THE UNIVERSITY OF MICHIGAN

Memorandum

RAMP: A PDP-8 MULTIPROGRAMMING SYSTEM
FOR REAL-TIME DEVICE CONTROL

David Mills

CONCOMP: Research in Conversational Use of Computers
F. H. Westeryelt, Director
ORA Project 07449

supported by:
DEPARTMENT OF DEFENSE
ADVANCED RESEARCH PROJECTS AGENCY
WASHINGTON, D. C.

CONTRACT NO. DA-49-083 OSA-3050
ARPA ORDER NO. 716

administered through:
OFFICE OF RESEARCH ADMINISTRATION, ANN ARBOR

May 1967

TABLE OF CONTENTS

INTRODUCTION. .. .coeeeeenns ceesee e creceeresa e
GENERAL ORGANIZATION....eveeeues ceeens ceeecean e
PART I: THE BASIC SYSTEM NUCLEUS..... e e e
INTERRUPT IDENTIFIER. .. eeeteeeocennnnoans
INTERRUPT ROUTINES..... .ttt eeeeeecnnanns
BUFFER MANAGEMENT ROUTINES..... scscass s
TASK-SWITCHING PROCESSOR .. cetceeecesnsscns
UTILITY ROUTINES........... Ceee et ees e

PART TII:

PART ITII:
APPENDIX:

COMMAND-LANGUAGE INTERPRETER..............
APPLICATIONS . ittt eeenessonsoanosssoassas
BASIC SYSTEM EXTENSIONS FOR DEVICE CONTROL

DEVICE INTERFACE ...ttt eeeeeeeeeoccncnnnns
FILE STRUCTURES...... S et et s et ec et ess e
COMMAND EXTENSIONS .. vieeeeeeeeecncsansacns
MECHANICS OF RAMP....... e et et c e e

iii

Page

o &= W W NN N =

I I e i i e
W W o O U W

RAMP: A PDP-8 MULTIPROGRAMMING SYSTEM
FOR REAL-TIME DEVICE CONTROL

INTRODUCTION

The following sections describe the organization
of a PDP-8 multiprogramming system that provides real-time
device control and task-switching operations. The system,
called RAMP* for convenience here, operates under interrupt
control using integral task queue and buffer management rou-
tines. A simple command language is implemented, which pro-
vides control over both debugging and normal operational
procedures and operates entirely within the system. The
system has been adapted to a number of device-control appli-
cations including those of large-scale audio and data cir-
cuit switching, and computer-driven cathode ray display su-
pervision.

The techniques used are believed to represent a
good compromise between the large memory requirements of a
full-scale general multiprogramming system and a more spe-
cialized system tailored for faster but more restricted opera-
tion. Some of these techniques may seem a little strange to
conventional multiprogramming practice and for this reason are

described in greater detail below.

GENERAL ORGANIZATION

The principal components of the basic RAMP system

include:

1. An interrupt identifier that identifies the de-

vice causing an interrupt and calls the appropriate subroutine;

* Random Access Multiple Program, from the system by the

same name for which this program was originally written.

-2-

2. a set of interrupt routines that services the
device causing an interrupt and transmits data between the
device and an attached buffer;

3. a set of buffer management routines that ser-
vices the buffers attached to the keyboard, printer, and
other special devices;

4. a task-switching processor that maintains a
queue of active tasks and executes each as required;

5. a set of utility routines for keyboard and
printer character formatting and conversion; and

6. a command language interpreter that decodes

system commands entered via the teletype keyboard.

The basic RAMP system, described in Part I of
this report, provides a nucleus around which dependent sub-
systems can be constructed. This organization is so arranged
that additional operations can be entered in the system rather
conveniently. A particularly wuseful operation involves data
transmission between two or more devices attached to the PDP-
8 or between two or more PDP-8 RAMP systems connected by
some kind of data set. Part II of this report describes the
extensions to the basic nucleus which make these operations

possible.

