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Abstract—Online social networks (OSNs) suffer from the creation of fake accounts that introduce fake product reviews, malware and

spam. Existing defenses focus on using the social graph structure to isolate fakes. However, our work shows that Sybils could befriend

a large number of real users, invalidating the assumption behind social-graph-based detection. In this paper, we present VoteTrust, a

scalable defense system that further leverages user-level activities. VoteTrust models the friend invitation interactions among users as

a directed, signed graph, and uses two key mechanisms to detect Sybils over the graph: a voting-based Sybil detection to find Sybils

that users vote to reject, and a Sybil community detection to find other colluding Sybils around identified Sybils. Through evaluating on

Renren social network, we show that VoteTrust is able to prevent Sybils from generating many unsolicited friend requests. We also

deploy VoteTrust in Renen, and our real experience demonstrates that VoteTrust can detect large-scale collusion among Sybils.

Index Terms—Online social network, Sybil attack, Sybil detection, spam
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1 INTRODUCTION

RECENTLY, OSNs have come under Sybil attacks [1]. In
this attack, a malicious user creates multiple fake iden-

tities, known as Sybils [1], to unfairly increase their power
and influence within a target community. Researchers have
observed Sybils forwarding spam and malware on Renren
[2], Facebook [3] and Twitter [4].

To defend against Sybils, prior Sybil defenses [5], [6], [7],
[8], [9] leverage the positive trust relationships among users,
and rely on the key assumption that Sybils can befriend
only few real accounts [10]. Unfortunately, we find that peo-
ple in real OSNs still have a non-zero probability to accept
friend requests of strangers, leaving room for Sybils to con-
nect real users through sending a large amount of requests.

In this paper, we further explores the negative distrust
relationships (e.g., in the form of rejected friend requests)
among users, as Sybils have more distrust relationships
than trust ones with real users. However, this feature cannot
be directly applied because attackers could obfuscate their
Sybils from the detector by generating many fake trust rela-
tionships among Sybils.

To prune the fake relationships, we model the friend
invitation interactions among users as a signed, directed
network, with an edge directed from the sender to the
receiver and a sign ð1=� 1Þ indicates whether a friend
request is accepted. This graph is referred to as the friend
invitation graph, as illustrated in Fig. 1. The fundamental
rationale of our approach is to leverage the unique struc-
tural features of Sybil community in this signed graph:

the colluding Sybils as a whole has a limited number of
incoming links and more negative outgoing links than
positive ones, since real users usually send/accept the
friend requests to/from their friends or acquaintances.

Based on the above rationale, we present VoteTrust, a sys-
tem that leverages the friend invitation graph to detect Syb-
ils. In VoteTrust, we say that a node B casts a (positive/
negative) vote on a node A if B accepts/rejects the request
from A. VoteTrust first uses a PageRank-style algorithm to
appropriately assign the number of votes that one can cast
on another node (referred to as vote capacity). This process
assigns few vote capacity for individual Sybils and thus pre-
vents them from significantly vouching each other through
collusion. After that, VoteTrust evaluates a global acceptance
rate (i.e., the probability of being a real user) for each node
through aggregating the votes over the network. During the
aggregation, VoteTrust further penalizes votes from sus-
pected nodes. Due to more negative votes from real users,
Sybils would get low global acceptance rates and thus can
be identified out.

This paper significantly extends an earlier version [11] in
the following ways. First, we add a new Section 2 to charac-
terize the friend request behavior of Sybils. Second, we add
a new Section 5 that looks at how to detect Sybil communi-
ties surrounding the identified Sybils. Third, we add a new
Section 6.2.2 that looks at the performance gain of the Sybil
community detection (CD) component. Finally, we add a
new Section 7 to describe how to implement VoteTrust
using parallel computing frameworks (e.g., Giraph), and
report on our real experiences with a deployment of Vote-
Trust in Renren.

2 BACKGROUND

In order to reach a user on OSNs like Renren and Facebook,
the attacker must first befriend that user. This is because, by
default, social communications such as creating posts are
only allowed between friends. The Sybils cannot be mone-
tized without first establishing social connections to real
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users. This motivates us to exploit the friend request behav-
ior to detect Sybils.

To help, Renren[2], [12], one of the most popular OSNs in
China, provided us with 1,000 real accounts and 1,000 Sybil
accounts, respectively. Both Sybils and real users are sam-
pled from over the global Renren network, which ensures
the identified features are typical (e.g., not special features
of users in a regional network). The Sybils were confirmed
spammers due to containing spam in blogs or posts. We
find that most Sybil accounts are well-constructed. Fig. 2 is
the profile of a sample account. The profile is crafted as a
college student with pictures, and with blogs and friends.

To avoid the effect of fake relationships, Renren sent
CAPTCHAs to all the friends of Sybils, and only considered
those passing the challenge as real friends. The security
team of Renren also helped us to inspect a random sample
of 100 nodes from those passing the test and confirmed that
96 percent of them are real users.

2.1 Befriending Behavior of Sybils

Using this dataset as our ground truth, we made the follow-
ing key observations:

First, Sybils receive few incoming requests from real
users. Fig. 3 plots a cumulative distribution function (CDF)
of users by the number of incoming requests they receive.
We see that Sybils receive few friend requests from real
users, since real users are more like to send requests to their
real life acquaintances or friends.

Second, Sybils are more likely to receive rejections than
real users. Fig. 4 shows a distinct difference between Sybils
and real users in terms of the acceptance rate, i.e., the frac-
tion of outgoing friend requests accepted by real users. On
average, real users have a high acceptance rate of 0.8,
whereas Sybils have a low acceptance rate of 0.2. Interest-
ingly, the average acceptance rate of Renren Sybils is close
to that of fictitious profiles in Facebook [13], indicating that
the users of different OSNs have a similar degree of toler-
ance to unwanted communication.

Since Sybils have non-zero acceptance rates, they can
befriend many real users by sending a large number of
friend requests. Fig. 5 shows the CDF of the number of

Sybils’ friends passing the CAPTCHA test. We find that
50 percent of Sybils have more than 32 real friends. On aver-
age, each Sybil has about 65 friends passing the test.

2.2 Discussion

What is the key difficulty of Sybils? The current social-graph-
based Sybil defenses assume that the key difficulty of Sybils
is to befriend many real users [5], [6], [7], [8], [9]. However,
our results show that Sybils can easily overcome this diffi-
culty by sending a large amount friend requests. Their
actual difficulty is to require real users to befriend them first
or to accept them with a high probability.

Can we directly use this difficulty to detect Sybils? Suppose
that we detect Sybils with the structural features of the
incoming degree or the percentage of positive outgoing
links. An attacker could manipulate these features with
Sybil collusion: One Sybil can send friend requests to other
colluding Sybils, who are guaranteed to accept these
requests. This is the reason why we propose VoteTrust
algorithm which is more robust against manipulations of
the graph.

3 MODELS AND GOAL

In this section, we outline the system and threat models and
the goal of VoteTrust.

