T H E UNIVERSITY 0O F MICHTIGAN

Memorandum 17

PDP-8 PROGRAM RELOCATION:
CONCEPTS AND FACILITIES

D. L. Mills
and
V. M. Powers

CONCOMP: Research in Conversational Use of Computers
F. H. Westervelt, Project Director
ORA Project 07449

supported by:
ADVANCED RESEARCH PROJECTS AGENCY

DEPARTMENT OF DEFENSE
WASHINGTON, D.C.

CONTRACT NO. DA-49-083 O0SA-3050
ARPA ORDER NO. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

February 1968

TABLE OF CONTENTS

1. Basic Concepts
1.1 Object File Structure
1.2 Loading Operations

2. Functional System Components
2.1 Relocating Assembler
2.2 Link Editor
2.3 PDP-8 Loader

Appendix A - Card Formats

Appendix B - Paper Tape Formats

iii

13

16

19

22

PDP-8 PROGRAM RELOCATION:

CONCEPTS AND FACILITIES

This memorandum describes a method for segmenting
PDP-8 programs for the purpose of facilitating program main-
tenance and residence in MTS (Michigan Terminal System) files.
The method provides for program storage on a page-relocatable
basis with relocation information contiguous to but not neces-
sarily integral with text information. Linkages between
separately assembled program segments are provided in a form
very similar to those used in IBM System/360 systems.

Currently available utilities within MTS provide
assembly and link-editing facilities, using programs stored
either as punched card decks or in MTS files. Utilities are
also included for the purpose of paper tape transcription
either in PAL-compatible format or in a special format useful
for dynamic loading via a data link to a remote machine. In
addition to these MTS utilities, two relocating PDP-8 loaders
are available which operate using the special dynamic-loading
format. Each of these programs occupies one dedicated page
of PDP-8 memory and operates in a multi-core-bank environment.
One of these programs is designed to operate as a stand-alone
utility, while the other is designed to operate within the

RAMP system.*

* Mills, D. RAMP: A PDP-8 Multiprogramming System for Real-Time
Device Control, Concomp Project Memorandum 5, University
of Michigan, Ann Arbor, May 1967, 24 pp.

Mills, D. I/0 Extensions to RAMP, Concomp Project Memorandum
11, University of Michigan, Ann Arbor, October 1967, 32 pp.

1. Basic Concepts

A control section (CSECT) is a contiguous block of

assembled instructions and/or data. Its length may be from
zero to 4096 words, and its starting address may be at any
address in any core bank. However, its ending address must

be in the same core bank. A CSECT containing instructions most
likely (but not necessarily) will begin on a page boundary

and extend not over a page in length. A CSECT containing

only data or indirectly referenced storage most likely will

not be constrained in this manner. A module is an assembly
containing one or more CSECTs or the output of a link-edit
procedure (described below) in which a number of assemblies

are involved. If any of the constituent assemblies of a module
contain external references to symbols defined in other assem-
blies, then the CSECTs defining these symbols are assumed to

1oh a1 ma

be sent in the module. Although a modulc may o

L
pres A T may not

may no
represent a complete operable program, it does represent the
smallest program structure which can be loaded by name from
system residence, either locally or via a data set.

Each CSECT in a module is assumed to be rather ar-
bitrarily located relative to other CSECTs in the machine.
Special external symbol dictionary (ESD) cards produced by the
MTS assembler define the origin, length, and optionally the
name of each CSECT. Linkages between these CSECTs are main-

tained in the usual fashion using address constants (adcons)

and indirect-accesses. Relocation information, provided only
for the adcons themselves, is produced by the MTS assembler
in the form of relocation dictionary (RLD) cards.

If any CSECT either defines an entry point (value)
of an externally referable symbol or references such a symbol
presumably defined in another assembly, then the MTS assembler
produces a special ESD card. Three types of ESD cards can
be recognized: those produced by the assembler in response
to control-section definition (CSECT pseudop), those in response
to an entry point declaration (ENTRY pseudop), and finally
those in response to an external symbol declaration (EXTRN
pseudop) .

Facilities are included for presetting the initial
loading address for each core bank (FIELD pseudop) and for
presetting the point at which the program will be started
after loading is completed (END pseudop). Each of these

pseudops is fully described below under '"Assembler."