PART I: THE BASIC SYSTEM NUCLEUS

INTERRUPT IDENTIFIER

When the PDP-8 interrupt system 1is enabled, a de-
vice request for service causes a forced JUMS instruction to
location 0 in memory. Following conventional practice, the
source of the interrupt is identified by IOT-skips directed
toward each device in turn, starting with that assigned the

highest priority. When the device 1s identified, a JMS 1is

-3-

entered to a subroutine that services the device and clears
the interrupt signal at the device. When all such devices
are serviced, control is returned to the interrupted program.
Temporary storage for the Link and Accumulator contents is
provided by the interrupt identifier routine, which also
services the parity error and power failure/automatic re-

start facilities.

INTERRUPT ROUTINES

Each interrupt routine typically services one de-
vice such as, for example, the keyboard or the printer. A
class of devices with similar characteristics may be serviced
with a single interrupt routine by providing each device with
a block of control information that is accessed by all trans-
mission routines serving the device. A table of such unit-
control blocks (UCB's) may be constructed in such a way as to
provide a computable mapping between the device number of the
Class requesting service and the location of its UCB entry in
the table. 1In any case, the service requirements of the de-
vVice must be satisfied by the interrupt routine before it re-
turns control to the interrupt identifier. This includes
transmitting its data, clearing its interrupt flag, and en-
abling it to receive or transmit any additional data. For the
purposes of data transmission, a set of buffer-management
routines is provided (see next section). Throughout the in-
terrupt identifier and interrupt routines, the interrupt

system must be disabled.

BUFFER MANAGEMENT ROUTINES

Each cyclic buffer region allocated for use by the
system is associated with a five-word buffer control block

(BCB) that contains the following information:

-4-

1. a pointer to information inbound to the buffer,

2. a pointer for information outbound from the
buffer,

3. a flag used to determine whether the buffer
1s empty, full, or has "wrapped around,"

4, a pointer to the first word of the allocated
buffer storage, and

5. a constant equal to the size of the storage
allocated.

The BCB entries are automatically maintained by the buffer
management routines and are not normally modified by the call-
ing programs.

Transmission to and from a buffer is on a first-in
first-out character-by-character basis. In order to conserve
storage, the buffers are organized in a cyclic fashion; thus
the characters stored are not necessarily in sequence in
memory. Routines for storing (PUT), fetching (GET), and
backspacing (BKSP - deletes last character stored) buffer
entries are provided. Each of these routines expects a call-
ing sequence with the character in the Accumulator at entry or
return, as appropriate, and with a pointer to the appropriate
BCB as an argument immediately following the calling JMS. Re-
turn to the calling sequence is either immediately following
the argument or the next location following this, depending
upon the overflow/underflow status of the buffer, Since these
routines may be called by interrupt routines, all calling se-

quences must disable the interrupt system before entry.

TASK-SWITCHING PROCESSOR

Multiprogrammed operations are sustained by the TASK
and INSERT routines in conjunction with the task queue, which

itself is stored in a cyclic buffer. Each block of machine

-5-

code which may operate asynchronously with other such blocks

is termed a task and obeys certain interface criteria within

the system. Although each task monopolizes processing facil-
ities when it is active, an appropriate hierarchical organi-
zation built among its dependent daughter tasks allows exe-
cution of other tasks when the mother task must wait for some
asynchronous event. The system behavior then appears to be
one in which many sequentially executing tasks proceed simul-
taneously. |

The manner in which this multiprogramming operation
is done is controlled by an entity called the Task Control
Block (TCB). Each TCB consists of three words:

l. a pointer to the entry point of a task to be
executed,

2. a return pointer to the calling task,

3. an optional argument which may be used to trans-

mit information between the calling and called tasks.

Each time the TASK or INSERT routine is called, a TCB 1is con-
structed of its arguments and placed in a buffer on a first-in
first-out queue. The TASK routine, in addition to this opera-
tion, fetches the next TCB from this queue and prepares to
enter the task identified by the entry-point pointer of the
TCB. The INSERT routine may also be called by an interrupt
routine, allowing tasks to be entered from this source.

Each task itself is written very much like an or-
dinary subroutine, that is, it expects the return pointer
to be stored as the first word at the entry point with exe-
cution beginning at the second word. When the task is entered
from the task-switching processor, the TCB for the task be-
comes formally active and is stored in page zero for access by
that task. Both the calling argument and the return pointer

are available in the active TCB on entry. If a task is written

so that it returns directly to the task-switching processor
(see below) rather than to a calling task, then the return
pointer may be used as a second calling argument. A return
argument may be stored in the TCB on exit for use by the call-
ing task.

