNNm increases by
almost a factor of 7 when K is doubled. For example, when k
= 10, SkNNm took 22.85 and 157.17 minutes to generate
the 10 nearest neighbors of Q under K = 512 and 1024
bits respectively. Furthermore, when k = 5, we observed that
around 69.7% of cost in SkNNm is accounted due to SMINn
which is initiated k times in SkNNm (once in each iteration).
Also, the cost incurred due to SMINn increases from 69.7%
to at least 75% when k is increased from 5 to 25.

In addition, by fixing n = 2000,m = 6, l = 6 and K =
512, we compared the running times of both protocols for
varying values of k. As shown in Figure 2(f), the running
time of SkNNb remains to be constant at 0.73 minutes since
it is almost independent of k. However, the running time of
SkNNm changes from 11.93 to 55.65 minutes as we increase
k from 5 to 25.

Based on the above results, it is clear that the computation
costs of SkNNm are significantly higher than that of SkNNb.
However, we emphasize that SkNNm is more secure than
SkNNb; therefore, the two protocols act as a trade-off between
security and efficiency. Also, it is important to note that Bob’s
computation cost is mainly due to the encryption of his input
query record. As an example, for m = 6, Bob’s computation
costs are 4 and 17 milliseconds when K is 512 and 1024 bits
respectively. This further shows that our protocols are very
efficient from end-user’s perspective. In SkNNb, SSED is the
bottleneck whereas in SkNNm the bottleneck is SMINn.

 0

 50

 100

 150

 200

 250

 0 2000 4000 6000 8000 10000

T
im

e
 (

s
e
c
o
n
d
s
)

Number of data records (n)

serial

parallel

Fig. 3. Parallel vs. serial versions of SkNNb for m = 6, k = 5 and K = 512

C. Towards Performance Improvement

At first, it seems that the proposed protocols are costly
and may not scale well for large datasets. However, in both
protocols, we emphasize that the computations involved on
each data record are independent of others. Therefore, we can
parallelize the operations on data records for efficiency pur-
pose. To further justify this claim, we implemented a parallel
version of our SkNNb protocol using OpenMP programming
and compared its computation costs with its serial version. As
mentioned earlier, our machine has 6 cores which can be used
to perform parallel operations on 6 threads. For m = 6, k = 5
and K = 512 bits, the comparison results are shown in Figure
3. We observe that the parallel version of SkNNb is roughly 6
times more efficient than its serial version. This is because of
the fact that the parallel version can execute operations on 6
data records at a time (i.e., on 6 threads in parallel). E.g., when
n = 10000, the running times of parallel and serial versions
of SkNNb are 40 and 215.59 seconds respectively.

We believe that similar efficiency gains can be achieved by
parallelizing the operations in SkNNm. Based on the above
discussions, especially in a cloud computing environment
where high performance parallel processing can easily be
achieved, we claim that the scalability issue of the proposed
protocols can be eliminated or mitigated. In addition, using the
existing map-reduce techniques, we can drastically improve
the performance further by executing parallel operations on
multiple nodes. We will leave this analysis to future work.

VI. CONCLUSION

The k-nearest neighbors is one of the commonly used
query in many data mining applications. Under an outsourced
database environment, where encrypted data are stored in the
cloud, secure query processing over encrypted data becomes
challenging. The existing SkNN techniques over encrypted
data are not secure. In this paper, we proposed two novel
SkNN protocols over encrypted data in the cloud. The first
protocol, which acts as a basic solution, leaks some informa-
tion to the cloud. On the other hand, our second protocol is
fully secure, that is, it protects the confidentiality of the data,
user’s input query, and also hides the data access patterns.
However, the second protocol is more expensive compared to
the basic protocol. Also, we evaluated the performance of our
protocols under different parameter settings. As a future work,
we will investigate and extend our research to other complex
conjunctive queries over encrypted data.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their helpful comments. This material is based upon work
supported by the Office of Naval Research under Award No.
N000141110256 and NSF under award No. CNS-1011984.

REFERENCES

[1] H. Hu, J. Xu, C. Ren, and B. Choi, “Processing private queries over
untrusted data cloud through privacy homomorphism,” in ICDE. IEEE,
2011, pp. 601–612.