System model. We consider a social network (like Renren
and Facebook) that adopts a friend request/confirm mecha-
nism. One has to send a request in order to befriend another
user, and the recipient can accept or reject the request. We
model the request/confirm interactions of users as a friend
invitation graph: a directed and signed graph GðV;EÞ, where
V and E are the set of nodes and links, respectively. A link
e ¼ ðu; v; sÞ from u to v, of sign s ¼ 1, indicates that v trusts
u and accepts its request. If s ¼ �1, then v distrusts u and
rejects its request. Let Eþ and E� are disjoint sets of positive
and negative links (Eþ [ E� ¼ E).

In the graph, the node set V contains two disjoint sets
H and S, representing real and Sybil users respectively. We
denote the real region GH as the subgraph that includes all
real users and the links among them, and the Sybil region

Fig. 1. Illustration of the friend invitation graph and the structure of Sybil
community.

Fig. 2. A sample of Sybil accounts.

Fig. 3. The number of incoming friend requests.

Fig. 4. Ratio of accepted outgoing friend requests.
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GS as the subgraph that includes all Sybils and the links
among them. Since real users are not likely to send/accept
the friend request to/from strangers such as fake accounts,
GS has few incoming links from GH , but more negative out-
going links than positive ones to GH . In this paper, we use
the term In-link to represent the link that goes into the Sybil
region GS from the real region GH .

Attack model. To appear legitimate to the system, an
attacker could create many positive links among Sybils. The
objective of the attacker is to infiltrate the target OSN by cre-
ating as many links as possible to the real region. We use the
term attack-link to represent the link that goes from the Sybil
region GS to the real region GH .

Goal. The goal of VoteTrust is to takes as input the friend
invitation graph G, and outputs the classification of any
node u, i.e., u ! {real, Sybil or unknown}, 8u 2 V . When a
node u joins the network, its initial state is unknown. How-
ever, as the node repeatedly sends requests to normal users,
the system can eventually classify it as Sybil or real based on
the feedbacks from real users. Let Nout be the maximum
number of attack-links that a Sybil can create before being
detected. VoteTrust aims to ensure that Nout is bounded,
irrespective of the number of collusion links.

4 INDIVIDUAL SYBIL DETECTION

We now describe the design of VoteTrust, which considers
the Sybil detection as a vote aggregation problem. In Vote-
Trust, a link of the friend invitation graph means that one
node casts a certain number of votes for the other. The
vote value is determined by the sign of link. For each
node, VoteTrust guarantees that votes are mainly collected
from real users by pruning the collusion votes among
Sybils. Then, it can identify the Sybil for which the major-
ity of votes are negative.

In VoteTrust, each node has two important features:
i) Vote capacity #ðvÞ is the number of votes that v can cast on
another node. Given a link ðu; v; sÞ in G, we consider that
node v casts at most #ðvÞ votes on node u, and the vote value
xvu ¼ s ð�1 or 1Þ. ii) Global acceptance rate pðuÞ is the fraction
of positive votes that VoteTrust aggregates for a node u,
indicating the probability that u is accepted by real users.
Nodes with low global acceptance rate (e.g., below a certain
threshold df ) are detected as Sybils. To limit the Sybil collu-
sion, VoteTrust uses two key techniques, trust-based vote
assignment and global vote aggregating, to properly assign the
vote capacity and to compute the global acceptance rate.

4.1 Trust-Based Votes Assignment

The goal of trust-based votes assignment is to assign low
vote capacity to Sybils, so that we can limit the number of

votes that Sybils could cast for each other. To achieve this
goal, we first select some trusted users as seeds, and then
propagate the vote capacity from the seeds to others along
the links of friend invitation graph GðV;EÞ. As Sybil region
has a limited number of in-links, the total vote capacity
entering the Sybil region is constrained.

Selecting trusted seeds. The goal of seed selection is to find
real users that will be the most useful in identifying other
real users. A heuristic for selecting seeds is to give prefer-
ence to those from which trust can be propagated to many
other real users. Note that real users prefer to send requests
to their real-life acquaintances, so we use the inverse
PageRank method like TrustRank [14]. The basic idea is to
build the seed set from real users that point to many real
users that in turn point to many others and so on. In particu-
lar, we can reverse the links in the friend invitation graph,
and compute the PageRank. Through manually inspecting a
few users of high inverse PageRank scores, OSN providers
can easily identify those real users to seed trust.

Suppose that the system has N ¼ jV j vote capacity in
total, i.e., each node has one vote capacity on average. Given
a set of trusted seeds (denoted as Vs), we equally assign the
vote capacity over Vs. Thus the initial vote capacity for a
user u is,

IðuÞ ¼ N=jVsj; if u 2 Vs;:
0; otherwise:

�

Votes propagation. We then propagate the vote capacity from
trusted seeds to other nodes as follows: Suppose that each
incoming neighbor v of a node u has a vote capacity of ##ðvÞ
and a outgoing degree of vðvÞ. The node u’s overall vote
capacity can be computed as,

##ðuÞ ¼ d �
X

v:ðv;uÞ2E

##ðvÞ
vðvÞ þ ð1� dÞ � IðuÞ; (1)

where d is a constant less than 1 (e.g., 0.8).

4.2 Global Vote Aggregating

Vote assignment gives low vote capacity to not only Sybils
but also non-popular real users with few incoming links.
We thus introduce the global vote aggregating phase to get
the global acceptance rate pðuÞ of a node u. This phase
further leverages the sign of outgoing links (i.e., the user
feedback) for higher accuracy, as Sybils have a higher per-
centage of negative links to real region.

Global rating computation. For a node u, VoteTrust com-
putes the pðuÞ by combining all the votes from its outgoing
neighbors. As neighbors of high global acceptance rates are
more likely to be real users, we should bias towards their
votes. Based on the above intuition, we compute the user
u’s global acceptance rate pðuÞpðuÞ as:

bppðuÞ ¼
P

v:ðu;vÞ2Eþ ##ðvÞ � ppðvÞP
v:ðu;vÞ2E ##ðvÞ � ppðvÞ : (2)

Notice that the voting result may be unreliable if there
are few votes casted for a node. Hence, we combine Wilson
score to increase the confidence. Suppose the number of
votes for u is nðuÞ. The Wilson score is a weighted average

Fig. 5. The number of real users the Sybils have befriended.
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of bpp and 0:5, with bpp receiving greater weight as nðuÞ
increases, i.e.,

ppðuÞ ¼
bppðuÞ þ 1

2nðuÞ z
2
1�a=2

1þ 1
nðuÞ z

2
1�a=2

; (3)

where the z1�a=2 is the 1� a=2 percentile of a standard
normal distribution, e.g., z1�a=2 ¼ 1:96 for 95 percent con-

fidence level.
Limiting the collusion votes. When aggregating votes of

outgoing neighbors, an important problem we should
address is how to prevent the attacker from increasing the total
number of collusion votes by enlarging the Sybil set?

