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Advanced Cryptographic Primitives



Advanced Crypto Techniques

« Secret Sharing

* Information Dispersal

« Blind signature
 |dentity-based encryption
» Attribute-based encryption
 Homomorphic encryption

« Secure multi-party computation
Ex: private set intersection



Secret Sharing Schemes

* Q: How would you distribute a secret among » parties,
such that only ¢ or more of them together can reconstruct
it.

A: " (t,nythreshold scheme”

« Physical world analogy: A safe with a combination of
locks, keys.
« Some applications:

Storage of sensitive cryptographic keys
Command & control of nuclear weapons



Secret Sharing Schemes (cont'd)

E.g. An (n,n)-threshold scheme:

To share a k-bit secret K, the dealer D

generates n — 1 random k-bit numbers,
vi,t=1,2,...,n—1,

Yn =KDy DyD D yn1,
gives the “share” ¥i to party P,

This is a “perfect” SSS: A coalition of less than » can
obtain no information about the secret.

Q: How to generalize to arbitrary (¢,n)?



Shamir’'s Threshold Scheme

Shamir's (¢,n)rthreshold scheme:
— D chooses prime p suchthatp >n + 1, K € Z,
— generates distinct, random, non-zeroz; € Z,,1 =1,2,...,n
— generates random a; € Z,,1=1,2,...,t —1
— ap = K, the secret;
~ f(x) =ap + a1z + ayx* + - - - + a1~ mod p
— Py’s share is (fﬁuf(il?z)),z =1,2,....n

* Fact: Shamir’'s scheme is a perfect SSS.



Background: Lagrangian
Interpolation

Fact: There exists a unique polynomial of degree < m
f(x) = ama™ + 1™ + ... a1x + ag
over any m + 1 points (zo, ¥0), (z1, Y1) - - -, (T, Yim)
Proof: The Vandermonde matrix V = [z;; = 27|i,j = 0,1,...,m]
non-singular for distinct *:s. Hence, V - ¢ = yhas
a unique solution for any v = [y1, Y2, - - -, Y|

Lagrange’s Interpolation Formula: The unique polynomial
through (o, yo) (3:1 yl) -y (Tm, Ym) is given by

ZLm
where Lni(z) = Hm_%/H
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Rabin’s Information Dispersal

* |IDA was developed to provide safe and reliable
transmission of information in distributed systems.

* Let F' be a data of size v inbyte (|F'| = N)
« mshould be less than or equal to n(m < n)
 Dispersal (F, m,n):

splitting the data F' with some amount of redundancy resulting in 72
pieces [(1 < i < n)
|E5| = [F]/m

Thus, the size of F’ /N, should be a multiple of 1M



Dispersal(F, m, n) — Example 1

*|F| = 32bytes, m =4,n =8

F

I Dispersal(F, 4, 8)

F,

Fs

Fe

F

—|F||=32/4 =8 bytes (1 <i<n)

l

l

l

l




Recovery({Fi, [(1< j <m), (1< i,
<n)}, m, n)

+ Recovery({F, |(1 < j <m),(1<i; <n)},m,n):
— reconstructing the original data F from any m pieces among n
pieces (F; (1 <i=n))



Recovery({Fj [(1=j =m), (1= i; =n)},
m, n) — Example 2

|F|=32 bytes, m=4, n=8, |F,|=8 bytes (1 <i < 8)
Let us assume that the following 4(=m) pieces are received.

LX LR R X

Recovery({F,, Fs, F,, F,}, 4, 8)

F
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Detailed Operations
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Dispersal(F, m, n)

* F:blab23°'° 7bN
~ (|F| = N), and b;represents each byte in F (0 < b; < 255(=25-1)).
— All computations should be done in GF(28).

> GF(28) is closed under addition and multiplication.
> Every nonzero element in GF(28) has a multiplicative inverse.

* B = (bla'” 7bm)7(bm+la”' ame)a"'a(bN—erla'” 7bN)
=~ 0 (bG miis i)', 1 <i < N/m

*  The matrix, M(m x N/m), is constructed as follows:
- M=[S1 Sy ... Sn/ml
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Dispersal(F, m, n)

« The matrix, A(n x m), is constructed as follows:

- ;= (ailpai27"'7aim)al g ( g n
> chosen such that every subset of m different vectors are linearly
independent.
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Dispersal(F, m, n)

« The following Vandermonde matrix satisfies the property

required for A -

1
1
1

1
1

n-1

n

X2

n—
2
Xn

1

— m<n, and all x’s are nonzero elements in GF(28) and pairwise

different.

— Any m different rows are linearly independent, so any matrix
composed of a set of any m different rows is invertible.
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Dispersal(F, m, n)

* npieces, F, (1 <i<n), are computed as follows:

A-M= S S

a1'571 31'52
82°51 32°52

ap - 51 Ap - 92

~a; + 55 = (@itbp—1yms1 +

SN/m]
aj - SN/m- -Fl-
as - SN/m _ £y
a, - SN/m_ Fn
+ a?ﬁmbkzm)
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Dispersal(F, m, n) — Example 3

[F|=32 bytes, m=4, n=8
— F = b1’b2 ..... b32
— F = (b1 ..... b4),(b5 """ b8)

- M(4 x 8)

V= [51 SQ

Sg] =
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Dispersal(F, m, n) — Example 3

~A(8 x4)
a | 1 a2 1]
N il I T3 T




Dispersal(F, m, n) — Example 3

F, (1 =i=<8)are computed as follows:

A -

M

52

a1'52
82'52

ag + 99

Ss]

31'58
32'58

ag - Oy
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Recovery ({F;[(1 <j<m),(1<i;<n)},m,n):

* Given m pieces F; (1 <j<m),(1 <i; <n)})

51 A

F?;Q az-g ,
—|7?| M=A"-M

Fi a;,,

* M can be recovered from the given m pieces Fi; ( (1=
<m), (1=, =n) ) because A’ is invertible.
p— - _1 - —

a?;l FZ

a?;z FZ

M = , ,
_azm_ _Fim_
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Recovery—- Example 4

* |F|=32 bytes, m=4, n=8
« Inexample 3, F; (1 =i = 8) pieces of 8 bytes are resulted.
« Assume that {F,,F;,F,,F,} are received among them.

