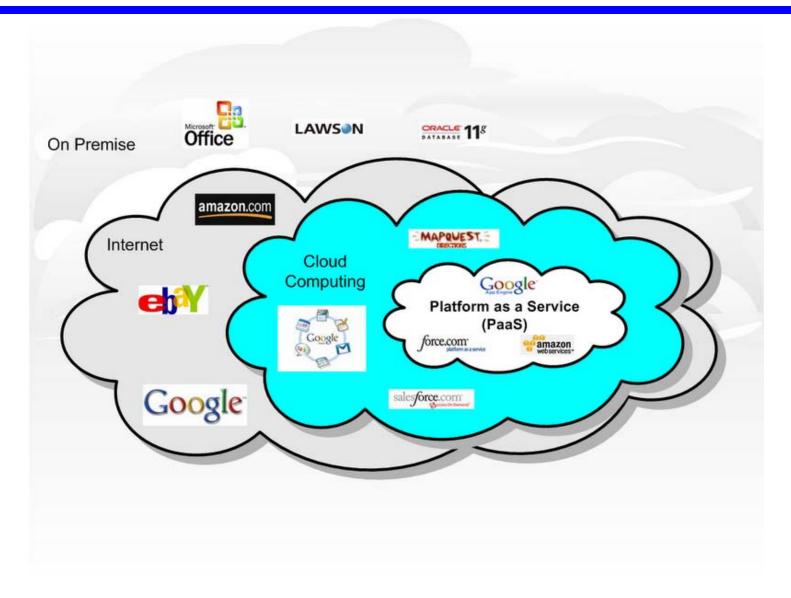
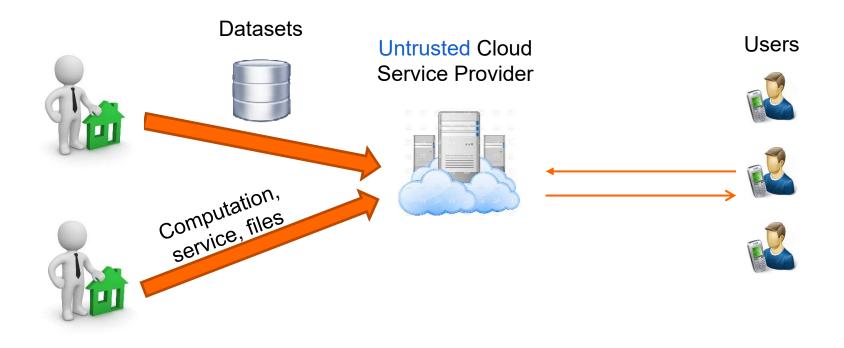
CISC859: Topics in Advanced Networks & Distributed Computing: Network & Distributed System Security


A Brief Overview of Security & Privacy Issues

Topics to Be Covered

- Cloud computing
- RFID systems
- Bitcoin
- Anonymous comm.
- Social networks
- Sybil attacks


- Location privacy
- Mobile crowdsourcing
- Telecom networks
- Internet of Things
- Cognitive radios
- Anything interesting

Cloud Computing

3

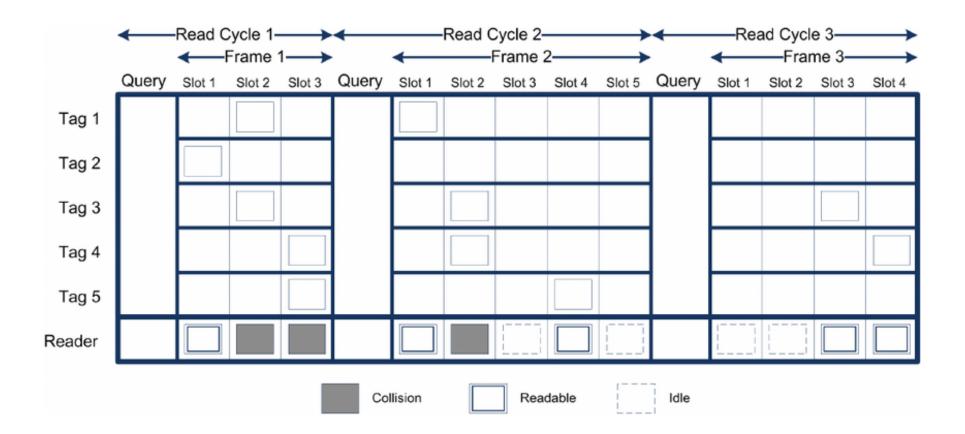
Typical Scenarios

Security and privacy issues

- How to verify the computation/query results returned by CSPs?
- How to process queries over encrypted datasets?
- How to deduplicate files encrypted under different keys?
- How to verify that my uploaded files are retrievable?