Considering the case illustrated in Fig. 6. Initially, the
Sybil region has three Sybils that receive a total of one vote
capacity from the real region. The vote capacity of each
Sybil is 1=3, and each Sybil can collect at most 1=3 collusion
votes. However, if the attacker adds another two Sybils, the
vote capacity of individuals drops to 1=5 as the total
vote capacity is constant. But each Sybil can collect at most
2=5 collusion votes. This means that the attacker can
increase collusion votes for Sybils by enlarging the Sybil
region. In fact, a complete-connected subgraph with N Syb-

ils and c total capacity could create cðN�1Þ
2 collusion votes,

which increases as N grows.
Given a fixed number of in-links, the vote capacity of

individual Sybils will drop as the Sybil region is enlarged.
Thus, VoteTrust limits the size of Sybil region by ignoring
the votes from nodes of very low capacity, i.e, below a cer-
tain threshold dv. For example, in Fig. 6, if we set dv ¼ 1=3,
all the collusion votes would be ignored once the individual
capacity drops to 1/5 due to adding more Sybils. Choosing
the threshold dv should make a balance between ignoring
collusion votes within Sybil community and losing some
real votes. We shall show how to make a balanced tradeoff
in Section 6.

Sybil detection. Given a detection threshold df , we con-
sider a node u as Sybil if its global acceptance rate pðuÞ < df .
Before combining votes using equation (2), we assign the
initial value of ppðuÞ as df . For those without any vote (e.g.,
new users), their global rating would always be the initial
value. Thus, the system does not perform classification on
newcomers until after they start generating friend requests.

We sketch the VoteTrust system in Fig. 7. It takes the
friend invitation graph G and a set of trusted “seed users”
Vs as inputs, and outputs a set of active Sybils that send
many friend requests to real users.

4.3 Security Properties

Let Nin be the number of in-links entering the Sybil region
GS , and Nout be the number of attack-links a Sybil can

send to real users. VoteTrust provides the following secu-
rity guarantees:

Theorem 1. If a colluding Sybil s wants to keep its global accep-
tance rate pðsÞ above the detection threshold df , the number of
its attack-links Nout should follow:

Nout � r
df � d2f

df � g
Nin; (4)

where r is a constant and g is the fraction of negative attack
links of Sybils.

The proof is in Appendix A. This theorem means that the
number of requests that a Sybil could send to real users are
linearly bounded by the number of requests it receives from
real users.

Theorem 2. The system collects collusion votes of Sybil region
S only if the Sybil group sizeNs ¼ jSj satisfies:

Ns � s
Nin

dv
; (5)

where s is a constant factor and dv is the threshold for vote
collection.

The proof is in Appendix B. We see that the size of
Sybil community is also constrained by the number of
in-links Nin.

5 SYBIL COMMUNITY DETECTION

Detecting Sybil community in friend invitation graph is dif-
ferent from that in social graph. In social graph, given a
node u and a community C, an internal (or external) link
indicates that the node belongs (or does not belong) to the
community. So the node u is included in C only when it has
more internal links than external ones. Hence, Sybils do not
form tight-knit communities if they are not well connected
among each other, or accumulate many external edges from
real users, as demonstrated by our prior work [2]. As a

Fig. 6. Example of vote collection

Fig. 7. Sybil detection algorithm of VoteTrust.
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result, they may be classified as real users belonging to
nearby real communities.

Unlike social graph, friend invitation graph is a signed
network that further contains the negative links. Given a
node u and a community C, both internal positive links and
external negative link indicate that the node belongs to the
community. Although Sybils are not well connected (i.e.,
few internal positive links) or accumulate many external
positive links, they also have many external negative links
to indicate their community membership. As a result, Sybils
form a community in friend invitation graph, meaning
group members (e.g., Sybils) accept each other but are
rejected by the nodes out of the group (e.g., real users).

Given a known Sybil, the next goal of VoteTrust is to
detect the whole Sybil community in the friend invitation
graph. Once some Sybil nodes are identified using the vot-
ing-based detection (VD), VoteTrust begins to detect the
Sybil community around these Sybil seeds. VoteTrust
employs two key techniques, bad score propagation and Sybil
community identification, to correctly expand Sybil commu-
nity and to determine its boundary.

5.1 Bad Score Propagation

The goal of bad score propagation is to find nodes that are
more likely to be colluders. It assigns each node a bad score,
and a large score indicates a high likelihood of being Sybil.
This score assignment can guide us to identify the boundary
of Sybil region in the next step.

In order to assign high bad score to Sybils, VoteTrust
propagates the bad score from some identified “seed Syb-
ils” to other nodes along the inverse direction of links.
Since the Sybil region has a fixed number of in-links, the
bad score is likely to stay within the subgraph consisting
of colluding Sybils.

Selecting bad seeds. Define lðsÞ as the local acceptance rate
of a Sybil s, i.e., the percentage of its positive links. Clearly,
if a Sybil s has many colluding Sybil neighbors, its local
acceptance rate lðsÞ would be larger than its global accep-
tance rate pðsÞ. Hence, given a set of Sybil nodes, we use the
subset V 0

s ¼ fsjpðsÞ < lðsÞg as seeds, and equally assign the
initial bad score over them

IðuÞ ¼ 1; if u 2 V 0
s .

0; otherwise.

�

Bad score propagation. Next we propagate bad score from
Sybil seeds to others along the inverse direction of links in
G: Suppose each outgoing neighbor v of a node u has a bad
score of BBðvÞ and a in-degree of ’ðvÞ. The node u’s bad score
can be computed as,

BBðuÞ ¼ d �
X

v:ðu;vÞ2E

BBðvÞ
’ðvÞ þ ð1� dÞ � IðuÞ: (6)

5.2 Sybil Community Identification

Sybil community identification aims to identify the Sybil
community boundary. Instead of detecting the community
on the entire graph, we detect a local Sybil community C by
expanding a known portion of the community. This portion
C0 can be thought of as the core of a local community. The

algorithm first includes a number of nodes with the highest
bad score as the community core C0, and then detects the
Sybil community C through a node discovery process: We
focus on the two local regions of the network. One is the
current community C (initial state is C0), and the other is
the set of nodes adjacent to the community, D (each has at
least one incoming or outgoing neighbor in C). At each step,
one or more nodes from D are chosen and agglomerated
into C, then D is updated to include any newly discovered
nodes. This expansion process continues until it has discov-
ered the entire local community.

Local community expansion. To determine which nodes
should be agglomerated into the community at each step,
we measure to what extent a node u 2 D is accepted by the
Sybil community C by

VinðuÞ ¼
X
v2C

signðu; vÞ: (7)

Similarity, we measure to what extent u is accepted by
nodes out of the community C by:

VoutðuÞ ¼
X
v =2 C

signðu; vÞ: (8)

Since finding a community corresponds to increasing its
internal positive links and external negative ones, we
agglomerate the node u with VðuÞ ¼ VinðuÞ �VoutðuÞ > 0, i.e.,
nodes are more likely to be accepted by the nodes in the
community than by those out of the community.

Core selection and expansion termination. In order to expand
the community, the algorithm needs to carefully select the
community core C0. Intuitively, a small core cannot recall
many Sybils, whereas a large core may exceed the boundary
of Sybil region.

