CISC859: Topics in Advanced Networks \& Distributed Computing: Network \& Distributed System Security

Advanced Cryptographic Primitives

Advanced Crypto Techniques

- Secret Sharing
- Information Dispersal
- Blind signature
- Identity-based encryption
- Attribute-based encryption
- Homomorphic encryption
- Secure multi-party computation
- Ex: private set intersection

Secret Sharing Schemes

- Q: How would you distribute a secret among n parties, such that only t or more of them together can reconstruct it.
A: " (t, n)-threshold scheme"
- Physical world analogy: A safe with a combination of locks, keys.
- Some applications:
- Storage of sensitive cryptographic keys
- Command \& control of nuclear weapons

Secret Sharing Schemes (cont'd)

E.g. An (n, n)-threshold scheme:

To share a k-bit secret K, the dealer D

- generates $n-1$ random k-bit numbers,

$$
y_{i}, i=1,2, \ldots, n-1,
$$

- $y_{n}=K \bigoplus y_{1} \bigoplus y_{2} \oplus \cdots \bigoplus y_{n-1}$,
- gives the "share" y_{i} to party P_{i}

This is a "perfect" SSS: A coalition of less than n can obtain no information about the secret.
Q: How to generalize to arbitrary (t, n) ?

Shamir's Threshold Scheme

Shamir's (t, n)-threshold scheme:

- D chooses prime p such that $p \geq n+1, K \in Z_{p}$
- generates distinct, random, non-zero $x_{i} \in Z_{p}, i=1,2, \ldots, n$
- generates random $a_{i} \in Z_{p}, i=1,2, \ldots, t-1$
- $a_{0}=K$, the secret;
$-f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{t-1} x^{t-1} \bmod p$
- P_{i} 's share is $\left(x_{i}, f\left(x_{i}\right)\right), i=1,2, \ldots, n$
- Fact: Shamir's scheme is a perfect SSS.

Background: Lagrangian Interpolation

Fact: There exists a unique polynomial of degree $\leq m$

$$
f(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\ldots a_{1} x+a_{0}
$$

over any $m+1$ points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$
Proof: The Vandermonde matrix $V=\left[x_{i j}=x_{i}^{j} \mid i, j=0,1, \ldots, m\right]$ non-singular for distinct x_{i} s. Hence, $V \cdot a=y$ has a unique solution for any $y=\left[y_{1}, y_{2}, \ldots, y_{m}\right]$

Lagrange's Interpolation Formula: The unique polynomial through $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$ is given by

$$
f(x)=\sum_{i=0}^{m} L_{m, i}(x) y_{i}
$$

where

$$
L_{m, i}(x)=\prod_{j \neq i}\left(x-x_{j}\right) / \prod_{j \neq i}\left(x_{i}-x_{j}\right)
$$

Rabin's Information Dispersal

- IDA was developed to provide safe and reliable transmission of information in distributed systems.
- Let F be a data of size N in byte $(|F|=N)$
- m should be less than or equal to $n(m \leq n)$
- Dispersal (F, m, n) :
- splitting the data F with some amount of redundancy resulting in n pieces $F_{i}(1 \leq i \leq n)$
$-\left|F_{i}\right|=|F| / m$
\rightarrow Thus, the size of F, N, should be a multiple of m

Dispersal(F, m, n) - Example 1

- $|F|=32$ bytes, $m=4, n=8$

F

Recovery $\left(\left\{\mathrm{Fi}_{\mathrm{j}} \mid(1 \leq \mathrm{j} \leq \mathrm{m}),\left(1 \leq \mathrm{i}_{\mathrm{j}}\right.\right.\right.$
 $\leq n)\}, m, n$)

- Recovery $\left(\left\{F_{i_{j}} \mid(1 \leq j \leq m),\left(1 \leq i_{j} \leq n\right)\right\}, m, n\right)$:
- reconstructing the original data F from any m pieces among n pieces ($F_{i}(1 \leq i \leq n)$)

Recovery $\left(\left\{\mathrm{Fi}_{\mathrm{j}} \mid(1 \leq \mathrm{j} \leq \mathrm{m}),\left(1 \leq \mathrm{i}_{\mathrm{j}} \leq \mathrm{n}\right)\right\}\right.$, m, n) - Example 2

- $|F|=32$ bytes, $m=4, n=8,\left|F_{i}\right|=8$ bytes $(1 \leq i \leq 8)$
- Let us assume that the following $4(=m)$ pieces are received.