1.1 Object File Structure

Each assembly produces a deck of column-binary
cards or of file images of such cards as appropriate. The
order of production of the various cards is as follows: (a)
ESD cards containing the CSECT definitions, entry point de-
clarations and external symbol declarations, (b) text (TXT)
cards containing the assembled instructions and data, (c) RLD

cards containing the relocation information for the TXT cards,

—4-

and finally (d) an END card terminating the object deck and
optionally containing the starting address of the program.
Appendix A describes the card and tape formats of the various
types of cards.

A module is constructed of one or more such object
decks placed one after the other. If any of these decks
contain external symbol references then the entire module
deck can be processed by the link editor (see below) to pro-
duce a deck which is free of such references and in the form
of a single object deck. The edited deck can then be loaded
directly by a simple PDP-8-resident relocating loader described
below or used‘as a component of another module.

It is important to point out that if none of the
relocation control pseudops (CSECT, ENTRY, EXTRN) are used
in an assembly, the object deck produced is identical to that

A
~“

cnd Ty oA
“e v ~

v

ey 700NN ~
ther ¢ 388 L/uvyy OF

pPre i he SASS {360 assembiers,
with the exception that the card formats are slightly different
(see Appendix A). An MTS utility is available which trans-
cribes such decks into PAL-compatible paper tape which can be
loaded using conventional DEC programs.

In addition, if the ESD and RLD cards are removed
from a relocatable assembly object deck, then the remaining
TXT and END cards can still be processed directly to produce
PAL-compatible binary tape. It is, however, not in general
possible to extend this feature to include object decks produced

by a link edit process.

1.2 Loading Operations

The PDP-8 resident loader operates on modules as
data and produces a loaded executable program. In the simplest
case, only a single module is loaded in the machine and the
machine is assumed to be dedicated during the loading process.
It is possible during this simple loading process to scatter
the various CSECTs of the module throughout the memory of the
machine, with the restriction that CSECTs containing instruc-
tions are loaded at the proper displacements relative to
page boundaries. Such a process would be useful in loading
debugging and utility systems over host programs already loaded
in memory. If linkages between modules loaded by this simple
process are required, transfer vectors of some type must be
provided at fixed locations in memory known to all loaded
modules.

A more interesting and potentially useful case occurs
in connection with multiprogramming systems resident in machines
used in real-time control environments. Such systems are as-
sumed to provide a uniform input/output device interface,

a task management subsystem, a system-residence interface and
a dynamic memory allocation subsystem. Systems such as these

have been described in recent reports published by the Concomp

Project.*

* See footnote on p. 1.

-6-

Object module storage in such a system may reside
either on directaccess devices or in the form of paper tapes
or cards. For this purpose, a data link to MTS will be consi-
dered a direct-access device. A module can be loaded from a
direct-access device by name, in which case some sort of 1li-
brary management subsystem is postulated which provides the
data representing the module in response to a command speci-
fying its name. A module may also be loaded from a paper
tape or card reader, in which case the machine operator must
load the reader with the specified module, perhaps on command
from the operator's console.

Once the module is acquired, the loading process
continues as follows: first, if the loader itself is not re-
sident in memory, a page of memory is seized and the loader
is read in. The loader itself is then called as a task and
its operations proceed in parallel with others in the system.
Next, the loader seizes a page of memory for scratch uses.
This page may contain portions of the loader together with
a table of relocation factors for the various CSECTs loaded.
Next, the loader reads all the ESD records of the module,
seizes the necessary memory areas from the storage management
subsystem, and makes entries in the relocation factor table.
In addition, all memory areas are chained so that they can
be reclaimed if the module is deleted from the system.

Following this setup procedure, the text of the module
is read into the appropriate memory areas. Transmission from

byte-oriented systems residence devices is assembled byte

-7-

oy byte and stored in memory. Transmission from word-oriented
devices capable of data-break operations proceed directly to
memory without byte assembly. (Note that the relocation
factor table can be easily mapped into a channel-command
list.)

Following the loading of all module text information,
the RLD information is read and processed by the loader.
This process develops all the linkages between the scatter-
loaded CSECTs of the module. After this process the loader
returns its own storage to the allocatable storage pool and
" returns to its invoking task. The loaded module is now ready

for execution.