Our algorithm attempts to choose C0 in a self-adjusting
manner. Let m be the size of C0 in the current iteration (ini-
tially, C0 ¼ V 0

s ). The algorithm first expands the community
C from C0. Then, the algorithm starts a new iteration, dou-
bles the size of C0 by including top 2m nodes with the high-
est bad score, and re-expands the community C. This
process is repeated until the expanded Sybil communities
are similar at the end of two consecutive iterations, imply-
ing the whole Sybil community is enclosed. Then the algo-
rithm outputs C as the detected sybil community.

The basic ideas of core selection are as follows: First, we
select core nodes from those of highest bad scores, expand-
ing the community from the Sybil region. Second, we dou-
ble the size of C0 in each iteration, which allows the
searching to be efficient and avoids introducing many real
users in one iteration.

We sketch the community detection algorithm in Fig. 8. It
takes the invitation graph G and a known Sybil set V 0

s as
inputs, and outputs the Sybil community C that Sybil nodes
in V 0

s belong to. Notice that some real users could also have
relatively high bad score due to unintentionally sending
friend requests to Sybils. These nodes may be included in
C0. Thus, we first remove nodes that are more likely to be
accepted by the nodes out of C (e.g., from step 15 to 19).
This prunes some real users and enhances the accuracy in
the subsequent Sybil community expansion.
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5.3 Security Property

Theorem 3. The number of real users whose bad score are higher
than the Sybils’ average score is linearly bounded by the num-
ber of In-links Nin:

fujxu > �xsgj j < %Nin; (9)

where xu; xs represent the average bad score of real users and
Sybils, respectively, and % is a constant.

The proof is in Appendix C. Recall that the VoteTrust
tries to find a Sybil community surrounding Sybil seeds, in
which each node is detected as a Sybil colluder. A false
positive occurs only if we include a real user in the Sybil
community. Since the VoteTrust selects nodes of high bad
scores (i.e., those likely-to-be-Sybils), the above property
guarantees that most nodes in the Sybil community are
true Sybils. Thus, the VoteTrust could rightly expand the
community from the Sybil region, and could iteratively
improve the precision (and recall) by removing real users
from the community (and by adding other Sybils into the
community).

6 EVALUATION

In this section, we evaluate the performance of VoteTrust
through conducting detection over Renren network.

6.1 Data Set and Methodology

As VoteTrust requires the structure of friend invitation
graph, the sampled dataset used in Section 2 cannot be used
for the evaluation. In our experiment, we use the Peking

university (PKU) network because: First, we can construct
the friend invitation graph for PKU network as we have the
complete friend request records (a total of 5:01 million for
about 230 K PKU users). Second, PKU network is one of the
most popular regional networks in Renren, making it an
attractive target for attackers (e.g., Sybils are disguised as
PKU users to increase their popularity). Finally, we can per-
form a comparative evaluation of VoteTrust’s ability over
the PKU network, as we can perform manual inspection on
PKU users.1

We evaluate the performance of VoteTrust through
i) adding artificial Sybils and ii) detecting real Sybils in the
network. The two sets of Sybils serve to validate different
aspects of VoteTrust. The simulations based on artificial
Sybils validate whether our theoretical bounds hold in dif-
ferent attacking cases (e.g., different number of in-links or
Sybils). The detection performed on real Sybils compares
VoteTrust against other approaches in terms of its effective-
ness in identifying real social Sybils.

To measure the detection performance, we use the met-
rics Precision and Recall. Suppose that O represents the set of
true Sybils existing in the network, and I represents the set
of Sybils identified by a defense scheme. Precision
P ¼ jI \Oj=jIj and recall R ¼ jI \Oj=jOj.

6.2 Detecting Simulated Sybils

We first examine the performance of VoteTrust under vari-
ous attack strategies. We demonstrate that VoteTrust is able
to limit the attack-links of Sybils, and to find other colluding
Sybils in a preventive manner.

6.2.1 Sybil Detection

Simulation setup. We create a Sybil region S ¼ ðNs;Nin;
Nout; pÞ, where Ns is number of Sybils, Nin is the number of
in-links of Sybil region, Nout is the number of attack links of
each Sybil and p is the percentage of negative attack links.
Clearly, the parameters Nin; p represent the resource limita-
tion of the attacker, and the goal of VoteTrust is to limit
both Nout and Ns. In the following experiments, we assume
that Sybils form a tight complete-graph to maximize the col-
lusion votes (the worst case). We set p ¼ 0:2 according to
the measurement in Section 2.

Limiting attack-links Nout. We first fix Ns ¼ 100 and
Nin ¼ 10, and allow varying attack-links to randomly
selected PKU users. Fig. 9 shows the recall increases as Nout

grows. On average, individual Sybils could only create
E½Nout� ¼ 2 attack-links before being detected, which is

Fig. 8. Algorithm of E-VoteTrust.

Fig. 9. Sybil recall versus number of out-links.

1. Renren’s privacy policy allows users in the same affiliation to see
the profile information of each other.
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much smaller than Nin. Notice that the number of PKU
users with acceptance rates below a given threshold is con-
stant, so the precision also increases as Nout grows due to
finding more simulated Sybils. However, we do not evalu-
ate the precision here because there are many real Sybils in
Renren, which would affect the true precision of detecting
simulated Sybils. We shall leave the detection of real Sybils
in Section 6.3.

To verify the bound (4) on attack-links, we vary the num-
ber of in-links Nin, and compute the average number of
attack-links E½Nout� that a Sybil can create before being
detected. Fig. 10 plots the theoretical upper bound and the
experiment result, which are very close.

Limiting Sybil region sizeNs. To limit the size of Sybil com-
munity, VoteTrust ignores the votes from users with vote
capacities below the threshold dv. From bound (5) we know
that increasing the threshold could reduce the community
size Ns to rNin=dv, but at the cost of losing votes from some
real users. Fig. 11 shows the trade-off curve for various
thresholds, where Y-axis is the reduction factor 1=dv and
X-axis is the ratio of lost votes to total votes (computed
based on vote capacity distribution). To make a balance
between vote loss and community size restriction, we select
the turning point of ð0:01; 8Þ, and get the corresponding
threshold dv ¼ 0:12.

Given this threshold, we measure the fraction of lost real
votes and the fraction of collusion votes ignored under dif-
ferent Sybil community sizes Ns. Here, we fix Nin ¼ 50 and
Nout ¼ 10. Fig. 12 shows that the normal users lose only
0:45 percent votes, whereas Sybils lose majority of their col-
lusion votes, e.g., losing 57:1 percent given Ns ¼ 100 and
82:8 percent given Ns ¼ 500. This result indicates that, as
the community size grows, VoteTrust effectively eliminates
colluding votes within Sybil community while incurring lit-
tle effect on real users.

6.2.2 Community Detection

We now examine to what extent that the community detec-
tion of VoteTrust could complement the voting-based

detection. To do so, we combine two detection mechanisms,
and look at the gain of the overall performance.

