CISC859: Topics in Advanced Networks \& Distributed Computing: Network \& Distributed System Security

Review of Basic Security Concepts \& Cryptographic Techniques

Background of Information Security

- What is information security?
- Keeping information secure against stealing \& changing \& destroying \& forging
- Traditionally provided by physical (e.g., cabinets with locks) and administrative means (e.g., personal screening procedures)
- Information security requirements have dramatically changed in the last several decades
- Growing computer use requires automated tools to protect files and other stored information
- Growing use of networks and communications links requires measures to protect data during transmission

Key Definitions

- Computer security
- the generic name for the collection of tools designed to protect data and to thwart hackers
- Network security
- measures to protect data during their transmission
- Internet security
- measures to protect data during their transmission over a collection of interconnected networks
- Note: boundaries among these definitions are blurred

Aim of Course

- Our focus is on Network \& Distributed Systems Security
- This consists of measures to deter, prevent, detect, and correct security violations that involve the transmission \& storage of information

Information Security Objectives

- Confidentiality (secrecy)
- A service used to keep the content of information from all but those authorized to have it
- Data integrity
- A service which addresses the unauthorized alteration of data
- Authentication
- Entity authentication: two communicating parties should identify each other
- Data origin authentication: information sent over a channel should be authenticated as to origin; implicitly provides data integrity
- Non-repudiation
- A service which prevents an entity from denying previous commitments

What Is Cryptography?

- Cryptography
- The study of techniques and applications that depend on the existence of difficult mathematical problems
- Cryptanalysis
- The study of how to compromise (defeat) cryptographic mechanisms
- Cryptology
- From the Greek kryptos logos, meaning "hidden word"
- The discipline of cryptography and cryptanalysis combined
- The study of techniques for ensuring the secrecy and/or authenticity of information
- Our focus is not the study of cryptography itself, but its use in solving practical network security problems

Some Critical Concepts (1)

- Encryption
- The transformation of a message (called plaintext) into a form (called ciphertext) that is as close to impossible as possible to read without the appropriate knowledge (a key)
- To ensure privacy by keeping the plaintext hidden from any nonintended person, even those having access to the ciphertext
- Decryption
- The reverse of encryption
- The transformation of ciphertext back into intelligible plaintext
- Key
- The secret information used in encryption \& decryption
- The same key or different keys may be used

Some Critical Concepts (2)

- Digital signature
- A piece of information used to prove that a message was generated by a particular individual of a particular key
- Signature generation and verification use different keys
- Message authentication code (MAC)
- An authentication tag (also called a checksum) derived by applying an authentication scheme, together with a secret key, to a message to be authenticated
- MAC generation and verification use the same key
- Computationally hard problems
- Cryptography is fundamentally based on problems that are difficult to solve in terms of computational requirements
- E.g., Factoring, Discrete Logarithm, Traveling Salesman, Integer Programming, Graph Coloring, Hamiltonian Path

Example: Substitution Ciphers

Substitution Cipher: Map each letter or numeral into another letter or numeral:
abcdefghijkImnopqrstuvwxyz zyxwvutsrqponmlkjihgfedcba

- Example:
- hvxfirgb \rightarrow security
- Substitution ciphers are easy to break
- Take histogram of frequency of occurrence of letters in a ciphertext message
- Match to known frequencies of letters

Example: Transposition Cipher

Transposition Cipher: Rearrange order of letters/numerals in a message using a particular rearrangement:

- interchange character k with character $k+1$
- Example:
- security \rightarrow esuciryt
- Transposition Ciphers are easy to break
- Suppose plaintext and ciphertext are known; matching of letters in plaintext and ciphertext will reveal transposition mapping
- Using anagram analysis: sliding pieces of ciphertext around, then looking for sections that look like anagrams of English words, and solving the anagrams

Essential Crypto Techniques

- Secret-key cryptography
- Public-key cryptography
- Hash functions
- Merkel Hash Tree
- Secret Sharing
- Information Dispersal
- Identity-based encryption
- Attribute-based encryption
- Homomorphic encryption
- Blind signature
- Private set intersection