RFID System

http://www.youtube.com/watch?v=_xNhL39uD7I


- RFID = Radio Frequency IDentification.
- An ADC (Automated Data Collection) technology that:
 - Uses radio-frequency waves to transfer data between a reader and a movable item to identify, categorize, track..
 - Is fast and does not require physical sight or contact between reader/scanner and the tagged item.
 - Performs the operation using low cost components.
 - Attempts to provide unique identification and backend integration that allows for wide range of applications.
- Other ADC technologies: Bar codes, OCR.

A typical RFID system

- controller / CPU
- read-only / read-write

Frame Slotted Aloha Protocol

Current RFID Systems Unsafe

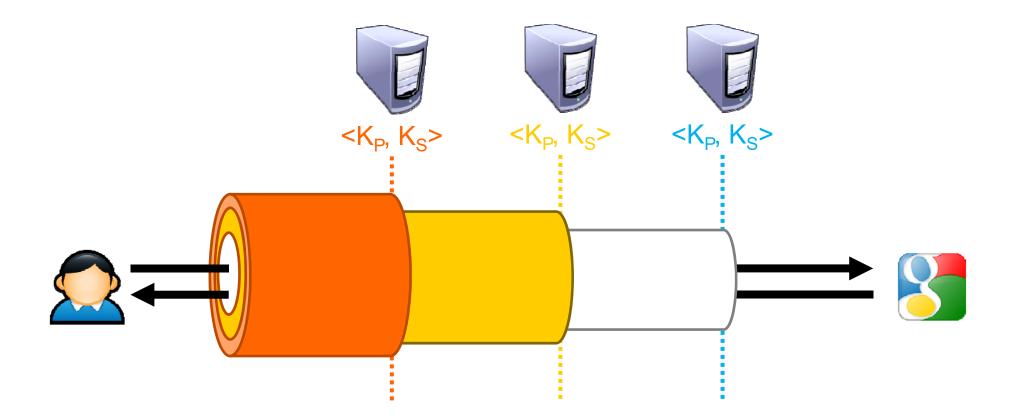
- No authentication
 - No friend/foe distinction
- No access control
 - Rogue reader can link to tag
 - Rogue tag can mess up reader
- No encryption
 - Eavesdropping possible
- Predictable responses
 - Traffic analysis, linkability
- No GUI...
 - ... and "distance" not enforced by tag

Security & Privacy Issues

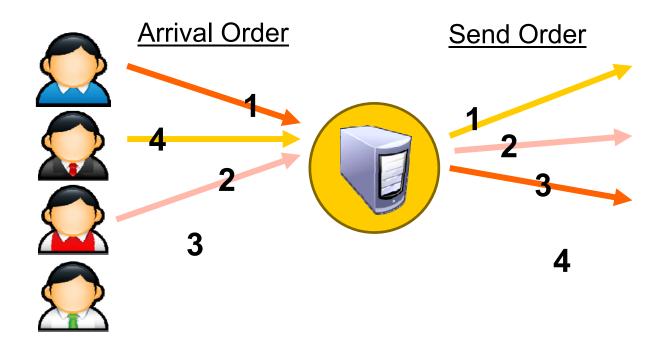
- Privacy-preserving tag identification/authentication/counting
- Missing tag detection/identification
- Batch tag authentication
- Clone/counterfeit detection
- etc.