Recall that Sybils could maximize the number of collud-
ing votes by forming a tight complete-graph. So we first
examine the detection performance over a graph Gn con-
taining a completely-connected Sybil region with Ns ¼ 100
andNin ¼ 10, the same configuration as Fig. 9. Fig. 13 shows
the recall of the combined methods as the average number
of attack-links varies from 0 to 1. We see that the community
detection could promote recall to 100 percent even the vot-
ing-based detection just gains a recall of 2 percent. This
means the community detection is able to find the whole
Sybil community, once the voting-based detection is able to
provide a number of Sybil seeds.

A possible way that the attacker makes the commu-
nity detection harder is to weaken the collusion. To sim-
ulate this strategy, we remove half of links between the
Sybils, and let Gn=2 represents the new graph. Fig. 13
shows that the community detection achieves the similar
performance in the case of weak collusion. The reason is
that Sybils get fewer positive votes after weakening the
collusion. Thus, the voting-based detection achieves a
relatively higher recall, which in turn feeds the commu-
nity detection with more seeds and counteracts the effect
of weak collusion.

Fig. 14 shows the precision of the Sybil community detec-
tion, measured by the fraction of nodes that are simulated
Sybils in the identified community. We see that the commu-
nity detection achieves a nearly 100 percent precision as
Sybils create more attack-links. Interestingly, the commu-
nity detection is more accurate when the attacker weakens
Sybil collusion. Because in that case, the community detec-
tion could get more Sybil seeds to rightly expand the Sybil
community.

The combination of these results show that the commu-
nity detection of VoteTrust could effectively detect other
colluding Sybils, and thus preventing them from creating
attack-links in a proactive manner.

Fig. 10. The upper bound of out-links for Sybils.

Fig. 11. Tradeoff between vote capacity loss and community size factor.

Fig. 12. Loss rate of aggregated votes for normal users and Sybil
community.

Fig. 13. Sybil recall with/without community detection.
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6.3 Detecting Real Sybils

To show the advantage of VoteTrust, we compare it against
typical ranking schemes that also use PageRank-like algo-
rithm to propagate scores, including SybilRank (SR), Trust-
Rank (TR) and BadRank (BR). The comparison actually
shows the extent to which VoteTrust can improve existing
schemes by incorporating the negative links.

Ground-truth datasets. We first run VoeTrust and other
ranking algorithms over the PKU network to detect real
Sybils, and then compare their performance using two
ground-truth datasets: The first one contains 500 randomly
selected PKU users. An expert team carefully scrutinized all
accounts to classify them as real users or Sybils by looking
over detailed profile data. In particular, they examine
whether the accounts use photos of attractive young
women/men, send or forward spam messages or links and
use invalid email addresses. This manual inspection finds
73 Sybil accounts in the dataset. We use this dataset to eval-
uate the performance of different defenses. The other con-
tains 2;502 PKU Sybil accounts that already detected by
Renren security team using prior techniques. Since it is a
more large ground truth data about Sybils, we use this data-
set to confirm the effectiveness of VoteTrust in detecting
true Sybils.

Seed selection.For a fair comparison, we strive to use the
same trusted seeds for all schemes. We inspect 100 nodes of
high inverse PageRank scores and only seed trust at the
nodes passing the verification. For bad seeds, we select
Sybils based on the number of their in-links, because the
bad score propagates from the receiver to the sender (i.e.,
the reverse direction of trust score propagation). So we
select 100 highest in-degree Sybils from the 2;502 banned
accounts as the bad seeds of BadRank.

Results. Figs. 15a and 15b plot the precision-recall curve
(PRC) of VoteTrust and other approaches on two datasets,
respectively. We see that VoteTrust outperforms all other
schemes due to incorporating the negative link information.
Given the same recall, VoteTrust achieves the highest preci-
sion on both datasets. It should be pointed out that the sec-
ond dataset provided by Renren has a limitation that it does
not contain the Sybils that the security team fails to find.
With this limitation, we may significantly underestimate
the true precision of different schemes. In particular, the
precision is calculated based on the assumption that only
banned accounts in the dataset are Sybils. Thus, we have to
suppose that the system is wrong when it actually finds
Sybils out of the dataset, which underestimates the true pre-
cision. This underestimation is the reason why the all
schemes produce unreasonably low precision in Fig. 15b.
However, the underestimation does not affect the relative

improvement of VoteTrust over others. Further, the hori-
zontal line in Fig. 15b is because about 80 percent of the
banned accounts have the same lowest score.

VoteTrust versus TrustRank. TrustRank also leverages the
heuristic that Sybils have few in-links, and propagates the
trust score from trusted seeds to other users. However,
TrustRank may mix Sybils with many non-popular users
that also have low trust score due to few incoming links. In
contrast, VoteTrust further leverages the information of
negative links to distinguish Sybils from non-popular users.
On average, given a similar recall, VoteTrust can improve
the precision of TrustRank by 32:9 percent in manually
checked dataset, and by 50:1 percent when limiting the
recall � 80% in banned accounts dataset.

VoteTrust versus SybilRank. SybilRank [15] uses a early-
terminated random walk to propagate trust score. Like [15],
we perform log n power iterations for SybilRank, where n is
the size of the graph. Fig. 15 shows that SybilRank outper-
forms TrustRank, but it performs worse than VoteTrust. For
example, SybilRank has about 10 percent higher false posi-
tive rate than VoteTrust in the manually checked dataset,
given a similar false negative rate. Similar to TrustRank,
SybilRank also has no additional information to distinguish
Sybils and non-popular users. In contrast, VoteTrust further
leverages the sign of nodes’ outgoing links (i.e., the posi-
tive/negative feedbacks), as Sybils have a higher percentage
of negative outgoing links to real users than that of non-
popular users.

We also implement the original seed selection strategy
used in SybilRank, where seeds are picked from different
communities. With the Louvain method, we found 116 com-
munities in friend invitation graph, among which 50 large
communities contain more than 94 percent of total nodes.
We inspect two nodes in each community and designate as
SybilRank trust seeds the nodes that pass the manual verifi-
cation. From Fig. 15 we see that SybilRank with this original
strategy performs only slightly better than that with inverse
PageRank strategy, since nodes of high inverse PageRank
scores usually have links to multiple communities in the
friend invitation graph. SybilRank still performs worse than
VoteTrust.

VoteTrust versus BadRank. BadRank is based on the prem-
ise that a node is Sybil if it points to another Sybil. Different
from TrustRank, BadRank propagates the bad score from
Sybil seeds to users who link to Sybils. However, The

Fig. 14. The precision of Sybil community detection.

Fig. 15. Recall precision curve for various Sybil detection schemes on
different datasets. VT stands for VoteTrust; SR for SybilRank; SR(MS)
for SybilRank with multi-community seeds; TR for TrustRank; and BR for
BadRank.
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performance of BadRank is significantly depend on Sybil
seeds and may punish innocent users that are enticed to
send requests to Sybils. We compare the performance of
BadRank and VoteTrust on both human checked samples
and real banned accounts.