[2] P. Mell and T. Grance, “The nist definition of cloud computing (draft),”
NIST special publication, vol. 800, p. 145, 2011.

[3] M. Li, S. Yu, W. Lou, and Y. T. Hou, “Toward privacy-assured cloud
data services with flexible search functionalities,” in ICDCSW. IEEE,
2012, pp. 466–470.

[4] P. Williams, R. Sion, and B. Carbunar, “Building castles out of mud:
practical access pattern privacy and correctness on untrusted storage,”
in CCS. ACM, 2008, pp. 139–148.

[5] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation,” in NDSS,
2012.

[6] B. Hore, S. Mehrotra, and G. Tsudik, “A privacy-preserving index for
range queries,” in VLDB, 2004, pp. 720–731.

[7] E. Shi, J. Bethencourt, T.-H. Chan, D. Song, and A. Perrig, “Multi-
dimensional range query over encrypted data,” in IEEE Symposium on
Security and Privacy (SP’07). IEEE, 2007, pp. 350–364.

[8] B. Hore, S. Mehrotra, M. Canim, and M. Kantarcioglu, “Secure mul-
tidimensional range queries over outsourced data,” The VLDB Journal,
vol. 21, no. 3, pp. 333–358, 2012.

[9] H. Hacıgümüş, B. Iyer, and S. Mehrotra, “Efficient execution of aggre-
gation queries over encrypted relational databases,” in Database Systems
for Advanced Applications. Springer, 2004, pp. 125–136.

[10] E. Mykletun and G. Tsudik, “Aggregation queries in the database-as-a-
service model,” in Data and Applications Security XX. Springer, 2006,
pp. 89–103.

[11] W. K. Wong, D. W.-l. Cheung, B. Kao, and N. Mamoulis, “Secure knn
computation on encrypted databases,” in SIGMOD, 2009, pp. 139–152.

[12] Y. Zhu, R. Xu, and T. Takagi, “Secure k-nn computation on encrypted
cloud data without sharing key with query users,” in Cloud Computing.
ACM, 2013, pp. 55–60.

[13] B. Yao, F. Li, and X. Xiao, “Secure nearest neighbor revisited,” in IEEE
ICDE, Brisbane, Australia, April 2013.

[14] O. Goldreich, The Foundations of Cryptography. Cambridge, University
Press, 2004, vol. 2, ch. General Cryptographic Protocols, pp. 599–746.

[15] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in EUROCRYPT. Springer-Verlag, 1999.

[16] A. Janosi, W. Steinbrunn, M. Pfisterer, and R. Detrano,
“Heart disease data set,” The UCI KDD Archive, 1988,
http://archive.ics.uci.edu/ml/datasets/Heart+Disease.

[17] J. Domingo-Ferrer, “A provably secure additive and multiplicative pri-
vacy homomorphism,” Information Security, pp. 471–483, 2002.

[18] M. Shaneck, Y. Kim, and V. Kumar, “Privacy preserving nearest neigh-
bor search,” Machine Learning in Cyber Trust, pp. 247–276, 2009.

[19] Y. Qi and M. J. Atallah, “Efficient privacy-preserving k-nearest neighbor
search,” in ICDCS. IEEE, 2008, pp. 311–319.

[20] J. Vaidya and C. Clifton, “Privacy-preserving top-k queries,” in ICDE.
IEEE, 2005, pp. 545–546.

[21] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L. Tan, “Pri-
vate queries in location based services: anonymizers are not necessary,”
in SIGMOD. ACM, 2008, pp. 121–132.

[22] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity
of interactive proof systems,” SIAM Journal of Computing, vol. 18, pp.
186–208, February 1989.

[23] B. K. Samanthula and W. Jiang, “An efficient and probabilistic secure
bit-decomposition,” in ACM ASIACCS, 2013, pp. 541–546.

[24] S. Bugiel, S. Nürnberger, A.-R. Sadeghi, and T. Schneider, “Twin clouds:
An architecture for secure cloud computing (extended abstract),” in
Workshop on Cryptography and Security in Clouds, March 2011.

[25] Y. Elmehdwi, B. K. Samanthula, and W. Jiang, “Secure k-nearest
neighbor query over encrypted data in outsourced environments,” eprint
arXiv:1307.4824, 2013.