Secret-Key Cryptography

- The sender and receiver share a key before communicating
- The shared key is used in both encryption and decryption
- Also known as symmetric cryptography
- E.g., RC4, RC5, RC6, DES, 3DES, AES

Security Uses of Secret-Key Crypto (1)

- Transmitting over an insecure channel
- Guaranteeing message confidentiality
- Secure storage on insecure media
- Guaranteeing information confidentiality
- Authentication
- Alice and Bob share a secret key $K_{A B}$
- Challenge-response authentication with the shared secret

r_{B} encrypted with $K_{A B}$

Security Uses of Secret-Key Crypto (2)

- Message Authentication Codes (MACs)
- Source A and destination B shares a secret key K
- C denotes a suitable MAC function (examples given later)
- E/D denotes a suitable symmetric encryption/decryption algorithm

\longleftarrow-Destination B \longrightarrow
$\mathrm{C}(K, M)$

Security Uses of Secret-Key Crypto (3)

(b) Message authentication and confidentiality; authentication tied to plaintext

(c) Message authentication and confidentiality; authentication tied to ciphertext

Public-Key Cryptography (1)

- Each user generates a unique pair of keys
- A private key (K^{-1}), kept confidential to himself/herself
- A public key (K), preferably known to the entire world
- There is a one-to-one correspondence between $K \& K^{-1}$
- It is computationally infeasible to determine K^{-1} given K
- Each user places its public key in a public register or accessible file, while keeping its private key confidential
- Each user maintains a collection of public keys obtained from others
- If Bob wishes to send a confidential message to Alice, Bob encrypts the message using Alice's public key
- When Alice receives the message, she decrypts it using her private key. No other recipient can decrypt the message because only Alice knows Alice's private key
- Also known as asymmetric cryptography
- E.g., RSA, DSA, Elliptic Curve Cryptography, Diffie-Hellman

RSA Public Key Algorithm

- Named after Rivest, Shamir, and Adleman
- Modular arithmetic \& factorization of large numbers
- Let $n=p q$, where $p \& q$ are two large numbers
$\rightarrow n$ typically several hundred bits long, i.e. 512 bits
\rightarrow Plaintext must be shorter than n
- Find e relatively prime to $(p-1)(q-1)$
\rightarrow i.e. e has no common factors with $(p-1)(q-1)$
\rightarrow Public key is $\{e, n\}$
- Let d be multiplicative inverse of e
$\rightarrow d e=1$ modulo $(p-1)(q-1)$
\rightarrow Private key is $\{d, n\}$

Encryption \& Decryption

- Fact: For $P<n$ and n, p, q, d as above:

$$
P^{d e} \bmod n=P \bmod n
$$

- Encryption:

$$
C=P^{e} \bmod n
$$

- Result is number less than n and is represented by same number of bits as key
- Decryption:

$$
C^{d} \bmod n=P^{e d} \bmod n=P \bmod n=P
$$

- Security stems from fact that it is very difficult to factor large numbers n, and with e to then determine d

RSA Example

- Let $p=5, q=11$
$-n=p q=55$ and $(p-1)(q-1)=40$
- Let $e=7$, which is relatively prime to 40
$-7 d$ mod $40=1$, gives $d=23$
- Public key is $\{7,55\}$
- Private key is $\{23,55\}$

RSA Example continued

- Encrypt "RSA": R=18, S=19, A=1
$\mathrm{C}_{1}=18^{7} \bmod 55=18^{4+2+1} \bmod 55$
$=(18 \bmod 55)\left(18^{2} \bmod 55\right)\left(18^{4} \bmod 55\right) \bmod 55$
$=(18)(324 \bmod 55)\left(18^{4} \bmod 55\right) \bmod 55$
$=(18)(49)\left(49^{2} \bmod 55\right) \bmod 55=(18)(49)(36) \bmod 55$
$=31752 \bmod 55=17$
$\mathrm{C}_{2}=19^{7} \bmod 55=24$
$\mathrm{C}_{3}=1^{7} \mathrm{mod} 55=1$
- Decrypt
$17^{23} \bmod 55=17^{16+4+2+1} \bmod 55=18$
$24^{23} \bmod 55=19$
$1^{23} \bmod 55=1$