We find that BadRank cannot efficiently detect Sybils on
human checked dataset, because many Sybils are not in the
seed’s community, and thus cannot be detected by
BadRank. For banned accounts dataset, BadRank outper-
forms both TrustRank and SybilRank due to selecting
seeds from these Sybil accounts. However, it has at least
30 percent higher false positive rate than VoteTrust on aver-
age, given a similar false negative rate.

6.4 Discussion

How to handle false rates in practice? In the real OSN, there are
a wide variety of Sybils. Relying on a few abnormal features
can be very difficult to yield a binary Sybil/non-Sybil classi-
fier with both high recall and high precision. This is true for
all the Sybil defenses so far. However, this limitation does
not appear to significantly affect the ability of VoteTrust in
practice:

First, we find that many Sybils are missed because they
have not launched attacks yet (i.e., inactive actually). For
example, in the ground-truth dataset used in Fig. 15a, about
25 percent Sybils have no behavioral data (e.g. friend
requests) to leverage for classification. These accounts can-
not do harm to real users until after they start generating
friend requests to real users or their colluders. In this case,
VoteTrust can recall these accounts as quickly as possible
once they become active, to minimize the amount of dam-
age they can do to real users.

Second, we find that most false positives in VoteTrust
can be attributed to promiscuous real users that also get
low acceptance rates due to friend request abuse. Thus,
OSNs could tolerate more false positives for acceptable
recall. Before banning a suspected account, OSN (like
Renren) sends CAPTCHAs and other challenges to the
account. In the case of false positives, OSN can regulate
the abusive behavior of promiscuous users, since passing
the challenges requires human effort. In the case of right
detection, fake accounts cannot correctly pass the chal-
lenge and would be banned.

Does the experiment violate user privacy? Renren’s privacy
policy allows the users in the same affiliation to see the pro-
file information and friend relationships of each other.
Thus, the personal information contained in our PKU data-
set is actually public to us given the same affiliation. Notice
that we examine the personal information for obtaining
ground-truth dataset. The VoteTrust itself does not require
these personal information, the OSN provider can deploy
the detector solely based on friend request records.

Is it possible to leverage promiscuous users to attack? Since
promiscuous real users are open to befriending even strang-
ers, the attacker may want to use well-maintained Sybils
(e.g., good-looking female accounts) to gain positive links
from these users. However, this targeted attacks is difficult
when the attackers have limited knowledge about which
users are gullible. Promiscuous users have high tolerance of
unwanted communication, while cautious users are more

resistant to Sybils. The attacker cannot distinguish these
types of OSN users. As a result, Sybils are likely to receive
many negative feedbacks from cautious users, although
they may be able to contact some promiscuous users.

An alternative strategy of Sybils is to wait for receiving
the requests from promiscuous users, without contacting
them first. Notice that Sybil accounts are not popular in
OSNs, so promiscuous users rarely encounter/contact
Sybils first given a huge user population.

7 REAL-WORLD DEPLOYMENT

With the help of supportive collaborators at Renren, we
were able to deploy the VoteTrust system at the company
for internal testing on the global graph.

VoteTrust system consists of Sybil detection and commu-
nity detection components, which can be used in conjunc-
tion to defend against Sybil attacks. The Sybil detection
component takes the friend invitation graph G and a set of
trusted seeds as inputs, and outputs a set S of active Sybils
that achieve the detection bound on the number of attack-
links. Once Sybil nodes are identified, the community detec-
tion algorithm detects other colluding Sybils around those
identified Sybils.

7.1 Distributed Implementation

VoteTrust has inherent high parallelism, since a node’s state
only depends on its neighbors. Thus, we implement Vote-
Trust using the graph processing system, which enables us
to process the entire graph that is very large. Specially, we
implement VoteTrust on the Giraph [16], an open-source
clone of Google’s Pregel.

Like Pregel, the organization of Giraph programs is
inspired by Bulk Synchronous Parallel model [17]. Typical
Giraph computation consists of a sequence of iterations,
called supersteps. During each superstep, Giraph invokes a
user-defined function compute() for each vertex, concep-
tually in parallel. The function specifies behavior at a single
vertex u and a single superstep S. It takes messages sent to
u in superstep S � 1 as input, modifies the state of u and
sends output messages to other vertices that will be
received at superstep S þ 1 through sendMsgToNbrs()

function. The algorithm terminates when all vertices vote to
halt using voteTohalt() function and there are no mes-
sages in transit.

Fig. 16 gives the implementation of the Sybil detection
component. Taking the vote capacity assignment as an
example, in each superstep, we implement the compute()

function. It updates the node u’s vote capacity based on
Eq. (2), and calls sendMsgToNbrs() function to send the
new capacity value to u’s each neighbor. After a number of
iterations, vertex calls voteTohalt() to terminate compu-
tation. Fig. 17 gives the implementation of the community
detection component. In the compute() function, a node
u first computes VðuÞ. If VðuÞ < 0, the node u would also be
included in the Sybil community.

Notice that Giraph only maintains the outgoing neigh-
bors of each node. To facilitate the implementation of Vote-
Trust, we separate the invitation graph into two graphs:
i) Link initiation graph: a directed graph where a directed
link ðu; vÞ represents a node u sends a friend request to
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another node v. ii) Link acceptance graph: a weighted-directed
graph where a directed link ðu; vÞ represents u receives a
request from v (the inverting direction of link initiation
edge). The weight equals 1 (or �1) if u accepts (or rejects)
the request. We run the first stage of VoteTrust (i.e., vote
capacity assignment) on the link initiation graph, whereas
running other stages on the link acceptance graph.

7.2 Real-world Detection Result

In October, 2013, we deploy Giraph system on Renren’s
computation cluster, and run our VoteTrust algorithm
shown in Figs. 16 and 17. To get the implicit negative links,
we replay the friend request log in recent two years (from
1-October-2011 to 1-October-2013). A pair of users has a
negative link if the request that one sends to the other has
not been accepted till the end of log.

Sybil detection. VoteTrust has two thresholds: a node is
consider as Sybil if its global acceptance rate is below a
threshold df , and a node’s votes are ignored if its vote capac-
ity is below a threshold of dv. The method of setting the sec-
ond threshold is similar to that in Section 6.2.1.

To derive the first threshold, Renren performs manual
inspection on different threshold choices S ¼ ft; 2t; . . . ; 1g,
where the granularity t depends on the amount of resources
for manual inspection. In particular, for each df 2 S, the
security team at Renren gets the set of suspected users
whose global acceptance rates below df (say Vf ). The secu-
rity team samples random users from Vf , and reports a

portion of fakes (say af ) after manual inspection. By this
way, Renren could estimate the precision (indicated by af )
and recall (indicated by jVf j � af ) for each threshold choice.
With this estimation, Renren can select the threshold df that
balances precision and recall. Notice that the threshold
could also be set automatically if the OSN operator already
has ground-truth data to train the system. Let T and S rep-
resent the set of real users and Sybils in the ground-truth
data. For any threshold choice df 2 S, we can get the preci-
sion as jVf \ Sj=jVf \ ðT [ SÞj and recall as jVf \ Sj=jSj, and
thus get the balanced threshold.

