1. Introduction

A reliable distributed network service requires provisions to prevent accidental or malicious
attacks on the servers and clients in the network. Reliability requires that clients can determine
that received packets are authentic; that is, were actually sent by the intended server and not man-
ufactured or modified by an intruder. Ubiquity requires that any client can verify the authenticity

of any server using only public information. This is especially important in such ubiquitous net-
work services as directory services, cryptographic key management and time synchronization.

The Network Time Protocol (NTP) contains provisions to cryptographically authenticate individ-
ual servers as described in the most recent protocol specification RFC-1305 [7]; however, that
specification does not provide a scheme for the distribution of cryptographic keys, nor does it pro-
vide for the retrieval of cryptographic media that reliably bind the server identification credentials
with the associated keys and related public values. However, conventional key agreement and
digital signatures with large client populations can cause significant performance degradations,
especially in time critical applications such as NTP. In addition, there are problems unique to NTP
in the interaction between the authentication and synchronization functions, since each requires
the other.

This report describes a cryptographically sound and efficient methodology for use in NTP and
similar distributed protocols. As demonstrated in the reports and briefings cited in the bibliogra-
phy at the end of this report, there is a place for Public-Key Infrastructure (PKI) schemes, but
none of these schemes alone satisfies the requirements of the NTP security model. The various
Diffie-Hellman key agreement schemes [1], [4], [10] proposed by the IETF require per-associa-
tion state variables, which contradicts the principles of the remote procedure call (RPC) paradigm
in which servers keep no state for a possibly large client population. An evaluation of the PKI
model and algorithms as implemented in the rsaref20 package formerly distributed by RSA Labo-
ratories leads to the conclusion that any scheme requiring every NTP packet to carry a PKI digital
signature would result in unacceptably poor timekeeping performance.

A revised security model and authentication scheme called autokey was proposed in earlier
reports [5], [6], [8]. It has been evolved and refined since then and implemented in NTP Version 4
for Unix, Windows and VMS [9]. It is based on a combination of PKI and a pseudo-random
sequence generated by repeated hashes of a cryptographic value involving both public and private
components. This scheme has been tested and evaluated in a local environment and is being
deployed now in CAIRN. A detailed description of the security model, design principles and
implementation experience is presented in this report.

2. Security Model

Over the last several years the IETF has defined and evolved the IPSEC infrastructure for the pro-
tection of privacy and authentication of sources in the Internet, The infrastructure includes the
Encapsulating Security Payload (ESP) [3] and Authentication Header (AH) [2] for IPv4 and IPv6.
Cryptographic algorithms that use these headers for various purposes include those developed for
the PKI, including MD5 message digests, RSA digital signatures and several variations of Diffie-
Hellman key agreements. The fundamental assumption in the security model is that packets trans-
mitted over the Internet can be intercepted by other than the intended receiver, remanufactured in
various ways and replayed in whole or part. These packets can cause the client to believe or pro-



duce incorrect information, cause protocol operations to fail, interrupt network service or con-
sume processor resources with needless cryptographic calculations.

In the case of NTP, the assumed goal of the intruder is to inject false time values, disrupt the pro-
tocol or clog the network, servers or clients with spurious packets that exhaust resources and deny
service to legitimate users. The mission of the algorithms and protocols described in this report is
to detect and discard spurious packets sent by other than the intended sender or sent by the
intended sender but modified or replayed by an intruder. The cryptographic means are based on
PKI algorithms, but the way in which these algorithms are used precludes encryption of any data
other than incidental to the construction of digital signatures.

There are a number of defense mechanisms already built in the NTP architecture, protocol and
algorithms. The fundamental timestamp-exchange scheme is inherently resistant to replay attacks.
The engineered clock filter, intersection and clustering algorithms are designed to fend off Byzan-
tine cliqgues. While not necessarily designed to defeat determined intruders, these algorithms have
functioned well over the years to deflect improperly operating but presumably friendly scenarios.

However, these mechanisms do not securely identify and authenticate the servers themselves.
Without specific further protection, an intruder can do any or all of the following mischiefs. Fur-
ther discussion on the assumed intruder model is given in [8], but beyond the scope of this report.

1. Anintruder can archive packets forever and can archive all the public values ever generated
and transmitted over the net.

2. Anintruder can generate packets faster than the server or client can process them if they
require expensive PKI operations.

3. Anintruder can intercept, modify and replay a packet. However, it cannot permanently pre-
vent packet transmission over the net; that is, it cannot break the wire, only congest it.

The following assumptions are fundamental to the autokey design. They are discussed at some
length in [8] and the briefing slides and links at www.eecis.udel.edu/~mills/autokey.htm and will
not be further discussed in this report.

1. The running times for the public-key algorithms, with the exception of MD5, are relatively
long and highly variable. In general, the performance of the synchronization function is badly
degraded if public-key algorithms must be used for every NTP packet.

2. In some modes of operation it is not feasible for a server to retain cryptographic state variables
for every client. It is however feasible to regenerated them for a client upon arrival of a packet
from that client.

3. The lifetime of cryptographic values must be enforced, which requires a reliable system clock.
However, the sources that synchronize the system clock must be cryptographically authenti-
cated. This circular interdependence of the timekeeping and authentication functions requires
special handling.

4. All authentication functions must involve only public values transmitted over the net. Private
values must never be disclosed beyond the machine on which they were created.



5. The fundamental security of identification credentials and public values bound to those cre-
dentials will eventually be a function of public directory services and beyond the scope of
NTP. Only temporarily until these services are available will NTP implement them in an
incomplete fashion.

3. Approach

The autokey protocol described in this report is designed to meet the following objectives. Again,
in-depth discussions on these objectives is in [8] and the web briefings and will not be elaborated
in this report.