A task may invoke a daughter task in either of two
ways. If the task calls INSERT (with the interrupt system
disabled), then a TCB for the daughter task is appended to
the task queue and return is made immediately to the call-
ing task. If the task calls TASK, then a TCB for the daughter
task is appended to the task queue and the next TCB in the

task queue becomes the active TCB. Return to the calling task
is made only when the daughter task exits through its return

pointer.
In order to avoid the use of re-entrant code (which

is rather awkward to construct for a machine without an index
register), where possible a convention is adopted that assigns
a dynamic "re-enterability attribute" to every task in the
system. If the entry point of a task is nonzero, then the
task-switching processor will not allow a TCB pointing to

this task to become active, but will immediately put the TCB
at the end of the queue and fetch the next one. Thus if an
active mother task sets up information prior to invoking a
daughter task, that information is protected from being tam-
pered with by a third task which seeks to enter the mother task
while the daughter task is waiting on the queue. This inter-
lock must be explicitly removed by the mother task before
exit. In particular, if the mother task is indeed re-entrant,
then the interlock can be removed by an appropriate DCA as the
first executable instruction of the task. If the mother task
may not be entered at any time during its active life, then a
simple exit linkage can be used which saves the return pointer
(stored at the entry point by the task-switching processor),
stores a zero at the entry point, and then exits via the

saved return pointer.

-7-

A task may exit in any of three ways. First, 1if
during the execution of the task a temporary delay condition
(such as a buffer overflow condition) exists which precludes
its immediate progress, and furthermore if it is re-entrant
up to this point, then it can exit through the return pointer
BUSY. Such an action causes the task-switching processor to
put the active TCB at the end of the queue and to fetch the
next TCB. When the TCB for the task in question next appears
as the active TCB, then the temporary delay condition can be
tested and acted upon again. Second, if the task has no mean-
ingful return pointer, and in particular if the TCB for the
task has been created by an interrupt routine using the INSERT
routine, then it can exit through the return pointer DELETE.
Such an action simply deletes the active TCB and fetches the
next TCB from the queue. Third, and in the general case, 1t
may exit through the return pointer TSKLNK, which is one of
the active TCB entries and is identical to the return pointer
stored at the task-entry point by the task-switching processor
upon entry to the active task. Such an action returns control
to the mother task that invoked the active task.

The operation of the task-switching processor 1is
shown in flow-chart form in Figure 1. The normal idling path,
when no tasks are active or in the task queue, is the one-box
loop beginning at DELETE. During this loop, the interrupt
system is toggled so that a task may be entered on the queue
by an interrupt routine using INSERT. The INSERT routine it-
self duplicates the operation of TASK from the entry point
down to the level labeled DELETE. At this point INSERT re-
turns to the calling program. Once a task has been entered
on the task queue, the test immediately below DELETE falls
through and the task is entered if possible. Note that if
the task queue overflows, a TCB may be lost; and, furthermore,
that the lost TCB may be due either to an INSERT or a TASK

operation. In such a case, which should seldom if ever occur

INTERRUPTS MASKED

INTERRUPTS MASKED

S

MAKE TCB
FROM ARGS

BUSY

COPY TCB
TO TASK Q

| DELETE

TSKACT
TSKLNK
TSKARG

HE

o

YES

NO

COPY TCB
FROM TASK Q

N\

CALLED TASK

BUSY RETURN DELETE

Figure 1.

PARAM
ENTRY (JMS)
AC

CALLING SEQUENCE

'TAD TEKARG
JMS TASK
DC TSKACT

INTERRUPT-INSERTED
TASKS MAY ENTER HERE

Task Switching.

-9-

in a well-written system, certain non-re-entrant mother tasks
may be locked out of the system for failure of a daughter
task to return.