Security Uses of Public-Key Crypto (1)

Security Uses of Public-Key Crypto (2)

Need for Authentication of Public keys

- Suppose Alice wants to find Bob's public key. How?
- Call him up and ask him to send his public key via email
- Request it via email
- Retrieve it from some public-key repository
- ...
- An attacker could intercept the transmission and replace Bob's key with his or her own
- Able to intercept and decrypt messages that are sent from Alice to Bob and encrypted using the fake public key
- Alice needs a measure to authenticate Bob's public key

Public-Key Certificates

- What are they?
- Digital documents attesting to the binding of a public key to an individual or other entity
- Allow verification of the claim that a specific public key does in fact belong to a specific individual
- Help prevent someone from using a phony public key to impersonate someone else
- What are in a public-key certificate?
- A public key and a name
- An expiration date
- The name of the Certificate Authority (CA) issuing the certificate
- The digital signature of the CA on all the other fields, which can be verified by anyone who trusts the CA and knows its public key

Secret-Key vs. Public-key (1)

- Pros of secret-key cryptography
- Very fast computation speed
- Shorter key sizes
- An extensive history against cryptanalysis
- Cons of secret-key cryptography
- An efficient and secure method is required to establish a shared secret key between two parties intending to communicate
- The secret key must be kept secret at both parties
- How to establish and update pairwise secret keys in a large network is challenging, e.g., $N(N-1) / 2$ in a network with N users
- No support for digital signatures because the secret key is known to both parties

Secret-Key vs. Public-key (2)

- Pros of public-key cryptography
- Key management is very simple because each user just need maintain his or her public/private key pair
- Efficient support for digital signatures
- Cons of public-key cryptography
- Relatively slow computation speed, normally several orders of magnitude than secret-key techniques
- Larger private-key sizes (a factor of 10 or more than secret keys)
- No public-key scheme has proven to be secure
- Doesn't have as extensive a history as secret-key crypto, being discovered only in the mid 1970s
- Common practice
- Using public-key techniques to establish a shared secret key for subsequent use by secret-key techniques

Hash Functions

- A hash function \mathbf{H} is a transformation that takes an input x and returns a fixed-size string \boldsymbol{h}, which is called a hash value or message digest, i.e., $\boldsymbol{h}=\mathbf{H}(x)$
- Basic requirements for a cryptographic hash function
- The input can be of any length
- The output has a fixed length
- $\mathbf{H}(x)$ is relatively easy to compute for any given m
- \mathbf{H} is one-way (pre-image resistance): for any given \boldsymbol{h}, it is computationally infeasible to find x such that $\mathbf{H}(x)=\boldsymbol{h}$
- H has weak collision resistance (second pre-image resistance): for any given x, it is computationally infeasible to find $y \neq x$ such that $\mathbf{H}(y)=\mathbf{H}(x)$
- \mathbf{H} has strong collision resistance: it is computationally infeasible to find any pair (x, y) such that $\mathbf{H}(x)=\mathbf{H}(y)$

Security Uses of Hash Functions (1)

- Password hashing
- A server stores hashes of user passwords so that anyone with access to the system storage cannot steal the passwords
- On input of your password, the server computes the hash and compares it with the stored one
- Message fingerprint
- You may want to know whether some large data structure (e.g., a program) has been modified from one day to the next
- You can keep a copy of the data on some tamper-proof backing store and periodically compare it to the active version
- You can save storage with a hash function: simply saving the hash value of the data on the tamper-proof backing store

Security Uses of Hash Functions (2)

- Digital signature efficiency
- Digital signature operations are expensive, closely related to the message size
- Generates a hash value of the long message to be digitally signed
- Produces a digital signature of the shorter hash value
- Message Authentication Codes (MACs)
- Alice and Bob shares a secret key