2. Functional System Components

The relocation procedure described above is supported
by three principal system programs: the assembler, the link
editor, and the loader. At present both the assembler and
link editor are resident in library files in the MTS system
and may be run from any terminal attached to that system.

The loader is of course resident within the PDP-8 itself and

is written in conventional machine language. Although many
versions of the loader are immediately apparent, the particular
stand-alone version supported at this time resides in any core
bank at locations 7400-7577 inclusive. A scratch table is also
maintained by the loader in each core bank at location 7276-7377
inclusive. The following sections describe the operation of

these three programs.

2.1 Relocating Assembler

The assembler in MTS library file *8ASSR assembles
PDP-8 code and produces either absolute or relocatable modules
in the form of column binary card images, according to the
format described in Appendix A. The basic input format and
operation are essentially the same as for the PDP-8 assembler,
*8ASS, except for the new procedure calls, the CSECT defini-
tions, and the new structure of the object deck. For example,
the relocatable assembler might be invoked by the following
command :

"$RUN *8ASSR; 1=SOURCE 2=*80PS 6=-T 8=*SINK* SPUNCH=CARDS"

An assembly is a program segment consisting of a
number of CSECTs, each of which has a different integer, from
0 to 511, as CSECT identification (CSID). Each CSECT corres-
ponds to a page-relocatable segment of PDP-8 code, or a labeled
value (external symbol or entry point). The CSECTs may each
be relocated differently by the loader. A CSID of 0 has a
special connotation—an absolute (non-relocatable) CSECT.
Thus, an assembly of one CSECT whose CSID is 0 is an absolute
assembly.

CSECTs are defined by the programmer through use
of the procedure calls CSECT, EXTRN, and ENTRY, as described
below. In address and length calculations, an address value

is considered to be a 12-bit integer modulo 4096.

-9-

1. CSECT n - Primarily used to define a new CSECT. A CSECT
is defined with CSID=n. The address of the CSECT is either
a) the address of the next text word (machine instruction),
b) the value of the next ORG procedure call, or
c) the value of the ILC before the next DS procedure call,
whichever comes first. If the operand field n is empty, the
CSID assigned is one more (modulo 512) than the last CSID
assigned, or 0, if this is the first CSECT call. The length
of the CSECT is computed by subtracting the address of the
CSECT from the value of the ILC when the next CSECT procedure
call appears. If a CSECT with the same CSID has been defined
previously, the new section of code is treated as an extension
of the previous CSECT, whose address is the lowest of the
two addresé definitions and whose length is the largest of the

two length definitions. The CSECT name is 8 blanks.

2. ENTRY m - A CSECT is defined whose CSID is sequentially
next, whose length is 0, and whose address is the current
value of the ILC. The CSECT name m is the first 8 characters

of the operand field, padded with trailing blanks.

3. EXTRN m - A CSECT is defined whose CSID is sequentially
next, whose length and address are zero, and whose name m
is the first 8 characters of the operand field, padded with
trailing blanks. The name is also defined into the assembler's

symbol table as a relocatable operand (a variable) with

-10-

value 0, for use in adcon expressions.

The assembler passes to the link editor and the loader
the CSECT structure, as defined by the CSECT, EXTRN, and ENTRY
procedure calls, by means of ESD card images. There are three
types of ESD cards: CSECT cards, external symbol cards, and
entry point cards. Each card lists its unique CSID and the
assembled address, length, and name of the CSECT. The ESD
(CSECT) cards may be used to allocate storage, the ESD (EXTRN)
cards to locate references to external symbols, and the ESD
(ENTRY) cards to define external symbols. The assembler lists
a table of the CSECTs, and punches the ESD cards, in the order
defined, between Pass I and Pass II. Among the ESD cards,
EXTRN cards defining symbols appearing in a certain control
section are presumed to occur immediately following the CSECT
card for that section. There are no restrictions other than
these constraining the order of the cards within an obiect
deck.

During Pass II, text (TXT) cards are produced.

Each TXT card represents a contiguous block of machine words
within a single CSECT. The TXT card lists the CSID of that
portion of text included on the card, the assembled address

of the first text word, and a number of machine words to be
stored in consecutive locations. The loader loads these words

into consecutive locations without change.