UTILITY ROUTINES

Certain often-used utility routines have been in-
cluded within the system. These routines include those for
single-character transmission between the processor and the
attached keyboard/printer, as well as a set of formatting
routines that read and print trimmed-ASCII strings and four-
digit octal numbers. These routines are used by the debugging
tasks and the command-language interpreter but may be used by
other tasks embedded in the system as well.

Since the printer formatting routines are not re-
entrant and since they call on each other, they must be re-
served as a group by the task TPRSEL. A calling task thus
first calls TPRSEL, at which point it is delayed until the
line currently being printed is sent a carriage-return code.
At this point an interlock is removed and any pending TPRSEL
task in the task queue has the chance to set the interlock
again and fall through to its mother task, which now has
seized the printer routines and may call them via a simple
JMS. Once the mother task calls upon the routine CRLF, the
printer routines are automatically released for seizure by
other pending TPRSEL tasks. This organization prevents lock-
out of the system by a task that prints a large number of
lines.

A corresponding interlock is placed in the key-
board conversion routines and is automatically maintained by
thé command language interpreter task CMMD (see below). This
organization prevents a daughter task of CMMD reading more

than one keyboard line at a time.

-10-

In addition to the keyboard and printer transmis-
sion and formatting routines, interrupt routines for these
devices are included in the system. Since the use of the
keyboard and printer is intended to be as a control and de-
bugging console, the interrupt routines are tailored primari-
ly for conversational operation and not for program loading
or punching. In particular, inbound characters typed at the
keyboard are checked for character-delete (back-arrow) and
line-delete (rubout) codes and the indicated action taken.
Furthermore, characters typed in are echoed or repeated to
the operator on the printer. The echoing process is inter-
locked so. that if the system is already printing a message
on the printer, then the echo line typed at the keyboard is
delayed until the printer has processed the next carriage-
return code. This organization makes it feasible to "bang
away" at the keyboard, no matter what is going on at the
printer, and in particular to stop a runaway task that has
seized the printer routines. Note that a line-feed code is
generated automatically by the printer interrupt processor
following a carriage return and therefore does not appear
anywhere in the system except at this point.

An optional package of utility routines can be in-
cluded in the system. This package contains the interrupt
routines and buffering tasks for high-speed tape reader/
punch equipment. These routines are multiprogrammed along
with the rest of the system and may be used to transmit
program or data tapes to and from the system. All character
codes may be punched and all character codes except the XOFF
code (ASCII 223) may be read from tape. The XOFF character is
usually punched at the end of a program or data tape and is
used to stop the reader.

The reader routines are provided with two options:
in the first option, the reader routines will always attempt

to keep the reader buffer full but will require the reader

-11-

to fetch characters on a demand basis; in the second option,
the reader will completely fill the reader buffer and will
then wait until the buffer is empty before restarting to
fill the buffer. The first option provides faster through-
put for the reader routines but requires a PC0l reader; the
second option allows the reader to operate in a burst-type

‘block mode and is appropriate for use with older readers.

COMMAND-LANGUAGE INTERPRETER

The interface between the operator and the system
is provided by the command-language interpreter task (CMMD).
This task 1s inserted at every carriage-return detected in
the keyboard text by the keyboard interrupt routine. The
CMMD task decodes the command name entered by the operator
and calls upon the various segments that decompose the re-
mainder of the line and perform the actions required. If
the action can be completed immediately, then the appropri-
ate routines or tasks are called directly from the CMMD task.
If the action involves an indefinite delay, such as dump-
ing all of core or copying a tape, then the CMMD task 1in-
serts the appropriate task in the queue for later processing.
In any case, each of the segments of CMMD exit in such a
way that all unread text in the keyboard line is deleted
before the CMMD task is itself declared not busy and exited.

Each command name consists of an indefinite number
of characters, the first and last of which are looked up in
an index that points to the appropriate segement of CMMD.
Each of these segments may call upon the keyboard formatting
routines for command parameters. In these routines, control
characters (non-printing) are ignored; and, in general, non-
alphanumeric codes are treated as break characters. Several
such CMMD segments are included within the system, and others
may be added easily. Those included deal with basic control

and debugging functions and are summarized below:

-12-

DUMP (DP). Dump regions of memory in an octal format,
eight words per line, prefixed by the location of the
first word. If a single argument is given, then the
word at the argument location is printed. If two ar-
guments are given, then the block of memory between

(and including) the argument locations is printed.