Cryptanalysis of Hash Functions (1)

- What is the implication of arbitrary-length inputs and fixed-length outputs?
- Lots of messages will yield the same hash value
- For 1000-bit messages and a 128-bit hash value, there on the average 2^{872} messages that hash to any particular hash value
- But "lots" is so many that it is essentially impossible
- How long should a hash value be?
- Assume a good m-bit hash function
- It would take trying approximately 2^{m} possible messages before one would find a message that hashed to a particular hash value
- It would take trying approximately $2^{m / 2}$ messages before finding two messages that have the same hash value (google The Birthday Problem)

Example

- $M=1000, m=128$
- Number of possible messages: 2^{1000}
- Number of possible hashes: 2^{128}
- For each hash value there are $2^{1000} / 2^{128}=2^{872}$ messages that generate the hash
- A randomly selected message produces a desired hash value with probability 2^{-128}
- If each attempt requires 1 microsecond, time to find matching message to a hash is:
$2^{128} \times 1$ microsecond $=2^{25}$ years

Cryptanalysis of Hash Functions (2)

- SHA-0 (Secure Hash Algorithm): 160-bit outputs
- Ideally it takes 2^{80} attempts to find a collision
- 1998, $2{ }^{61}$ attempts by Chabaud and Joux
- 2004, 2^{51} attempts by Joux, et al.
- 2004, 2^{40} attempts by Xiaoyun Wang, et al.
- 2005, 2^{39} attempts by Xiaoyun Wang, et al.
- SHA-1: 160-bits outputs
- Feb. 2005, 2^{69} attempts by Xiaoyun Wang, et al.
- Aug. 2005, 2^{63} attempts by Xiaoyun Wang, et al.
- Implications
- These attacks on SHA-1 don't necessarily mean that they can be practically exploited, but might pave the way to more efficient ones
- NIST has planned to phase out the use of SHA-1 by 2010

Efficient Authenticators

- One-way chains
- Chained hashes
- Merkle hash trees

Recall One-Way Hash Chains?

- Versatile cryptographic primitive
- Construction
- Pick random r_{N} and public one-way function F
- $r_{i}=F\left(r_{i+1}\right)$
- Secret value: r_{N}, public value r_{0}

- Properties
- Use in reverse order of construction: $r_{1}, r_{2} \ldots r_{N}$
- Infeasible to derive r_{i} from $r_{j}(j<i)$
- Efficiently authenticate r_{i} knowing $r_{j}(j<i)$: verify $r_{j}=F^{-J}\left(r_{i}\right)$
- Robust to missing values

One-Way Chain Application

- S/Key one-time password system
- Goal
- Use a different password at every login
- Server cannot derive password for next login
- Solution: one-way chain
- Pick random password P_{L}
- Prepare sequence of passwords $P_{i}=F\left(P_{i+1}\right)$
- Use passwords $\mathrm{P}_{0}, \mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{L}-1}, \mathrm{P}_{\mathrm{L}}$
- Server can easily authenticate user

Chained Hashes

- Useful for authenticating a sequence of data values D_{0}, D_{1}, \ldots, D_{N}
- H_{*} authenticates entire chain

Merkle Hash Trees

- Authenticate a sequence of data values $\mathrm{d}_{0}, \mathrm{~d}_{1}, \ldots, \mathrm{~d}_{\mathrm{N}}$
- Construct binary tree over data values

Merkle Hash Trees II

- Verifier knows T_{0}
- How can verifier authenticate leaf d_{i} ?
- Solution: recompute T_{0} using d_{i}
- Example authenticate d_{2}, send $D_{3} T_{3} T_{2}$
- Verify $\mathrm{T}_{0}=\mathrm{H}\left(\mathrm{H}\left(\mathrm{T}_{3} \| \mathrm{H}\left(\mathrm{H}\left(\mathrm{d}_{2}\right) \Perp \mathrm{D}_{3}\right)\right) \| \mathrm{T}_{2}\right)$