$\operatorname{Recovery}\left(\left\{F_{1}, F_{3}, F_{4}, F_{7}\right\}, 4,8\right)$

Detailed Operations

Dispersal($\mathrm{F}, \mathrm{m}, \mathrm{n}$)

- $F=b_{1}, b_{2}, \cdots, b_{N}$
- $(|F|=N)$, and b_{i} represents each byte in $F\left(0 \leq \mathrm{b}_{\mathrm{i}} \leq 255\left(=2^{8}-1\right)\right)$.
- All computations should be done in GF(2^{8}).
$\rightarrow \mathrm{GF}\left(2^{8}\right)$ is closed under addition and multiplication.
\rightarrow Every nonzero element in $\operatorname{GF}\left(2^{8}\right)$ has a multiplicative inverse.
- $F=\left(b_{1}, \cdots, b_{m}\right),\left(b_{m+1}, \cdots, b_{2 m}\right), \ldots,\left(b_{N-m+1}, \cdots, b_{N}\right)$ - $S_{i}=\left(b_{(i-1) m+1}, \cdots, b_{i m}\right)^{T}, 1 \leq i \leq N / m$
- The matrix, $\mathbf{M}(m \times N / m)$, is constructed as follows:
$-\mathbf{M}=\left[\begin{array}{llll}S_{1} & S_{2} & \ldots & S_{N / m}\end{array}\right]$

Dispersal(F, m, n)

- The matrix, $\mathbf{A}(n \times m)$, is constructed as follows:

$$
\mathrm{A}=\left[\begin{array}{c}
\mathbf{a}_{1} \\
\mathbf{a}_{2} \\
\vdots \\
\mathbf{a}_{n}
\end{array}\right]
$$

$-\mathbf{a}_{i}=\left(a_{i 1}, a_{i 2}, \ldots, a_{i m}\right), 1 \leq i \leq n$
\rightarrow chosen such that every subset of m different vectors are linearly independent.

Dispersal(F, m, n)

- The following Vandermonde matrix satisfies the property required for A

$$
\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{m-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{m-1} \\
1 & x_{3} & x_{3}^{2} & \ldots & x_{3}^{m-1} \\
\cdots & \ldots & \ldots & \ldots & \cdots \\
1 & x_{n-1} & x_{n-1}^{2} & \ldots & x_{n-1}^{m-1} \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{m-1}
\end{array}\right]
$$

- $m \leq n$, and all x_{i} 's are nonzero elements in $\operatorname{GF}\left(2^{8}\right)$ and pairwise different.
- Any m different rows are linearly independent, so any matrix composed of a set of any m different rows is invertible.

Dispersal(F, m, n)

- n pieces, $F_{i}(1 \leq i \leq n)$, are computed as follows:

$$
\begin{aligned}
\mathbf{A} \cdot \mathbf{M} & =\left[\begin{array}{c}
\mathbf{a}_{1} \\
\mathbf{a}_{2} \\
\vdots \\
\mathbf{a}_{n}
\end{array}\right] \cdot\left[\begin{array}{llll}
S_{1} & S_{2} & \ldots & S_{N / m}
\end{array}\right] \\
& =\left[\begin{array}{llll}
\mathbf{a}_{1} \cdot S_{1} & \mathbf{a}_{1} \cdot S_{2} & \cdots & \mathbf{a}_{1} \cdot S_{N / m} \\
\mathbf{a}_{2} \cdot S_{1} & \mathbf{a}_{2} \cdot S_{2} & \cdots & \mathbf{a}_{2} \cdot S_{N / m} \\
\cdots & \cdots & \cdots & \cdots \\
\mathbf{a}_{n} \cdot S_{1} & \mathbf{a}_{n} \cdot S_{2} & \cdots & \mathbf{a}_{n} \cdot S_{N / m}
\end{array}\right]=\left[\begin{array}{c}
F_{1} \\
F_{2} \\
\vdots \\
F_{n}
\end{array}\right] \\
-\mathbf{a}_{i} \cdot S_{j} & =\left(a_{i 1} b_{(k-1) m+1}+\cdots+a_{i m} b_{k m}\right)
\end{aligned}
$$