ALTER (AR). Store words in an octal format in memory.
The storing operation is begun at the first argument
location and continues for as many arguments as given,
each argument being stored in ascending locations in
memory. It is possible to modify any part of the
system using the ALTER command; and, in particular, it
is convenient to load short tapes of overrides via the

keyboard tape reader.

RESET (RT). Immediately kills the system by drying up
the task queue and voiding the keyboard and printer buf-
fers. All outstanding tasks are "unbusied" by storing

a zero at their entry points, using a dictionary table.
It is possible to extend the list of buffers that are
voided and to add to the reset dictionary to provide re-

set control for other tasks appended to the system.

TASK (TK). Insert (via INSERT) a task on the task queue.
The first argument is the entry point of the task and
the second is an optional argument to be passed to it,
both in octal format. A task so invoked should exit
only through the BUSY or DELETE return pointers, since
the return pointer of a task inserted by the INSERT

routine is not defined.

HELLO (HO). Prints a message as to the system maintenance

level and version number.

HSR (HR). Start high-speed tape reader. The reader
will fetch characters as required until an XOFF char-

acter is read. This command requires both the

-13-

appropriate hardware and the service package described

above under Utility Routines.

Other segments, when defined for the purpose of
device control and task initiation, are expected to possess
unique command names. If an unrecognizable command is de-
coded by the CMMD task, a diagnostic message is printed and
the keyboard line deleted.

APPLICATIONS

From the nucleus of the basic system described,
several complete systems for specialized real-time applica-
tions have been constructed. In one of these, which in
fact inspired the construction of the system itself, the
environment includes a number of electronic switches used
to connect audio program sources to various listening posi-
tions where the listeners have real-time control over the
selection of the program source (tape recorder) and the man-
ner in which the source operates. The system 1is used to
queue input information transmitted by each listener's con-
sole and to supervise the operation of the program source.
In addition, each listener may record short utterances on
special tape recorders that are seized on a demand basis
by the system and attached to a particular listener's con-
sole. Each listener console and each tape recorder 1is
attached as a separate device to a special scanning unit
that helps i1identify the particular device requesting service.
Up to 256 such devices are planned for this system, which
currently includes 31, and each device may request service
at up to ten times per second.

In a second application, the system has been used
1n a developmental processor for use in message switching,

data formatting, and device control for remote terminal

-14-

devices to be attached to a large time-shared computing
system. A high-speed interface between the parent computer
(IBM System/360 Model 67) and the PDP-8 has been constructed
along with a special set of interfaces to a variety of data
transmission equipment, including Western Electric 103, 201,
403, and 801 data sets operating at rates to 2000 bits per
second. The system translates the various character sets
used on remote terminals serviced by these data sets to the
System/360 internal character codes, formats the message
lines when appropriate, computes and checks message parity,
and supervises the attachment of the various dial-up tele-
phone lines connected to the data sets. Throughput in this
application is at average rates to 10,000 bits per second
and peak rates to 500,000 bits per second. Up to 64 data
sets may be attached, each of which services a bidirectional
transmission circuit, together with a high-speed paper

tape reader/punch.

PART II:
BASIC SYSTEM EXTENSIONS FOR DEVICE CONTROL

The basic system nucleus described in Part I of
this report includes support for the on-line teletype con-
sole and an optional high-speed paper tape reader/punch.
The extensions to the basic system described below provide
a mechanism for device and file maintenance and for data
transmission between these devices and files and between
the PDP-8 RAMP system and other machines using the appro-
priate data set transmission circuits. Transmission between
the PDP-8 RAMP system and other machines 1s appropriate at
any of several transmission rates using interface equipment
specially designed for this purpose and described separate-

ly. The discussion below summarizes:

-15-

1. the device interface,
2. file structure, and

3. command extensions.

DEVICE INTERFACE

All input/output devices available to the RAMP
system are identified by a unique logical device number
(LDN) . The devices in the system are assigned a contig-
uous set of these numbers starting at zero, so that an
input device 1s assigned an even number and the most close-
ly associated output device is assigned the subsequent odd
number. Thus the on line keyboard may be assigned LDN 20
and the on-line teleprinter LDN 21.