1. It mustinteroperate with the existing NTP architecture model and protocol design. In particu-
lar, it must support the symmetric-key scheme described in RFC-1305. As a practical matter,
the reference implementation must use the same internal key management system, including
the use of 32-bit key identifiers and existing mechanisms to store, activate and revoke keys.

2. It must provide for the independent collection of cryptographic values and time values. A cli-
ent is synchronized to an authentic source only when the all cryptographic values have been
obtained and verified and the NTP timestamps have passed all sanity checks.

3. It must not significantly degrade the potential accuracy of the NTP synchronization algo-
rithms. In particular, it must not make unreasonable demands on the network or host processor
and report resources.

4. It must be resistant to cryptographic attacks, including replay/modification and clogging
attacks. In particular, it must be tolerant of implementation variances, such as packet loss or
misorder, or suboptimal configuration.

5. It must build on a widely available suite of cryptographic algorithms, yet be independent of
the particular choice. In particular, it must not require data encryption other than incidental to
signature and verification functions.

6. It must function in all the modes supported by NTP, including client/server, multicast/many-
cast and symmetric active/passive modes.

7. The reference implementation must contain provisions to generate cryptographic key values,
including RSA public/private keys specific to each client and server and Diffie-Hellman
parameters. Eventually, it must contain provisions to retrieve public values from directory ser-
vices such as Secure DNS.

8. It must not require intricate per-client or per-server configuration other than the availability of
RSA public/private key files and Diffie-Hellman parameter files, as required.

4. Autokey Authentication Scheme

The autokey public-key cryptography is based on the PKI algorithms of the rsaref2.0 library.

MD5 message digests are used to detect packet modification. Timestamped RSA digital signa-
tures are used to verify the source and Diffie-Hellman key agreements are used to construct a pri-
vate key from public values. What makes the autokey scheme unique is the way in which these
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algorithms are used to deflect intruder attacks while maintaining the integrity and accuracy of the
time synchronization function.

The NTP Version 3 symmetric-key cryptography uses keyed-MD5 message digests with a 128-bit
private key and 32-bit key ID. In order to retain backward compatibility, the key ID space is parti-
tioned in two subspaces at a pivot point of 65536. Symmetric key IDs have values less than 65536
and indefinite lifetime. Autokey keys have pseudo-random values equal to or greater than 65536
and are expunged immediately after use.

There are three autokey protocol variants corresponding to each of the three NTP modes: client/
server, multicast/manycast and symmetric. All three variants make use of a specially contrived
session key called an autokey and a pseudo-random sequence of key IDs called the key list. As in
the original NTP Version 3 authentication scheme, the autokey scheme operates separately for
each association, so there may be several key lists operating independently at the same time and
with associated special values and signature.

An autokey consists of four 32-bit fields in the network order shown in Figure 1. The source and
destination IP addresses and key ID are public values visible in the packet, while the cookie can
be a public value or a private value, depending on the mode.

The NTP packet format has been augmented to include one or more extension fields piggybacked
between the original NTP header and the message authenticator code (MAC). For packets without
extension fields, the cookie is a private value computed by an agreement algorithm. For packets
with extension fields, the cookie is a public value (0), since these packets can be validated inde-
pendently using signed data in an extension field. The four values are hashed by the MD5 mes-
sage digest algorithm to produce the actual 128-bit key value, which is stored along with the key
ID in a cache used for symmetric keys as well as autokeys. Keys are retrieved from the cache by
key ID using a fast algorithm and hash tables.

The key list consists of a sequence of key IDs starting with a random value and each pointing to
the next. To generate the next autokey on the key list, the next key ID is the first 32 bits of the pre-
vious key value. It may happen that a newly generated key ID is less than 65536 or collides with
another one already generated. When this happens, which should occur rarely, the key list is ter-
minated at that point. The lifetime of each key is set to expire one poll interval after its scheduled
use. In the reference implementation, the list is terminated when the maximum key lifetime is
about one hour.

The index of the last key ID in the list is saved along with the next key ID of that entry, collec-
tively called the initial autokey values (simply autokey values hereafter). The list is used in
reverse order, so that the first key ID used is the last one generated. The autokey protocol includes

a message to retrieve the autokey values and signature in a secure way, so that subsequent packets
can be authenticated using one or more hashes that eventually match the first key ID (valid) or
exceed the index (invalid). In the reference implementation the most recent key ID received is



saved for comparison with the first 32 bits of the next following key value. This minimizes the
number of hash operations in case a packet is lost.

In client/server mode the server keeps no state for each client, but uses a fast algorithm and a pri-
vate value to regenerate the cookie upon arrival of a client packet. The cookie is calculated in a
manner similar to the autokey, where the key ID field is zero and the cookie field is the private
value. The first 32 bits of the hash is the cookie used both for the actual autokey calculation and
returned to the client on request. It is thus specific to each client separately and of no use to other
clients or an intruder. A client obtains the cookie and signature using the autokey protocol and
saves it for later use.

In client/server mode the cookie is a relatively weak function of the IP addresses and a server pri-
vate value. The client uses the cookie and each key ID on the key list in turn to calculate the MAC
for the next NTP packet. The server calculates these values and checks the MAC, then generates
the MAC for the response using the same values, but with the IP addresses reversed. The client
calculates and checks the MAC and verifies the key ID matches the one sent. In this mode the
sequential structure of the key list is not exploited, but doing it this way simplifies and regularizes
the implementation.

In multicast/manycast mode, clients normally do not send packets to the server, except when first
starting up to calibrate the propagation delay in client/server mode. At the same time the client
temporarily authenticates as in that mode. After obtaining and verifying the cookie, the client con-
tinues to obtain and verify the autokey values. To obtain these values, the client must provide the
ID of the particular server association, since there can be more than one in the same machine. For
this purpose, the multicast server includes the association ID in every packet sent, except when
sending the first packet after generating a new key list, when it sends the autokey values instead.