Dispersal(F, m, n) - Example 3

- $|F|=32$ bytes, $m=4, n=8$
$-F=b_{1}, b_{2}, \ldots, b_{32}$
$-F=\left(\mathrm{b}_{1}, \ldots, \mathrm{~b}_{4}\right),\left(\mathrm{b}_{5}, \ldots, \mathrm{~b}_{8}\right), \ldots,\left(\mathrm{b}_{29}, \ldots, \mathrm{~b}_{32}\right)$
- $\mathbf{M}(4 \times 8)$

$$
\mathbf{M}=\left[\begin{array}{llll}
S_{1} & S_{2} & \ldots & S_{8}
\end{array}\right]=\left[\begin{array}{llll}
b_{1} & b_{5} & \cdots & b_{29} \\
b_{2} & b_{6} & \cdots & b_{30} \\
b_{3} & b_{7} & \cdots & b_{31} \\
b_{4} & b_{8} & \cdots & b_{32}
\end{array}\right]
$$

Dispersal(F, m, n) - Example 3

$-\mathbf{A}(8 \times 4)$

$$
\mathbf{A}=\left[\begin{array}{c}
\mathbf{a}_{1} \\
\mathbf{a}_{2} \\
\vdots \\
\mathbf{a}_{8}
\end{array}\right]=\left[\begin{array}{cccc}
1 & x_{1} & x_{1}^{2} & x_{1}^{3} \\
1 & x_{2} & x_{2}^{2} & x_{2}^{3} \\
\cdots & \cdots & \cdots & \cdots \\
1 & x_{8} & x_{8}^{2} & x_{8}^{3}
\end{array}\right]
$$

Dispersal(F, m, n) - Example 3

- $F_{i}(1 \leq i \leq 8)$ are computed as follows:

$$
\begin{aligned}
\mathbf{A} \cdot \mathbf{M} & =\left[\begin{array}{c}
\mathbf{a}_{1} \\
\mathbf{a}_{2} \\
\vdots \\
\mathbf{a}_{8}
\end{array}\right] \cdot\left[\begin{array}{llll}
S_{1} & S_{2} & \ldots & S_{8}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\mathbf{a}_{1} \cdot S_{1} & \mathbf{a}_{1} \cdot S_{2} & \cdots & \mathbf{a}_{1} \cdot S_{8} \\
\mathbf{a}_{2} \cdot S_{1} & \mathbf{a}_{2} \cdot S_{2} & \cdots & \mathbf{a}_{2} \cdot S_{8} \\
\cdots & \cdots & \cdots & \cdots \\
\mathbf{a}_{8} \cdot S_{1} & \mathbf{a}_{8} \cdot S_{2} & \cdots & \mathbf{a}_{8} \cdot S_{8}
\end{array}\right]=\left[\begin{array}{c}
F_{1} \\
F_{2} \\
\vdots \\
F_{8}
\end{array}\right]
\end{aligned}
$$

$\operatorname{Recovery}\left(\left\{F_{i_{j}} \mid(1 \leq j \leq m),\left(1 \leq i_{j} \leq n\right)\right\}, m, n\right)$:

- Given m pieces $\left.\left.F_{i_{j}}(1 \leq j \leq m),\left(1 \leq i_{j} \leq n\right)\right\}\right)$

$$
\left[\begin{array}{c}
F_{i_{1}} \\
F_{i_{2}} \\
\vdots \\
F_{i_{m}}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{a}_{i_{1}} \\
\mathbf{a}_{i_{2}} \\
\vdots \\
\mathbf{a}_{i_{m}}
\end{array}\right] \cdot \mathbf{M}=\mathbf{A}^{\prime} \cdot \mathbf{M}
$$