Any task calling for input from or output to a
device references one of these LDN's as appropriate. Only
one task may attach an LDN at any time, during which the
device 1s busy to all other tasks. Some tasks attach and
LDN for the duration ofa print line and release it at the
end-of-line (carriage-return) code, while others attach an
LDN for the duration of an entire file and release it only
at an end-of-file code. Any task attempting to attach a
busy input device 1s immediately aborted with an appropriate
comment. Any task that attempts to attach a busy output de-
vice 1s placed in a wait condition pending release of the
device by 1ts supervisory task.

Associated with each LDN is a two-word entry in
the Device Control Block (DCB) Table. These DCB entries,
ordered by their LDN's, contain as the first word a pointer
to a task that transmits a single character to or from the
device as appropriate, and as the second word a switch. If
this switch is zero, the device is available; if the switch
is nonzero, the device is busy. The attaching task may use
this switch for storage of temporary information, in parti-
cular LDN's of other attached devices, provided of course

the values are nonzero.

-16-

By convention, each active and dormant task in
the system has associated with it a source LDN and a sink
LDN. These are packed in a single word (TSKDCB) which is
part of the TCB for the task. This word, called the active
DCB, 1s created when a task is inserted (by calling INSERT)
and is propagated to all its daughter tasks. Any input/
output operations specified by a task reference the active
DCB for the task. The individual tasks are then responsible

for the allocation of the devices themselves.

FILE STRUCTURES

All command/copy file operations reference a
logical file as a unit and involve character transmission
from one device to another. The source and sink involved
are identified by the active DCB when a command/copy file
operation 1s initiated by a task. The DCB for the initiat-
ing task, on the other hand, is called the master DCB.

After initiating a command/copy operation, the initiating
task stores the master DCB in the DCB table entry associated
with the source device for the command/copy operation, thus
reserving the source device for the duration of the operation.
When a logical end-of-file is read from a source device, that
device is released and a comment is written on the master
sink device. The end-of-file indication is not transmitted
to the sink device by the command/copy operation.

Two types of files may be distinguished: the
copy file and the command file. The copy file consists of
an arbitrary stream of characters that are transmitted from
the active source device to the active sink device. The
file is ended by an end-of-file character, which of course
may not be part of any transmitted file. The command file
consists of a stream of command lines to the command-lan-

guage interpreter separated by carriage-return codes and

-17-

ended by the END command. 1In this case, commands are inter-
preted from the active source device, and any output gener-
ated i1s transmitted to the active sink device.

Both the copy and command file operations operate
asynchronously in a multiprogrammed fashion. However, sep-
arate copy operations may proceed in parallel for any number
of devices in the system, while the command operation must
proceed for only one source device at a time. Thus if a
copy operation for a particular pair of devices must be de-
layed for a transmission operation, this delay does not af-
fect copy operations outstanding for other pairs of devices.
On the other hand, if a command operation must be delayed
for a transmission operation, for example for a sink device
to become available, then the entire command language in-
terpreter is interlocked for this delay.

A special file behavior is specified for certain
types of devices such as the online keyboard. Such devices
operate slowly or at manual rates and may remain idle for
some time until a command line is ended. On the other hand,
such devices may transmit files of an indefinite length
which would overflow any fixed-size buffer in the system.
Accordingly, a dual behavior is specified for such devices:
a latent state, in which the device buffers characters in
real time until a carriage-return code is read; and the
other, an active state in which characters are read from
the receive buffer immediately as they become available.

The latent state is typical of command operations in which

the keyboard is used intermittently and is characterized by
a low 1dling demand on the system processing resources. The
active state is typical of both copy and command operations
in which the active source device runs continuously, and is
characterized by a moderate idling demand, but a faster re-

sponse time.

-18-

The selection of the state under which a particular
device is currently operating is made by the cony/command
file routines. When either a copy or command file operation
is initiated involving a particular active source device,
then that device is place in the active state. Once a log-
ical end-of-file is transmitted from a source device, that
device reverts to the latent state.