In symmetric mode each peer keeps state variables related to the other, so that a private cookie
can be computed by a strong agreement function. The Diffie-Hellman agreement algorithm is
used to construct the agreed key using public values and RSA signatures. The cookie itself is the
first 32 bits of the agreed key. The key list for each direction is generated separately by each peer
and used independently.

The server authentic bit is set only when the cookie or autokey values, depending on mode, and
signature are both valid. If the bit is set, the client sends valid timestamps in signed responses. If
the bit is not set, the data and signature are processed in order to run the autokey protocol, but the
NTP time values are ignored. Packets with old timestamps are discarded immediately while
avoiding expensive cryptographic algorithms. Bogus packets with newer timestamps must pass
the MAC and autokey tests, which is highly unlikely.

Once the authentic bit is set, the NTP time values are processed, so that eventually the client will
synchronize to an authentic source. In client/server and symmetric modes, packets are normally
sent without an extension field, unless the packet is the first one sent after generating a new key
list or unless the client has requested the cookie or autokey values. If for some reason the client
clock is stepped, rather than slewed, all cryptographic data and time values for all associations are
cleared and the synchronization and authentication procedures start over from scratch. This
insures that old cryptographic and synchronization values never propagate beyond a clock reset.



4.1 Public-Key Signatures

Since public-key signatures provide strong protection against misrepresentation of sources, prob-
ably the most obvious intruder strategy is to deny or restrict service by replaying old packets with

signed cryptographic values in a cut-and-paste attack. The basis values on which the crypto-
graphic operations depend are changed often to deflect brute force cryptanalysis, so the client
must be prepared to abandon an old key in favor of a refreshed one. This invites the opportunity
for an intruder to clog the client or server by replaying old autokey messages or to invent bogus
new ones. A client receiving such messages might be forced to refresh the correct value from the
legitimate server and consume significant processor resources.

In order to foil such attacks, every signature carries a timestamp in the form of the seconds field of
the NTP time. The signature includes the timestamp itself together with optional additional data.
If the server has been cryptographically verified as described in this report and the NTP algo-
rithms have validated the time values, the system clock is synchronized and signatures carry a
nonzero (valid) timestamp. Otherwise the system clock is unsynchronized and signatures carry a
zero (invalid) timestamp. Extension fields with invalid timestamps are discarded before any val-
ues are used or signatures verified.

There are three signature types:

1. The Diffie-Hellman public value is signed at the time of generation, which occurs when the
system clock is first synchronized and about once per day after that in the reference imple-
mentation. On request, the public value, signature and timestamp are returned in an extension
field. For convenience, the host name signature is recomputed at the same time as the public
value signature and carries the same timestamp. On request, the host name and signature are
returned in an extension field.

2. The cookie value is computed and signed upon arrival of a request message. The cookie, sig-
nature and timestamp are returned in an extension field.

3. The autokey values are signed when a new key list is generated, which occurs about once per
hour in the reference implementation. On request, the autokey values, signature and times-
tamp are returned in an extension field.

The most recent timestamp for each of the three signature types is saved for comparison. Once a
signature with valid timestamp has been received, extension fields with invalid timestamps or
older valid timestamps of the same type are discarded before any values are used or signatures
verified. For packets containing signed extension fields, the timestamp deflects replays that other-
wise might consume significant processor resources; for other packets the NTP protocol itself is
inherently resistant to replays and consumes only minimal processor resources. If a replay is dis-
covered by the NTP protocol in a packet containing otherwise acceptable extension fields, the
packet is discarded. In general, if the NTP sanity checks reveal problems with the packet, the
packet is discarded.

While the RSA public and private key files and Diffie-Hellman parameter files are not specifi-
cally signed, the file names have timestamp extensions which reliably determine the time of gen-
eration. In particular, the public key timestamp is computed from the public key file name



extension. For this reason, these files should always be generated on a machine when the system
clock is valid.

In order to further reduce the window of opportunity even for a fanatical intruder, additional cau-
sality constraints can be checked.

1. All signature timestamps must be earlier than the receive timestamp collected upon arrival of
the NTP packet.

2. All signature timestamps must be later than the public key timestamp.
3. In multicast client mode, the cookie timestamp must be later than the autokey timestamp.
4. In symmetric modes the autokey timestamp must be later than the public value timestamp.

In the above constraints, note the public key timestamp and signature timestamps have a granular-
ity of one second, so that a timestamp difference of zero seconds is ambiguous. Furthermore,
timestamps can be in error as much as the value of the synchronization distance; that is, the sum
of the root dispersion plus one-half the root delay.

4.2 Error Recovery

The protocol state machine which drives the various autokey functions includes provisions for

various kinds of error conditions that can arise due to missing key or parameter files, corrupted
data, protocol state mismatches and packet loss or misorder, not to mention hostile intrusion.
There are two mechanisms which maintain the liveness state of the protocol, the reachability reg-
ister defined in RFC-1305 and the watchdog timer, which is new in NTP Version 4.

The reachability register is an 8-bit register that shifts left with zero replacing the rightmost bit. A
shift occurs for every poll interval, whether or not a poll is actually sent. If an arriving packet
passes all authentication and sanity checks, the rightmost bit is set to one. Thus, the pattern of
ones and zeros in this register reveals the reachability status of the server for the last eight poll
intervals. With respect to the issues at hand, if this register is nonzero, the server is reachable, oth-
erwise it is unreachable. If the server was once reachable and then becomes unreachable, a gen-
eral reset is performed. A general reset reinitializes all association variables to the state when first
mobilized and returns all acquired resources to the system. In addition, if the association is not
configured, it is demobilized until the next server packet is received.