After setting the thresholds, Renren begin to send
CAPTCHAs and other challenges to the suspected users
whose global acceptance rates below the balanced thresh-
old. If the suspected user cannot pass the challenges, the
account is banned. Also, Renren finds suspected users
whose global acceptance rates are much lower than their
local acceptance rates (i.e., the percentage of their positive
links), which indicates these suspected users have colluders.
Then, Renren takes them as bad seeds and finds other col-
luders with the community detection component of
VoteTrust.

Detection results. As Renren have deployed an online
Sybil detector using local acceptance rate [2], we prune Syb-
ils whose local acceptance rates are already below the
threshold, and focus on colluding Sybils that cannot be
identified based on their local property. Given the two-year
observation window, VoteTrust detects 105 Sybil communi-
ties that contain a total of 190,378 colluding Sybils. Fig. 18
gives the size distribution of these communities. We see
that VoteTrust is able to detect a number of very large Sybil
communities, e.g., the largest one contains 112,538 Sybils.

To examine how the large community is formed, we ran-
domly select 1,000 Sybils from the largest community, and
plot their temporal behavior in Fig. 19. We see that these
Sybils survive a long time by making the attack stealthy.

Fig. 16. The implementations of Sybil detection using Giraph.

Fig. 17. The implementations of community detection using Giraph. We
omit the implementation of bad-score assignment, since it is similar to
that of trust-based votes assignment except for the seed set. Fig. 18. The distribution of Sybil community size.
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Before creating attack links, Sybils first create many collu-
sion links among themselves (e.g., around day 120), in order
to keep high acceptance rates. Moreover, a fraction of Sybils
rarely attack, which are only used to vouch others. How-
ever, VoteTrust can prune collusion links by aggregating
the global acceptance rate, and thus find the attacking Sybils.
Further, VoteTrust can identify Sybil community around
the attacking Sybils, thus find other colluding Sybils even
they have not created attack links yet.

False positive. To assess the false positive, we examine
their feedback to Renren’s customer support department.
Renren operates a telephone number and e-mail address
where customers can attempt to get banned accounts
reinstated. Complaints are evaluated by a human opera-
tor, who determines if the account was banned errone-
ously. We use the complaint rate, measured as the
number of complaints divided by the number of accounts
banned, as an upper-bound on false positives. During the
one-month period after Sybils are banned, the average
complaint rate on these banned accounts is about 1.33
percent, which is extremely low. We further check the
detection precision with a manual inspection of 1,000
banned Sybils chosen at random. Our manual inspection
shows that 96.35 percent are confirmed spammers due to
containing spam (e.g., blog spam or post spam).

Making detection adaptive. In the future, Renren would
execute VoteTrust periodically to detect newly created Syb-
ils. After the detection threshold df has been bootstrapped,
Renren can use an adaptive feedback scheme to dynami-
cally tune the threshold on the fly. The adaptive feedback is
drawn from the customer complaint rate to Renren’s sup-
port department. For example, Renren can raise or lower
the threshold to maintain an acceptable complaint rate.

8 RELATED WORK

Recently, there has been a great effort in defending Sybils
(e.g., spammers) in OSNs. This section discusses the differ-
ence between VoteTrust and these studies.

Social-graph-based approaches. Some decentralized proto-
cols OSNs [5], [8], [10] leverage the social graph structure to
defend against Sybils. These techniques rely on the assump-
tion that fakes can befriend only few real accounts. How-
ever, our measurement on Renren Sybils has shown this
assumption is not valid [2]. Hence, existing network-based
Sybil defenses are unlikely to succeed in today’s OSNs.
Given the limitation of relying solely on the social network
structure, an attractive way to improve on these schemes is
to give Sybil defense schemes additional information.

Recent work [18] proposes �ıntegro, a Sybil detection sys-
tem that integrates user activities into graph structures.
�ıntegro starts by predicting victim accounts from user-level
activities. After that, it limits the trust score entering the
Sybil region by weighting the social graph such that edges
incident to predicted victims have much lower weights
than others. But �ıntegro relies on the accuracy of victim pre-
diction, which requires the information of many behavioral
features. Moreover, as long as the victims’ links have non-
zero weights, Sybils could still increase their scores by
befriending even more victims.

However, VoteTrust only focuses on the friend invitation
behavior, and detects Sybils that get more rejections than
acceptances from real users, irrespective of the number of
victims (i.e., those who accept Sybils). Also, VoteTrust is
compatible with many exiting defense schemes such as Syb-
ilRank and �ıntegro. We can use them as the first step of
VoteTrust (i.e., vote assignment), and then use the next step
of VoteTrust (i.e., vote aggregation) to leverage the feed-
backs on links.

Reputation systems. In many P2P systems, reputation sys-
tems have received a significant amount of attention as a
solution for mitigating the affects of malicious peers. In an
important work, Cheng and Friedman [19] classify them as
symmetric or asymmetric approaches, and prove formally
that the symmetric reputation systems (such as EigenTrust
[20]) are susceptible to Sybil attacks.

Different from EigenTrust, VoteTrust is an asymmetric
system that has trusted nodes from which reputation val-
ues propagate. It further limits the Sybil attack by com-
bining the implicit information of negative links with the
graph structure. As demonstrated in the paper, VoteTrust
can significantly outperform other asymmetric systems
that rely solely on graph topology (such as TrustRank
[14] or BadRank [21]).

Sybil community detection. Pervious works (e.g., [7], [10])
are designed for the unsigned graph, and cannot detect com-
munities in a signed graph like friend invitation graph. This
is why we propose the VoteTrust scheme. Our algorithm
could leverage the implicit information of negative links,
and thus is able to accurately identify the Sybil community.

Feature-based approaches. Sybils are created for profitable
malicious activities, such as spamming, click-fraud, mal-
ware distribution, and identity fraud. Hence, many works
[3], [22] analyze aberrant behavior or spam content to detect
Sybil accounts. Meanwhile, some Sybil detection systems
have recently been developed based on Bayesian filters and
SVMs [23], [24]. However, these feature-based Sybil detec-
tion systems require training on large samples of ground-
truth data.

9 CONCLUSION AND LIMITATION

This paper presents VoteTrust, a system that leverages user
interactions of initiating and accepting links to defend
against Sybil attacks. We provide the security guarantees of
VoteTrust, demonstrating that we limit the number of
requests Sybils can send to real users. Our evaluation over
real network shows that VoteTrust is able to detect real
Sybils with high precision, and significantly outperforms
traditional ranking systems. Finally, working closely with

Fig. 19. The temporal behavior of 1,000 Sybils selected from the largest
community. The ‘‘�00 (or ‘‘�00) point represents the creation of collusion
(or attack) link.
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Renren security team, we have deployed VoteTrust system
at Renren, showing that VoteTrust can accurately detect
real, large-scale Sybil collusion existing in the network.