- \mathbf{M} can be recovered from the given m pieces $F i_{j}(1 \leq j$ $\left.\leq m),\left(1 \leq i_{j} \leq n\right)\right)$ because A^{\prime} is invertible.

$$
\mathbf{M}=\left[\begin{array}{c}
\mathbf{a}_{i_{1}} \\
\mathbf{a}_{i_{2}} \\
\vdots \\
\mathbf{a}_{i_{m}}
\end{array}\right]^{-1} \cdot\left[\begin{array}{c}
F_{i_{1}} \\
F_{i_{2}} \\
\vdots \\
F_{i_{m}}
\end{array}\right]
$$

Recovery- Example 4

- $|F|=32$ bytes, $m=4, n=8$
- In example 3, $F_{i}(1 \leq i \leq 8)$ pieces of 8 bytes are resulted.
- Assume that $\left\{F_{1}, F_{3}, F_{4}, F_{7}\right\}$ are received among them.

$$
\left[\begin{array}{l}
F_{1} \\
F_{3} \\
F_{4} \\
F_{7}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{a}_{1} \cdot S_{1} & \mathbf{a}_{1} \cdot S_{2} & \cdots & \mathbf{a}_{1} \cdot S_{8} \\
\mathbf{a}_{3} \cdot S_{1} & \mathbf{a}_{3} \cdot S_{2} & \cdots & \mathbf{a}_{3} \cdot S_{8} \\
\mathbf{a}_{4} \cdot S_{1} & \mathbf{a}_{4} \cdot S_{2} & \cdots & \mathbf{a}_{4} \cdot S_{8} \\
\mathbf{a}_{7} \cdot S_{1} & \mathbf{a}_{7} \cdot S_{2} & \cdots & \mathbf{a}_{7} \cdot S_{8}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{a}_{1} \\
\mathbf{a}_{3} \\
\mathbf{a}_{4} \\
\mathbf{a}_{8}
\end{array}\right] \cdot \mathbf{M}
$$

Recovery $\left(\left\{\mathrm{F}_{\mathrm{j}} \mid(1 \leq \mathrm{j} \leq \mathrm{m}),\left(1 \leq \mathrm{i}_{\mathrm{j}} \leq \mathrm{n}\right)\right\}\right.$, m, n) - Example 4

- The original data M can be recovered by the following computation:

$$
\left[\begin{array}{l}
\mathbf{a}_{1} \\
\mathbf{a}_{3} \\
\mathbf{a}_{4} \\
\mathbf{a}_{8}
\end{array}\right]^{-1} \cdot\left[\begin{array}{l}
F_{1} \\
F_{3} \\
F_{4} \\
F_{7}
\end{array}\right]=\mathbf{M}
$$

Blind Signature

- Basic idea (http://en.wikipedia.org/wiki/Blind_signature)
- It is a form of digital signature in which the content of a message is disguised (blinded) before it is signed
- It provide unlinkability, which prevents the signer from linking the blinded message it signs to a later un-blinded version that it may be called upon to verify.
- Applications: cryptographic election systems and digital cash schemes
- Example: Blind RSA signature
\rightarrow Assume a signer's public and private keys are (e,n) and (d,n), respectively.
\rightarrow User to bank: $m r^{e} \bmod n$
\rightarrow Signer to user: $\left(m r^{e}\right)^{d}=m^{d} r \bmod n$
\rightarrow User computes $m^{d} r^{*} 1 / r=m^{d} \bmod n$

Identity-based Encryption (IBE)

- Basic idea (http://en.wikipedia.org/wiki/ID-based_encryption)
- the public key of a user is some unique information about the user's identity (e.g., email address)

Identity-based Encryption (IBE)

- Key Advantages
- No need for public-key distribution or certificates
- The possibility to encode additional information into the recipient's ID (or public key)
\rightarrow e.g., ID+expiration time
- Key Drawbacks
- The compromise of the PKG exposes all private keys
- The PKG can sign on behalf of all users: no non-repudiation
- A secure channel is needed to transfer the private key from the PKG to each user