The watchdog timer increments for every poll interval, whether or not a poll is actually sent and
regardless of the reachability state. The counter is set to zero upon arrival of a cryptographically
authenticated packet, as determined by the autokey scheme. In the reference implementation, if
the counter reaches 16 a general reset is performed. In addition, if the association is configured,
the poll interval is doubled. This reduces the network load for packets that are unlikely to elicit a
response.

The general approach to autokey error recovery is to retry the request message at intervals of
about one minute until the watchdog timer expires and then restart the authentication procedure
from the beginning. At each state in the cryptographic protocol the client expects a particular vari-
able to be received from the server. A NTP packet including the appropriate request is sent at
every poll interval until the variable is received or a general reset occurs. While this behavior



might be considered rather conservative, the advantage is that old cryptographic values can never
persist from one mobilization to the next.

There are a number of situations where some action causes the remaining autokeys on the key list
to become invalid. In these situations the key list is purged of all remaining values and a new key
list generated.

5. Following the switch from client/server mode to multicast client mode. There is no further
need for the key list, since the client will not transmit again.

6. When the poll interval is changed in an association. In this case the calculated expiration times
for the keys become invalid.

7. When a general reset is performed in an association.

8. If a problem is detected when an entry is fetched from the key list for an association. This
could happen if the key was marked non-trusted or timed out, either of which implies a soft-
ware bug.

9. When the private value and Diffie-Hellman public value are refreshed, the key lists for all
associations are regenerated.

10. When the client is first synchronized to an authentic source, the key lists for all associations
are regenerated.

4.3 Autokey Protocols

This section describes the autokey protocols supporting cryptographically secure server authenti-
cation. There are three protocols corresponding to the NTP client/server, multicast/manycast and
symmetric modes. Each protocol assumes that the client has the public key files for all servers in
the community and the server has these files and its private key file. In addition, each client and
server has the Diffie-Hellman parameter file common to all servers and clients in the community.

In the reference implementation, the names of these files can be specified in the NTP configura-
tion file, or the default names can be used. A failure to find or load all of these files is reported to
the system log. In configured associations the name of the server public key file can be specified
in the NTP configuration file or it can be obtained directly from the server at the time the protocol
is initiated. For unconfigured multicast client or symmetric passive associations, the name must
be obtained directly from the server when the first packet is received and the association mobi-
lized.

An extension field contains either a request for data or a response with data. While requests are
sent with no further protection, the data in most responses are sent with timestamped RSA signa-
tures. The signature covers the data and timestamp, which is set valid (nonzero) only if the sender
is synchronized to an authentic source.

When necessary, the client sends a Host Name request to the server, which returns a Host Name
response with its canonical name, signature and timestamp. The client uses the canonical name to
load the public key file, then verifies the signature using the public key just loaded. For this and
any other purpose, it is necessary that the signature timestamp be valid and later than the last valid
timestamp. If not or the public key file cannot be found or an error occurs in loading the file or the
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Figure 2. Client/Server Protocol

signature operation fails, the operation is retried again until the error is corrected or until associa-
tion timeout.

4.3.1 Client/Server Modes (3/4)

In client/server modes the server keeps no state variables specific to each of possibly very many
clients and mobilizes no associations. The server regenerates a cookie for each packet received
from the client. For this purpose, the cookie is hashed from the IP addresses and private value
with the key ID field set to zero, as described previously. Both the client and server use the cookie
to generate the autokey which validates each packet received. To further strengthen the validation
process, the client selects a new key ID for every packet and verifies that it matches the key ID in
the server response to that packet.

Figure 2 shows the protocol dance in client/server mode. In this and following diagrams the NTP
packet type is shown above the arrow and the extension field(s) message type shown below. There
are three cryptographic values instantiated by the dance: the cookie, signature timestamp and
authentic bit.

The dance begins when the client on the right sends a packet (1) including a cookie request to the
server on the left. The server immediately responds with the cookie, signature and timestamp.
Upon arrival of this packet (2), the client checks the timestamp, verifies the signature and, if suc-
cessful, initializes the cookie and signature timestamp and sets the authentic bit. The client will
retransmit packet (1) until receiving a valid timestamp and verified signature (2) or until associa-
tion timeout.

After successful verification, there is no further need for extension fields, unless an error occurs
or the server generates a new private value. When this happens, the server fails to authenticate the
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Figure 3. Multicast/Manycast Protocol

packet (3) and, following the original NTP protocol, responds with a NAK packet (4), which the
client ignores. Eventually, a general reset occurs and the dance restarts from the beginning.

4.3.2 Multicast/Manycast Mode (5)

In multicast mode, packets are always sent with an extension field. Since the autokey values for
these packets use a well known cookie (zero), they can in principle be remanufactured with a new
MAC acceptable to the receiver; however, the key list provides the authentication function as
described earlier. The multicast server keeps no state variables specific to each of possibly very
many clients and mobilizes no associations for them. The server on the left in the diagram below
sends packets that are received by each of a possibly large number of clients, one of which is
shown on the right. Ordinarily, clients do not send packets to the server, except to calibrate the
propagation delay and to obtain cryptographic values such as the cookie and autokey values.

Figure 3 shows the protocol dance in multicast mode. There are four cryptographic values instan-
tiated by the dance: the signature timestamp, cookie, autokey values and authentic bit. The server
sends multicast packets continuously at intervals of about one minute (1) using the key list and
regenerating the list as required. The first packet sent after regenerating the list includes an exten-
sion field containing the autokey values and signature; other packets include an extension field
containing only the association ID.

10



Upon arrival of the first packet (1), the multicast client mobilizes an association and loads the
canonical name and public key as described above. Alternately, it queries the DNS and loads the
canonical name, certificate and server public key.