Fi a;-S; a5y ap - Sy aj

F3 | a3 S1 az -5y as - Sg _ az | M
Fy ag - 51 ag- O ay - Og Ay

_F7_ _87 Sl ar - SQ ary Sg_ _ag_
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Recovery({Fj [(1=j =m), (1= i; =n)},
m, n) — Example 4

« The original data M can be recovered by the following
computation:

aq Fy

as Fs o

Ay Fy =M
_a8_ _F7_
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Blind Signature

« Basic idea (http://en.wikipedia.org/wiki/Blind_signature)

— ltis a form of digital signature in which the content of a message
is disguised (blinded) before it is signed

— It provide unlinkability, which prevents the signer from linking the
blinded message it signs to a later un-blinded version that it may
be called upon to verify.

— Applications: cryptographic election systems and digital cash
schemes
— Example: Blind RSA signature
> Assume a signer’s public and private keys are (e,n) and (d,n), respectively.
> User to bank: mre mod n

> Signer to user: (mré)d =m9r mod n
- User computes mdr*1/r=m¢ mod n
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Identity-based Encryption (IBE)

« Basic idea (http://en.wikipedia.org/wiki/ID-based_encryption)

— the public key of a user is some unique information about the
user’s identity (e.g., email address)

Private Key Generator
(PKG)

Master ‘ ‘ Master
[

| Private Kay Public Key

1 L‘Jl:ltai.n Master i
Public Key 3. Obtain Master
[ F‘ublil."..lf'-’.e:..r
[

| 2 Authentlcmé and recelva
| Alice's Private Keay

4. Authenticate and receive
| Bob's Private Key
|

b 2

E -
— -

=~ Prefiminary, off-line activitles ~

Protected

Message *™| | to generate Alice’s public key j

'd. Decrypt and verify !

| received message |

b. Sign, encrypt and
send message
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Identity-based Encryption (IBE)

» Key Advantages
— No need for public-key distribution or certificates
— The possibility to encode additional information into the
recipient’s ID (or public key)
> e.g., ID+expiration time
« Key Drawbacks
— The compromise of the PKG exposes all private keys
— The PKG can sign on behalf of all users: no non-repudiation

— A secure channel is needed to transfer the private key from the
PKG to each user
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Attribute-Based Encryption

« Basic idea (http:/en.wikipedia.org/wiki/Attribute-based_encryption)

— A type of public-key encryption in which the private key of a user
and the ciphertext are dependent about attributes (e.g. the
country he lives, or the kind of subscription he has).

— the decryption of a ciphertext is possible only if the set of
attributes of the user key matches the attributes of the ciphertext

* Applications

— Broadcast encryption: only the users with certain attributes can
decrypt the ciphertext
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Homomorphic Encryption

« Basic idea (http://en.wikipedia.org/wiki/Homomorphic_encryption)

— It allows specific types of computations to be carried out on
ciphertexts and obtain an encrypted result whose decryption
matches the result of desired operations performed on the plaintext.

E(m1) o E(my) = E(mq o mo)
— The desired operation on plaintext can be addition or multiplication
— Multiplicative example: RSA

E(m1) x E(mg) = m$m; mod n = (mimy)® mod n = E(mims)

— Additive example: Paillier cryptosystem
— Fully homomorphic encryption published in 2009

26



Additive Example: Paillier
cryptosystem

* Encryption
E(m,r) = ¢™r" mod N?

« Homomorphic
E(mi,7m1) X E(ma,r3) = E(my +mg,r112) mod N?
E™(mq, 1) = E(mimay,r]"?) mod N*

 Self-blinding

E(ml,rl)ré\] mod N? = E(mq,riry)
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Secure Multi-Party Computation

« A subfield of cryptography

« Multiple parties jointly compute a function over their
iInputs while keeping those inputs private

A N

P, 8 P
input a, input a, W
< output a -
p1 fla,a,a,a,a,) s P,
U |
input a, - input a,
. P5 f .‘.'\
input a,
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Private Set Intersection (PSI)

* Problem setting
Two parties, say Alice and Bob, each have a private data set
* A PSI protocol allows Alice and Bob to find out the

intersection of their data sets without disclosing additional
information to each other

« A PSI Cardinality (PSI-CA) protocol allows Alice and Bob
to find out the intersection cardinality of their data sets
without disclosing additional information to each other
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An Example

Alice Bob
A={ay,ay,..., an} B —m{bl, by, ..., b%}
flo)=]]@—b) =) fi'
1=1 1=0

E(Tlf(a’l) + a’l)a E(TQJC(G’Q) + a’2)7 T E(rnf(a’n) + a”n)

rif(ay) + ay,rof(ag) + asg, -+ ,rnf(ay) + ay

rif(a;)) +a;=a,7 1<i<n
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In-class Exercise

e Alice has a= (ay,as,...,a;)
e Bobhas b= (b1,b,...,0)

 How to securely compute a - b?

k
- How to securely compute ||a — b||5 = Z(a@- — b;)’
1=1
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