When devices such as the online keyboard are in
the latent state, characters transmitted from the device are
stored 1n a dedicated buffer in real time. Line-editing
functions such as character and line delete are performed
in this real-time operation. When a carriage-return code
is read from the source device, a command language inter-
preter task 1is inserted in the task queue, which in turn
causes the CLI to read the edited buffer via the appropriate
daughter task.

If a command file operation is outstanding against
a particular source device, then that device is in the
active state. Under these conditions the appropriate CLI
daughter task reads characters from the source device buffer
as they become available in the buffer, and no line-editing

operation 1is possible.

COMMAND EXTENSIONS

Five commands are added to the basic system nucle-
us with the addition of the command/copy operations. These
are ECHO, COPY, EOF, COMMAND, and END. Some of these com-
mands may have logical device numbers as arguments. The
devices for which service is provided in the basic system
include the online keyboard and teleprinter, the high-speed
paper tape reader and punch, an internal utility file,
and an internal dummy file. Service routines for the online

keyboard and teleprinter and high-speed paper tape reader

-19-

and punch are described in Part I. Those for the two internal
files are discussed immediately below.

The internal utility file consists of a first-in
first-out buffer in core memory and a set of read-write tasks
that interface with the system in the same manner as an input/
output device. Information may be written into or read from
the file by any operation that specifies the appropriate LDN.
Overflows and underflows of the buffer will interlock the
calling operation until the condition is cleared by another
operation that transmits to or from the file as appropriate.
The dummy internal file is intended as a "wastebasket" for
garbage files. It serves as an infinite sink for write opera-
tions and as an infinite source of end-of-file characters for
read operations.

Descriptions of the system commands follow in an
Appendix. Note that the copy/command extensions to the basic
system involve certain implications to the basic commands
outlined in Part I. In particular, the DISPLAY and TASK com-
mands will produce output on the master sink device as spe-
cified in the DCB supplied when the CLI task was created.

In the case of the online keyboard operating in the latent
state as the master source, the master sink is assigned as
the online teleprinter. No other devices serviced by the

basic system are operated in the latent state.

PART III:
MECHANICS OF RAMP

The current version of the basic system nucleus
of RAMP is assigned Version 12, while that including the
copy/command operations, the high-speed papertape reader and
punch, and the internal files is assigned Version 14. Opera-
tion and implementation information below 1s 1in reference
to these versions, which will be referred to as simply 12

and 14 respectively.

-20-
Both 12 and 14 exist physically in three forms:

1. as symbolic source cards for 8SS, an assembler/
simulater system for the PDP-8 and PDP-8S machines that is re-
sident in the 7090 UMES operating system at the University of
Michigan.

2. as binary object cards produced by 8SS; and

3. as a BIN object tape suitable for loading in

the PDP-8 using the standard routines.

The source and object cards are handled using conventional
batch-processing procedures by the IBM 7090 - System 360
Model 67 complex. The transcription of the object cards to
punched tape is handled using the MTS system on the 360/67
and the facilities of the attached Data Concentrator, itself
using a version of RAMP. Since both 12 and 14 run to well
over 1000 source cards, the fast bulk I/O facilities of the
360/67 make this somewhat roundabout approach much more con-
venient than assembly using conventional DEC systems.

Both 12 and 14 have been carefully written to avoid
use of special features of the 8SS assembler, notably use of
macros and literals. A 7090-resident program has been written
which, in conjunction with the 360/67 and the Data Concentrator,
can be used to transcribe 8SS source cards to ASCII punched
tape suitable for PAL-III processing. It is not recommended
to process such a tape using slow-speed teletype input/output
equipment. (It would take about four hours to make one pass
over the source tape of some 150,000 characters!)

The program, once loaded, is started at location
zero. A program loop through the task-scheduling routines
about locations 400-600 is the normal idling path for the
system. (A convenient thermometer for system environmental
loading is the variable TSKCNT, which contains the number of
dormant tasks on the task queue and may be displayed in a con-

veniently indicated register such as the MQ or a device register).

-21-

Commands may be entered in the system at any time
from the keyboard. A line may be erased before it is entered
by pressing the RUBOUT key, and one cr more characters may
be erased by pressing the #— key the appropriate number of
times. The character codes for both of these operations can
be changed by assembly parameters.