Some time later the client generates a key list and sends a packet (2) requesting the cookie as in
client/server mode. The server immediately responds (3) with the cookie, signature and times-
tamp. The client checks the timestamp, verifies the signature and, if successful, initializes the
cookie and signature timestamp. The client retransmits packet (2) until receiving a valid times-
tamp and verified signature (3) or until a general reset occurs.

If the autokey response extension field happened to be in the server packets (1, 3), the client can
switch to multicast client mode and send no further packets. Otherwise, some time later the client
sends a packet (4) requesting the autokey values. The server immediately responds (5) with the
values. The client checks the timestamp, verifies the signature and, if successful, initializes the
autokey values and signature timestamp and sets the authentic bit. The client retransmits packet
(4) until receiving a valid timestamp and verified signature (5) or until a general reset occurs.

After successful verification, there is no further need for extension fields, unless the server regen-
erates the cookie or the server regenerates the key list and the autokey response message happens
to be lost. When this happens, the server fails to authenticate the packets (1). Eventually, a general
reset occurs and the dance restarts from the beginning. However, it is the usual practice to send
additional client/server packets in order for the client mitigation algorithms to refine the clock off-
set/delay estimates. When a sufficient number of estimates have been accumulated, the client dis-
cards the cookie and remaining keys on the key list, switches to multicast client mode and sets the
clock.

4.3.3 Symmetric Active/Passive Mode (1/2)

In symmetric modes there is no explicit client/server relationship, since each peer in the relation-
ship can operate as a server with the other operating as a client. The particular choice of server
depends on which peer has the smallest root synchronization distance to its ultimate reference
source, and the choice may change from time to time.

There are two protocol scenarios involving symmetric modes. The simplest scenario is where
both peers have configured associations that operate continuously in symmetric-active mode and
cryptographic values such as host name and public key can be configured in advance. The other
scenario is when one peer operates with a configured association and begins operation with
another peer without a configured association and begins operation in symmetric-passive mode.

Figure 4 shows the protocol dance in symmetric-active/passive mode. The exchange is similar in
the symmetric-active/active mode, although the order can change depending on which peer starts
the dance. There are four cryptographic values instantiated by the dance: the signature timestamp,
cookie, autokey values and authentic bit.

The dance begins when the active peer on the left in the diagram sends a packet (1) to the passive
peer on the right. Before sending the first packet, the active peer generates a key list using the
default key (zero) and initializes the autokey values and signature along with the Diffie-Hellman
public value and signature.

11



Symmetric Symmetric

Active Passive
obtain credentials
obtain credentials NTP Peer verify signature
mobilize association Public Value Req compute cookl_e _
verify signatur_e NTP Peer mobilize association
compute cookie :
generate key list Public Value Resp
Autokey Request
NTP Peer verify signature

generate key list

Autokey Response | get authentic

Autokey Request
NTP Peer

Autokey Response
NTP Peer

set authentic

set time

NTP Peer

set time

Figure 4. Symmetric Mode Protocol

The first packet from the active peer includes its public value and signature along with a request
for the public value of the passive peer. Upon arrival of this packet, the passive peer mobilizes an
association and loads the canonical name and public key as described above. Alternately, it que-
ries the DNS and loads the canonical name, certificate and public key of the active peer. The pas-
sive peer checks the timestamp, verifies the signature and, if successful, executes the agreements
algorithm and initializes the cookie and signature timestamp. As the cookie affects the autokey
values, the key list is regenerated with the cookie. The active peer retransmits packet (1) until
receiving a valid public value (2) or until a general reset occurs.

Some time later the passive peer sends a packet (2) to the active peer including its public value
and signature along with a request for the autokey values of the active peer. Upon arrival of this
packet, the active peer checks the timestamp, verifies the signature and, if successful, executes the
agreements algorithm and initializes the cookie and signature timestamp. As the cookie affects the
autokey values, the key list is regenerated with the cookie. The passive peer retransmits packet (2)
until receiving a valid autokey values (3) or until a general reset occurs.

Some time later the active peer sends a packet (3) to the passive peer including its autokey values
and signature along with a request for the autokey values of the passive peer. Upon arrival of this
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packet, the passive peer checks the timestamp, verifies the signature and, if successful, initializes
the autokey values and sets its authentic bit. The active peer retransmits packet (3) until receiving
a valid autokey values (4) or until a general reset occurs.

Some time later the passive peer sends a packet (4) to the active peer including its autokey values
and signature. Upon arrival of this packet, the active peer checks the timestamp, verifies the sig-
nature and, if successful, initializes the autokey values and sets the authentic bit.

After successful verification, there is no further need for extension fields, unless an error occurs

or one of the peers generates new public values. The protocol requires that, if a peer receives a
public value resulting in a different cookie, it must send its own public value. Since the autokey
values are included in an extension field when a new key list is generated, there is ordinarily no
need to request these values, unless one or the other peer restarts the protocol or the packet con-
taining the autokey values is lost. In any case, the request will be retransmitted at intervals until a
general reset occurs.

5. Security Analysis

This section discusses the most obvious security vulnerabilities in the various modes and phases
of operation. Throughout the discussion the PKI cryptographic algorithms themselves are
assumed secure; that is, a successful brute force attack on the algorithms or public/private keys or
Diffie-Hellman parameters or public values is unlikely. However, vulnerabilities remain in the
way the actual cryptographic data, including the cookie and autokey values, are computed and
used.

Some observations on the particular engineering constraints of the autokey scheme are in order.
First, the number of bits in some cryptographic values are considerably smaller than would ordi-
narily be expected for strong cryptography. One of the reasons for this is the need for compatibil-
ity with previous NTP versions; another is the need for small and constant latencies and minimal
processing requirements. Therefore, what the scheme gives up on the strength of these values
must be regained by agility in the rate of change of the cryptographic basis values. Thus, autokeys
are used only once and basis values are regenerated frequently. However, in most cases even a
successful cryptanalysis of these values compromises only a particular client/server association
and does not represent a danger to the general population.