Bitcoin & Blockchain

- A nice introductory video on bitcoin
 - Youtube, search "How Bitcoin Works Under the Hood"
- A decentralized digital ledger that records transactions such that the registered transactions cannot be altered retroactively
- Important concepts: transactions, blocks, mining, mining pools, etc.
- Cryptographic techniques: cryptographic hash and digital signature

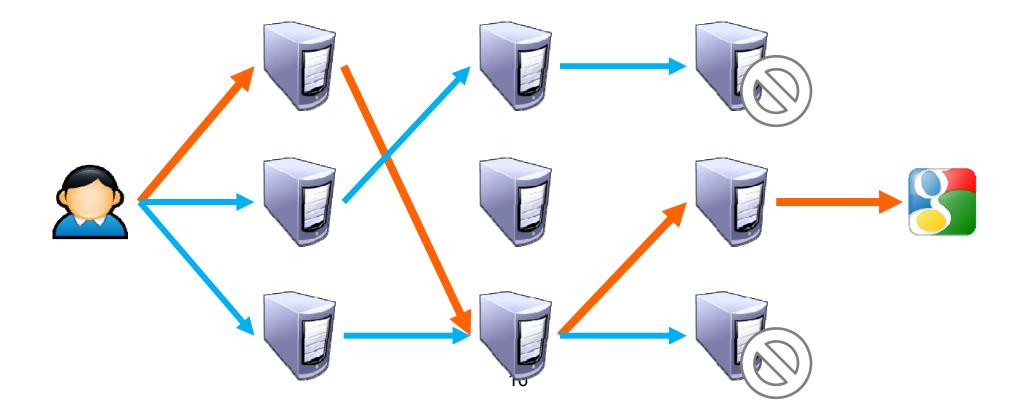

Research issues

- Double spending
- Proof-of-work
- Stability
- Consensus protocol
- Payment verification
- Key management
- etc.
- Additional reading: "SoK: Research Perspectives and Challenges for Bitcoin and Cryptocurrencies" IEEE S&P 2015


Anonymous communication

- Hiding the identitie(s) of the parties involved in digital communications from each other, or from third-parties
- Types of Anonymity
 - Sender anonymity
 - Receiver anonymity
 - Sender-Receiver (a.k.a. relationship) anonymity

Mix Proxies and Onion Routing



Traffic Mixing

Dummy / Cover Traffic

- Simple idea:
 - Send useless traffic to help obfuscate real traffic

Tor

- Largest, most well deployed anonymity preserving service on the Internet
 - Publicly available since 2002
 - Continues to be developed and improved
- Currently, ~5000 Tor relays around the world
 - All relays are run by volunteers
 - It is suspected that some are controlled by intelligence agencies
- 500K 900K daily users
 - Numbers are likely larger now, thanks to Snowden
- Additional reading: Tor: The Second-Generation Onion Router, Usenix Security 2004

Research Issues

- Novel anonymous communication systems
- Attacks on existing anonymous communication systems, e.g., Tor
- Improvement for Tor
- etc.

Social Networks

Sybil Attack

- Definition: an individual entity masquerades as multiple simultaneous identities
 - Why named "Sybil" attack
- Severe impact on many distributed applications and everyday services
 - Commonly assume that every participating entity controls exactly one identity
- Examples of the Sybil attack
 - Rig Internet polls by using multiple IP addresses to submit votes
 - Gain advantage in any results of a chain letter
 - A well-known major problem in real-world selections
 - Increase the Google PageRank ratings of customers' pages

Sybil Attack

- Examples of the Sybil attack (cont'd)
 - A common attack on social networking websites, e.g., Facebook, Twitter
 - A common attack on real-world reputation systems like Ebay
 - Obtain multiple accounts on free-email systems by spammers
 - Cause P2P computing systems which use voting to verify correct answers, such as SETI@home, to accept false solutions from a Sybil attacker
 - Reveal the initiator of a connection in a system that provides anonymous communications between peers, like Tor
 - Out-votes honest users in other collaborative tasks such as resource allocation, voting, …

Defenses against Sybil Attack

- Using a trusted central authority
 - Tie identities to actual human beings
- Not always desirable
 - Can be hard to find such authority
 - Sensitive info may scare away users
 - Potential bottleneck and target of attack
- Without a trusted central authority
 - Impossible unless using special assumptions [Douceur'02]
 - Resource challenges not sufficient -- adversary can have much more resources than a typical user

Research Issues

• Detect fake/malicious accounts in social networks

- Explore social networks to thwart Sybil attacks
 - Additional reading: "Using Social Networks to Overcome Sybil Attacks", Distributed Computing 2011.