Attribute-Based Encryption

- Basic idea (http://en.wikipedia.org/wiki/Attribute-based_encryption)
- A type of public-key encryption in which the private key of a user and the ciphertext are dependent about attributes (e.g. the country he lives, or the kind of subscription he has).
- the decryption of a ciphertext is possible only if the set of attributes of the user key matches the attributes of the ciphertext
- Applications
- Broadcast encryption: only the users with certain attributes can decrypt the ciphertext

Homomorphic Encryption

- Basic idea (http://en.wikipedia.org/wiki/Homomorphic_encryption)
- It allows specific types of computations to be carried out on ciphertexts and obtain an encrypted result whose decryption matches the result of desired operations performed on the plaintext.

$$
\mathbf{E}\left(m_{1}\right) \circ \mathbf{E}\left(m_{2}\right)=\mathbf{E}\left(m_{1} \diamond m_{2}\right)
$$

- The desired operation on plaintext can be addition or multiplication
- Multiplicative example: RSA

$$
\mathbf{E}\left(m_{1}\right) \times \mathbf{E}\left(m_{2}\right)=m_{1}^{e} m_{2}^{e} \quad \bmod n=\left(m_{1} m_{2}\right)^{e} \quad \bmod n=\mathbf{E}\left(m_{1} m_{2}\right)
$$

- Additive example: Paillier cryptosystem
- Fully homomorphic encryption published in 2009

Additive Example: Paillier cryptosystem

- Encryption

$$
\mathbf{E}(m, r)=g^{m} r^{N} \quad \bmod N^{2}
$$

- Homomorphic

$$
\begin{gathered}
\mathbf{E}\left(m_{1}, r_{1}\right) \times \mathbf{E}\left(m_{2}, r_{2}\right)=\mathbf{E}\left(m_{1}+m_{2}, r_{1} r_{2}\right) \quad \bmod N^{2} \\
\mathbf{E}^{m_{2}}\left(m_{1}, r_{1}\right)=\mathbf{E}\left(m_{1} m_{2}, r_{1}^{m_{2}}\right) \quad \bmod N^{2}
\end{gathered}
$$

- Self-blinding

$$
\mathbf{E}\left(m_{1}, r_{1}\right) r_{2}^{N} \quad \bmod N^{2}=\mathbf{E}\left(m_{1}, r_{1} r_{2}\right)
$$

Secure Multi-Party Computation

- A subfield of cryptography
- Multiple parties jointly compute a function over their inputs while keeping those inputs private

Private Set Intersection (PSI)

- Problem setting
- Two parties, say Alice and Bob, each have a private data set
- A PSI protocol allows Alice and Bob to find out the intersection of their data sets without disclosing additional information to each other
- A PSI Cardinality (PSI-CA) protocol allows Alice and Bob to find out the intersection cardinality of their data sets without disclosing additional information to each other

An Example

Alice
$A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$

Bob

$$
\mathbf{E}\left(f_{0}\right), \mathbf{E}\left(f_{1}\right), \mathbf{E}\left(f_{2}\right) \cdots, \mathbf{E}\left(f_{m}\right)^{\imath=}
$$

$$
\begin{gathered}
B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\} \\
f(x)=\prod_{i=1}^{m}\left(x-b_{i}\right)=\sum_{i=0}^{m} f_{i} x^{i}
\end{gathered}
$$

$\mathbf{E}\left(r_{1} f\left(a_{1}\right)+a_{1}\right), \mathbf{E}\left(r_{2} f\left(a_{2}\right)+a_{2}\right), \cdots, \mathbf{E}\left(r_{n} f\left(a_{n}\right)+a_{n}\right)$

$$
r_{1} f\left(a_{1}\right)+a_{1}, r_{2} f\left(a_{2}\right)+a_{2}, \cdots, r_{n} f\left(a_{n}\right)+a_{n}
$$

$r_{i} f\left(a_{i}\right)+a_{i}=a_{i} ? \quad 1 \leq i \leq n$

In-class Exercise

- Alice has $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$
- Bob has $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{k}\right)$
- How to securely compute $\mathbf{a} \cdot \mathbf{b}$?
- How to securely compute $\|\mathbf{a}-\mathbf{b}\|_{2}^{2}=\sum_{i=1}^{k}\left(a_{i}-b_{i}\right)^{2}$