There are three tiers of defense against hostile intruder interference. The first is the message
authentication code (MAC) based on a keyed-MD5 message digest and key. The key value itself

is generated as the hash of the IP address fields, key ID field and a special cookie. If the message
digest computed by the receiver does not match the value in the MAC,

either the autokey contained a different cookie than used by the sender or the packet was modified
by an intruder. Packets that fail this test are discarded without further processing; in particular,
without spending processor cycles on expensive public-key algorithms.

The second tier of defense involves the key list, which is generated as a repeated hash of autokeys
and used in the reverse order. While any receiver can authenticate a message by hashing to match
a previous key ID, as a practical matter an intruder cannot predict the next key ID and thus cannot
spoof a packet acceptable to the client. In addition, tedious hashing operations provoked by
replays of old packets are suppressed because of the basic NTP protocol design. Finally, spurious
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public-key computations provoked by replays of old packets with extension fields are suppressed
because of the signature timestamp check.

The third tier of defense is represented by the autokey protocols described in this report. The pro-
tocols are used to reliably instantiate cryptographic values on an occasional basis. Sensitive data
are protected by public-key signatures with timestamps. Once these values are instantiated, the
autokey protocol authenticates each packet relative to its predecessors and by induction to the
instantiated cryptographic values.

In addition to the three-tier defense strategy, all packets are protected by ten NTP packet sanity
checks. Since all packets carry time values, replays of old or bogus packets can be deflected once
the client has synchronized to authentic sources. However, the NTP sanity checks are only effec-
tive once the packet has passed all cryptographic tests. This is why the signature timestamp is nec-
essary to avoid expensive calculations that might be provoked by replays. Since PKI signature
and verify operations have a high manufacturing cost, in all except client/server modes the proto-
col design protects against a clogging attack by signing cryptographic values only when they are
changed and not on request.

5.1 Specific Attacks

In client/server mode the server recomputes the cookie for each client as request packets arrive.
While the cookie is provided to the client in a signed extension field, it is not encrypted and there-
fore can be intercepted by an intruder. The intruder can then manufacture a valid request packet
with the same addresses and cookie, but carrying fake time values. The server responds without
noticing the difference, but the client will accept the response only if it has the expected key ID
and NTP originate timestamp, which is highly unlikely at best.

In all modes the cryptographic seed data used to generate cookies and autokey values are changed
from time to time. Thus, a determined intruder could save old response packets containing these
values and attempt to replay them after the seed data have changed. While the client will detect
this due to the old timestamp, it might result in processor clogging to verify the signature. This is
why the timestamp test is done first and before the signature is computed. A more successful clog-
ging attack would alter the timestamp to the future and, while the client would discover and even-
tually discard the packet, it would indeed have to run the expensive cryptographic routines.

In order to reduce the exposure to a clogging attack that consumes signature resources, signatures
are computed only when the data have changed. For instance, the autokey values are signed only
when the key list is regenerated, which happens about once an hour, while the Diffie-Hellman
public value is signed only when the private values are regenerated, which happens about once
per day.

The exception is the cookie used in client/server mode. The design precludes server state vari-
ables stored on behalf of any client, so the signature must be computed for every cookie request.
Ordinarily, cookie requests are seldom used, except when the private values are regenerated.
However, a determined intruder could replay intercepted cookie requests at high rate, which may
very well clog the server. There appears no easy countermeasure for this particular attack.

An interesting vulnerability in client/server mode is for an intruder to replay a recent client packet
with an intentional bit error. This could cause the server to return the special NAK packet. A naive
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client might conclude the server had refreshed its private value and so attempt to refresh the
server cookie. This results in the server and client burning spurious cryptographic routine cycles.
A more clever client notices that the NTP originate timestamp does not match the most recent cli-
ent packet sent, so discards the bogus NAK immediately.

In multicast and symmetric modes the client must include the association ID in the autokey
request. Since association ID values for different invocations of the NTP daemon are randomized
over the 16-bit space, it is unlikely that a very old packet would contain a valid ID value. An
intruder could save old server packets and replay them to the client population with the hope that
the values will be accepted and cause general chaos. The conservative client will discard them on
the basis of invalid timestamp.

A client is most vulnerable from the time it first starts up until it is synchronized to an authentic
source and signature timestamps are valid. In multicast mode a speculative intruder can collect
legitimate multicast packets and replay them at a later time when it notices that the client is most
vulnerable. While these packets appear authentic, the intruder cannot respond with a legitimate
signature. The protocol calls for the client to calibrate the propagation delay using client/server
mode, which requires the cookie and autokey values. Since the intruder cannot properly sign these
values, the client will not proceed further. Replayed at high speed, however, the client may clog in
the cryptographic routines.

6. Present Status

The autokey scheme has been implemented in the public software distribution for NTP Version 4
and has been tested in all machines of either endian persuasion and both 32- and 64-bit architec-
tures. Testing the implementation has been complicated by the many combinations of modes and
failure/recovery mechanisms, including daemon restarts, key expiration, communication failures
and various management mistakes. The experience points up the fact that many little gotchas that
are survivable in ordinary protocol designs become showstoppers when strong cryptographic
assurance is required.

7. Future Plans

The analysis, design and implementation of the autokey scheme is basically mature; however,
There are two remaining implementation issues. One has to do with the Unix sockets semantics
used for multicast. The problem is how to set the source address when more than one interface is
present. Since the autokey scheme hashes the IP addresses, as well as the NTP header, it is neces-
sary that the correct address be known before the hash can be computed. In the present implemen-
tation the address is not known until the first packet arrives, which considerably complicates the
protocol. Probably nothing short of a complete rewrite of the 1/O code will fix this.