Although we also use some standard techniques (e.g., a
PageRank-style algorithm to propagate scores), we make
three notable contributions: First, we introduce a new graph
model for Sybil defense, which nicely combine link struc-
ture and user feedback. Second, we propose new techniques,
including global vote aggregation and local community
expansion, to exploit the negative links. Finally, we pres-
ent and analyze theoretically the security guarantees of
VoteTrust.

Limitation. Recent works [25], [26] have found that mis-
creants start to sell legitimate accounts that have been com-
promised in Twitter. Thus, if attackers are willing to buy
friends from miscreants, they could enhance the attack
capacity by increasing the number of in-links or the accep-
tance rate of Sybils. In this case, VoteTrust can be consid-
ered as a first-level defense that increases the attack cost,
and could be combined with other orthogonal techniques
(e.g., those proposed in [25], [26]) for even better defense.

APPENDIX A
PROOF OF THEOREM 1

Proof. We now provide detailed proofs of the VoteTrust’s
security properties. An typical attack mode is illustrated
in Fig. 20. The attacker would connect Sybils into a com-
plete-connected graph, so that each Sybil could receive
the maximum number of collusion votes from others. Let
Nin be the in-links going from the non-Sybil region to the
the Sybil region.

According to the work [27], the total vote capacity that
flows into the Sybil community, say ES , is given by,

ES ¼ Ein
S � Eout

S : (10)

This equation means that the total vote capacity of a
Sybil community depends on the difference between
incoming capacity Ein

S and outgoing vote capacity Eout
S .

And Ein
S and Eout

S can be calculated using the following

expressions,

Ein
S ¼ d

1� d

X
i2Vin

fixi (11)

Eout
S ¼ d

1� d

X
i2Vout

ð1� fiÞxi; (12)

where Vin represents the set of normal users that link to
Sybils, and Vout is the set of Sybils that link to normals.
fi represents the fraction of a node i’s edges that link to
Sybils. d is the decay factor in Eq. (1), and we use a to
denote d=ð1� dÞ.

Let �xl and �xs represent the average vote capacity for
each node in non-Sybil region and Sybil region, respec-
tively. To be fully connected, each Sybil sends NS=2
requests to others Sybils. Here, Ns is the size of Sybil set.

Thus, for i 2 Vout, 1� fi ¼ Nout
NoutþNS=2

. We denote fin ¼
E½fi� for i 2 Vin. Substituting it into Eq. (10), we get,

ES ¼ a Ninfin�xl �ES
Nout

Nout þNs=2

� �
: (13)

Solving the above equation, the total vote capacity of
Sybil community is,

ES ¼ aNinfin�xl

aNout
NoutþNS=2

þ 1
: (14)

Due to Sybils have similar structure, we assume they
have equal global acceptance rate �ps. Let �pl be the average
global acceptance rate of promoters. According to the rat-
ing model Eq. (2), we have,

�ps ¼
Ns
2 �xs�ps þ gNout�xl�pl
Ns
2 �xs�ps þNout�xl�pl

; (15)

where g is the acceptance percentage of Sybils’ out-links.
Based on Eq. (16), we can get the Sybils’ total out-links as:

Nout ¼
Ns �xs
2 ð�ps � �p2sÞ
�xl�plð�ps � gÞ : (16)

Notice that �ps 2 ½0; 1�, we get @Nout
@�ps

< 0. This indicates that
Nout decrease as �ps grows.

To evade the detection, Sybils should maintain their
global rating �ps above the detection threshold df . There-
fore, Nout has the least upper bound when �ps ¼ df . Note
that ES ¼ Ns�xs, substituting Eq. (15) into Eq. (16), and let
�ps ¼ df yields the inequality,

ð4aþ 4ÞaN2
out þ ð2aNs � 2bcÞNout � bcNs � 0; (17)

where a ¼ df � g, b ¼ df � d2f and c ¼ aNinfin
pl

.
According to the property of quadratic function, we

know the condition that the above inequality holds is
Nout � 0. Thus, we get the following inequality:

Nout �
2bc� 2aNs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2aNs � 2bcÞ2 þ ð16aþ 16ÞabcNs

q
8aaþ 8a

¼
2bc� 2aNs þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaNs þ ð2aþ 1ÞbcÞ2 � ð4a2 þ 4aÞb2c2

q
8aaþ 8a

� 2bc� 2aNs þ 2aNs þ ð4aþ 2Þbc
8aaþ 8a

¼ bc

2a
:

Fig. 20. Illustration of collusion-based attack. We call normal users
(either intentionally or accidentally) sending requests to Sybils as
promoters.
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Substitute the expressions of a; b and c into the above

inequality, and let r ¼ afin
2�pl

, we get the upper bound given

in equation (4). Theorem 1 is proved.
In the theorem, the constant factor r ¼ afin=2�pl. where

a ¼ d=ð1� dÞ and d is the decay factor in Eq.(1). fin repre-
sents the ratio of the number of in-links of Sybils to the
total out-degree of promoters. �pl indicates the average
global acceptance rate of promoters. tu

APPENDIX B
PROOF OF THEOREM 2

Proof. In a completely connected Sybil group with size Ns,
each Sybil gets �xl votes on average. Thus the total vote
capacity in this community is ES ¼ Ns�xs. Substituting it
into Eq. (14) we get,

Ns�xs ¼ aNinfin�xl

aNout
NoutþNs=2

þ 1
: (18)

Note that the votes will be ignored by VoteTrust when
�xs < dv, so Ns has the lowest upper bound when �xs ¼ dv.
Substituting this equation into Eq. (18), we get

dv

2
N2

s þ adv � bNin

2

� �
Ns � bNinNout � 0; (19)

where a ¼ ðaþ 1ÞNout and b ¼ afin�xl both defined in
Theorem 1. Solving the inequality like that of inequality
(17) yields the upper bound of community size in Eq. (5).
Theorem 2 is proved. tu

APPENDIX C
PROOF OF THEOREM 3

Proof. The bad score assignment is similar as the vote capac-
ity assignment in Fig. 20. The difference is that it propa-
gates the bad score along the reverse direction of links
from Sybil seeds.

According to the work [27], the total bad score
(denoted as EN ) in normal non-Sybil region (see Fig. 20)
depends on the difference between incoming bad score

Ein
N and outgoing bad score Eout

N

EN ¼ Ein
N � Eout

N : (20)

Due to the essential process of bad score assignment
is equivalent to the trust-based vote assignment (in
Theorem 1), the total bad score of normal users receive
from bad seeds can be derived based on Eq. (14),

EN ¼ afinNin�xs

aNout
NoutþN=2 þ 1

; (21)

where, a and fin are constant parameters. Similarly, Nout

is the number of attack links, and �xs is the average bad
score of Sybils.

Straightforwardly, the number of normal users whose
bad score are higher than Sybils’ average score does not
exceed EN

�xs
, which is,

fuijxi > �xsgj j < afinNin

aNout
NoutþN=2 þ 1

< afinNin: (22)

Theorem 3 is proved. tu
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