Once entered in the system, a command proceeds to
completion. The system may be “dried up” at any time, how-
ever, by use of the RESET command. The command language in-
terpreter must of course be free to accept this command. 1In
any case, 1f the CLI is interlocked, starting the program at
location CMDRSX will accomplish the same function as the RESET
command. (Following this procedure, the RUBOUT key should be
pressed to clear the keyboard buffer.) Input/output devices
will complete real-time operations such as emptying output
buffers, but input buffers and device assignments will remain
unchanged after the RESET has become effective. For this
reason, 1t may be necessary to store zeros in the DCB table
{(starting at DCBTBL) entries associated with the active de-
vices using the manual controls of the machine. This procedure
1s necessary only when devices malfunction or a conflicting com-

mand/ccpy device assignment has been made.

Both 12 and 14 include service for both automatic
restart and parity check options on the PDP-8. The automatic
restart option 1s particularly useful in data transmission cir-
cuits where circuit configuration and device assignment are
difficult to reestablish after a power failure due, say, to
seasonal thunderstorms. The parity check option is standard
on the PDP-8S; when included in a RAMP version the operation
definition for SMP (skip on no memory parity error) is changed
from 7401(v ~cnditional skip) to 6101. No change is necessary
in any case to the automatic restart code.

The basic nucleus occupies five pages in addition
to about half of page zero. About three additional pages are

necessary for the copy/command file routines, which include

-22-

the service routines for the high-speed reader. Both of
these figures include single-line buffers for the keyboard
teleprinter, high-speed tape reader, and high-speed tape
punch. The task-switching time on a PDP-8 with a single
dormant task in the task queue is about 350 us. This

figure represents the setup time for any task in the system,
whether 1t is in fact entered or not. It also represents
the approximate time to enter a new task in the system
(using INSERT) or to call a daughter task (using TASK).

DUMP (DP).

ALTER (AR).

RESET (RT).

TASK (TK).

HELLO (HO).

APPENDIX

COPY MODULE COMMANDS FOR RAMP

Dump regions of memory in an octal format, eight
words per line, prefixed by the location of the
first word. If a single argument is given, then
the word at the argument location is printed. If
two arguments are given, then the block of memory
between (and including)the argument locations is
printed.
Store words in an octal format in memory. The
storing operation is begun at the first argument
location and continues for as many arguments as
given, each argument being stored in ascending
locations in memory. It is possible to modify
any part of the system using the ALTER command;
and, in particular, it is convenient to load short
tapes of overrides via the keyboard tape reader.
Immediately kills the system by drying up the task
queue and voiding the keyboard and printer buffers.
All outstanding tasks are “unbusied" by storing a
zero at their entry points, using a dictionary
table. It is possible to extend the list of buf-
fers that are voided and to add to the reset dic-
tionary to provide reset control for other tasks
appended to the system.
Insert (via INSERT) a task on the task queue. The
first argument is the entry point of the task and
the second is an optional argument to be passed
to it, both in octal format. A task so invoked
should exit only through the BUSY or DELETE re-
turn pointers, since the return pointer of a task
inserted by the INSERT routine is not defined.
Prints a message as to the system maintenance
level and version number.

-23-

-24-

HSR(HR). Start high-speed tape reader. The reader will fetch
characters as required until an XOFF character is
read. This command requires both the appropriate
hardware and.the service package described above
under Utility Routines.

ECHO. Transmit all characters on this line after the single
argument to the sink device identified as the argu-
ment.

EOF. Transmit an EOF character to the sink device identi-
fied as the argument.

COPY. Copy characters from the source device identified
as the first argument to the sink device identified
as the second argument until an EOF character is
read from the source device. The EOF character is
not transmitted to the sink device.

COMMAND. Interpret characters read from the source device
identified as the first argument as a command file
to the command language interpreter. Output gener-
ated will be transmitted to the sink device identi-
fied as the second argument. The command file is

terminated by an 'END' command.

IINIINI\WHIM\IﬂHﬂIIUNIHIINIHHIIHNIHINIHIUI

3 9015 03483 8014