The other issue is support for Secure DNS services, especially the retrieval of public certificates.
A complicating factor is the existing banal state of the configuration and resolver code in the NTP
daemon. Over the years this code has sprouted to a fractal-like state where possibly the only cor-
rect repair is a complete rewrite.
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9. Appendix A. Packet Formats

The NTP Version 4 packet consists of a number of fields made up of 32-bit (4 octet) words. The
packet consists of three components, the header, one or more optional extension fields and an
optional message authenticator code (MAC), consisting of the Key ID and Message Digest fields.
The format is shown in Figure 5, where the size of some multiple word fields is shown in bits.

The NTP header extends from the beginning of the packet to the end of the Transmit Timestamp
field. The format and interpretation of the header fields are backwards compatible with the NTP
Version 3 header fields as described in RFC-1305, except for a slightly modified computation for
the Root Dispersion field. In NTP Version 3, this field includes an estimated jitter quantity based
on weighted absolute differences, while in NTP Version 4 this quantity is based on weighted root-
mean-square (RMS) differences.

An unauthenticated NTP packet includes only the NTP header, while an authenticated one con-
tains a MAC. The format and interpretation of the NTP Version 4 MAC is described in RFC-1305
[7] when using the Digital Encryption Standard (DES) algorithm operating in cipher block chain-
ing (CBC) node. While this algorithm and mode of operation is supported in NTP Version 4, the
DES algorithm has been removed from the standard software distribution and must be obtained

LIIVN|Mode| Stratum | Poll Interva]  Precision
Root Delay
Root Dispersion
Reference ldentifier

Reference Timestamp (64)

Originate Timestamp (64)

Receive Timestamp (64)

Transmit Timestamp (64)

Extension Field(s)

Key ID

Message Digest (128)

Figure 5. NTP Packet Header
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R | E | Flags]| Code | Length

Data

Figure 6. Extension Field Format

via other sources. The preferred replacement for NTP Version 4 is the Message Digest 5 (MD5)
algorithm, which is included in the distribution. The Message Digest field is 64 bits for DES-CBC
and 128 bits for MD5, while the Key ID field is 32 bits for either algorithm.

In NTP Version 4 one or more extension fields can be inserted after the NTP header and before
the MAC, which is always present when an extension field is present. Each extension field con-

tains a request or response message, which consists of a 16-bit Length field, an 8-bit Code field,
an 8-bit Flags field and a variable length Data field, all in network byte order, as shown in Figure

6.

There are two flag bits defined. Bit O is the Response flag (R) and bit 1 is the Error flag (E); the
other six bits are presently unused and should be set to 0. The Code field specifies the operation in
request and response messages. The length includes all octets in the extension field, including the
Length field itself. Each extension field is rounded up to the next multiple of 4 octets and the last
field rounded up to the next multiple of 8 octets. The extension fields can occur in any order; how-
ever, in some cases there is a preferred order which improves the protocol efficiency.

The presence of the MAC and extension fields in the packet is determined from the length of the
remaining area after the header to the end of the packet. The parser initializes a pointer just after
the header. If the length is not a multiple of 4, a format error has occurred and the packet is dis-
carded. If the length is zero the packet is not authenticated. If the length is 4 (1 word), the packet
is an error report resulting from a previous packet that failed the message digest check. The 4
octets are presently unused and should be set to O. If the length is 12 (3 words), a MAC (DES-
CBC) is present, but no extension field; if 20 (5 words), a MAC (MD5) is present, but no exten-
sion field; If the length is 8 (2 words) or 16 (4 words), the packet is discarded with a format error.

If the length is greater than 20 (5 words), one or more extension fields are present.

If an extension field is present, the parser examines the length field. If the length is less than 4 or
not a multiple of 4, a format error has occurred and the packet is discarded; otherwise, the parser
increments the pointer by this value. The parser now uses the same rules as above to determine
whether a MAC is present and/or another extension field. An additional implementation-depen-
dent test is necessary to ensure the pointer does not stray outside the buffer space occupied by the
packet.

In the most common protocol operations, a client sends a request to a server with an operation
code specified in the Code field and the R bit set to 0. Ordinarily, the client sets the E bit to O as

well, but may in future set it to 1 for some purpose. The server returns a response with the same
operation code in the Code field and the R bit set to 1. The server can also set the E bit to 1 in case
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0]0]Flags | Code | Length
Association 1D

Figure 7. Request Message Format

110 |Flags | 1] Length
Association 1D
Public Key Length

Public Key

Figure 8. Public Key Response Message Format

of error. However, it is not a protocol error to send an unsolicited response with no matching
request.

There are currently five request and six response messages. All request messages have the format
shown in Figure 7. The Association ID field is used to match a client request to a particular server
association. By convention, servers set the association ID in the response and clients include the
same value in requests. Also by convention, until a client has received a response from a server,
the client sets the Association ID field to 0. If for some reason the association ID value in a
request does not match the association ID of any mobilized association, the server returns the
request with both the R and E bits set to 1.

The following request and response messages have been defined.

9.1 Public Key (1)

A client sends the request in order to retrieve the server public key. This is most useful in debug-
ging, since ordinarily the public key is loaded from a local file. The response has the format
shown in Figure 8. Since the public key is a property of the server and not any particular associa-
tion, the association ID field for the request and response is 0. The public key format is defined in
the rsaref20 documentation, but with the key modulus (first 32-bit word) transmitted in network
byte order to facilitate interworking between the endian persuasion and word size peculiar to each
architecture.

9.2 Association ID (2)

This message is sent by a multicast server as an unsolicited response only; there is no correspond-
ing request message of this type. The response has the format shown in Figure 9. The Association
ID field contains the association ID of the server. This response is included in every packet sent
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110 |Flags | 2 | Length
Association 1D

Figure 9. Association ID Response Message Format

110 |Flags | 3 | Length
Association 1D
Timestamp
Cookie
Signature Length

Signature

Figure 10. Cookie Response Message Format

by a multicast server, except when a new key list is generated. There is no timestamp or signature
associated with this message.

9.3 Cookie (3)

A client sends the request to obtain the server cookie. The response has the format shown in Fig-
ure 10. Since there is no server association matching the client, the association ID field for the
request and response is 0. The Cookie field contains the cookie used in client/server modes. If the
server is not synchronized to an authenticated source, the Timestamp field contains O; otherwise,
it contains the NTP seconds when the cookie was computed and signed. The signature covers the
Timestamp and Cookie fields. If for some reason the cookie value is unavailable or the signing
operation fails, the Cookie field contains O and the extension field is truncated following this
field.

9.4 Autokey (4)

A multicast server or symmetric peer sends the request to obtain the autokey values. The response
has the format shown in Figure 11. The response is also sent unsolicited when the server or peer
generates a new key list. The Initial Sequence field contains the first key number in the current
key list and the Initial Key ID field contains the next key ID associated with that number. If the
server is not synchronized to an authenticated source, the Timestamp field contains O; otherwise,
it contains the NTP seconds when the key list was generated and signed. The signature covers the
Timestamp, Initial Sequence and Initial Key ID fields. If for some reason these values are unavail-
able or the signing operation fails, the Initial Sequence and Initial Key ID fields contain 0 and the
extension field is truncated following the Initial Key ID field.
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110 |Flags | 4 | Length
Association 1D
Timestamp
Initial Sequence
Initial Key ID
Signature Length

Signature

Figure 11. Autokey Response Message Format

110 |Flags | 5 | Length
Association 1D
Timestamp
Public Value Length

Public Value

Signature Length

Signature

Figure 12. Public Value Response Message Format

9.5 Public Value (5)

A symmetric peer uses the request and response to send the public value and signature to its peer.
The response has the format shown in Figure x. The Public Value field contains the Diffie-Hell-
man public value used to compute the agreed key. If the server is not synchronized to an authenti-
cated source, the Timestamp field contains O; otherwise, it contains the NTP seconds when the
public value was generated and signed. The signature covers the Timestamp, Public Value Length
and Public Value fields. If for some reason these values are unavailable or the signing operation
fails, the Public Value Length field contains O and the extension field is truncated following this
field.
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110 |Flags | 6 | Length
Association 1D
Timestamp
Host Name Length

Host Name

Signature Length

Signature

Figure 13. Host Name Response Message Format

9.6 Host Name (6)

A client uses the request to retrieve the host name and signature. The response has the format
shown in Figure 13. Since the host name is a property of the server and not any particular associa-
tion, the association ID field for the request and response is 0. The Host Name field contains the
host name string returned by the Unix gethostname() library function. If the server is not synchro-
nized to an authenticated source, the Timestamp field contains 0; otherwise, it contains the NTP
seconds when the public value was generated and signed. The signature covers the Timestamp,
Host Name Length and Host Name fields. If for some reason these values are unavailable or the
signing operation fails, the Host Name Length field contains 0 and the extension field is truncated
following this field.
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10. Appendix B. Public Key Distribution and Management

In the reference implementation the lifetimes of various cryptographic values are carefully man-
aged and frequently refreshed. While permanent keys have lifetimes that expire only when manu-
ally revoked, autokeys have a lifetime specified at the time of generation. When generating a key
list for an association, the lifetime of each autokey is set to expire one poll interval later than it is
scheduled to be used. Ordinarily, key lists are regenerated and signed about once per hour and
Diffie-Hellman public values and other private values are refreshed and signed about once per
day. The protocol design is specially tailored to make a smooth transition when these values are
refreshed and to avoid vulnerabilities due to clogging and replay attacks while refreshment is in
progress.

In the reference implementation, autokey key management is handled in much the same way as in
the ssh facility. A set of public and private keys and agreement parameters are generated by a util-
ity program designed for this purpose. From these data the program generates four files, one con-
taining random DES/MD5 private keys, which are not used in the autokey scheme, another
containing the RSA private key, a third the RSA public key, and a fourth the Diffie-Hellman
parameters. All files are based on random strings seeded by the system clock at the time of gener-
ation and are in printable ASCII format with base-64 encoding. The name of each file includes a
timestamp in NTP seconds in order to handle key changeovers in an orderly way.

When a server or client first initializes, it loads the RSA public/private key files and the Diffie-
Hellman parameter file. It then computes the Diffie-Hellman public value and signature; however,
since at this time the clock has not yet synchronized, the signature timestamp is invalid (0). When
the clock is first synchronized, it recomputes the public value and signature with valid timestamp.

In the current management model, the four files are generated on each machine separately and the
private key obscured. The set of public key files for a community of users is copied to all of those
users, while one of the parameter files is selected and copied to all users. These files completely
define the security community and the servers configured for each client. In multicast client and
symmetric passive modes the identity of a particular server may not be known in advance, so the
protocol obtains and verifies the host name directly from the server and loads the public key file
associated with that name. Ultimately, these procedures will be automated using public certifi-
cates retrieved from secure directory services.

Unlike ssh, where the client must be securely identified to the server, in NTP the server must be
securely identified to the client. In ssh each different interface address can be bound to a different
name as returned by a reverse-DNS query. In this design separate public/private key pairs are
required for each interface address with a distinct name. In the NTP design the canonical host
name, as returned by the gethostname() library function, represents all interface addresses. Since
at least in some host configurations the canonical name may not be identifiable in a DNS query,
the name must be either configured in advance or obtained directly from the server using the
autokey protocol.
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