-11-

The information necessary to relocate adcons is pro-
vided by the assembler at the end of Pass II by means of a
relocation dictionary (RLD cards). These cards are produced
by scanning the reference information. During Pass II, each
time a variable occurs in an opcode or operand expression,
a reference item is added to a chained 1list which is appended
to the assembler's symbol table entry for that variable.
A reference item is a list entry which contains the value of
the ILC corresponding to the occurrence of the variable.
In the absolute PDP-8 assembler, *8ASS, a reference item con-
tains only that value. The list of values from each variable's
reference chain is printed out, in the order entered, as the
information in the reference table which occurs at the end
of the assembly listing.

The reference items in the relocatable assembler
*8ASSR contain two more pieces of information: a set of flags
and a CSID. One of the flags, the relocation flag, is set
if the variable is a "relocatable operand”" (a label or an
external symbol) appearing as an argument to a '"relocatable
opcode" (the procedure call DC is the only one so defined at
present); that is, if the variable is a label or external sym-
bol appearing in an adcon expression. If the relocation flag
is set then another flag indicates whether the value of the
variable was added to or subtracted from the expression. In

this case, the CSID in the reference item is set to be the

-12-

"current CSID'"; the CSID of the adcon.

Thus, in Pass II, the assembler builds a list for
each label and external symbol which contains, for each adcon
using that variable, the CSID and address of that occurrence,
and an indication of whether the appropriate relocation factor
should be added to or subtracted from that adcon value when
it is loaded. This is the relocation information which is
passed to the loader on RLD cards which follow all the TXT
cards of an assembly.

Each RLD card contains a CSID, called the position
ID, and a list of relocation items. The position ID is the
CSID of a number of variables or external symbols which appear
in adcons. Each two-word relocation item contains a flag
to indicate positive or negative relocation and the CSID and
address of one of those adcons.

The special symbol, *, is treated differently.

Its value is the value of the program counter at each occurrence
of the symbol, and its occurrences are listed in the reference
items. The position ID on every RLD card which refers to
occurrences of *, however, 1s the same as the CSID of the

adcon. Thus, the value of * in an adcon can be relocated by

the "current" relocation factor.

After the RLD cards, an END card is produced. It
contains the CSID and address of the starting location, if

a label appears in the operand field, or zeros, if none occurs.

13-

The procedure call, FIELD n, causes a FIELD card
to be produced among the TXT cards at each occurrence in

Pass II.

2.2 Link Editor

The link editor is an assembly-language program written
for MTS residence. It processes object decks produced by
the assembler to produce a load module which can be input
to the PDP-8 loader. The object program resides in an MTS
file called *8LINK, obtains its source from SCARDS, produces
its output on SPUNCH, lists dictionaries on SPRINT, and pro-
duces error diagnostics on SERCOM.
The input file to the link editor consists of one
or more object decks in the order of loading in the PDP-8.
Each of these decks consists of a sequence of ESD cards followed
by TXT cards followed by RLD cards followed by an END card.
A FIELD card giving the initial loading address for a core
bank is expected to precede the first occurrence of an object
deck to be loaded in that core bank. Only one of these cards
is required for each core bank, but more can be used to force
the loading of control sections at arbitrary memory locations.
Control section numbers (CSIDs) (other than CSID
zero) within any one assembly need be unique only within that
assembly and may occur in duplicate with CSIDs in other as-
semblies. The link editor will resequence the CSIDs so that

they are unique within the output module. A CSID of zero

-14-

indicates an absolute address and may be used for inter-
connection among modules. Control section numbers 000-077
are assumed to reside in core bank zero, 100-177 in bank
one, and so forth to 700-777 which are assumed to reside in
bank seven. This convention represents only an agreement
between the link editor and the loader and can be readily
changed.

The link editing process consists of three phases,
performed in sequence. First, the collection of object mo-
dules is read, checksummed, and stored in a temporary sequen-
tial file. During this phase all cards in an object deck ex-
cept the TXT and RLD cards are placed in an internal table called
CSTAB. One of these tables is built for each object deck
in the module and indexed by pointers in another internal table
called MDTAB.

Second, the entire MDTAB-CSTAB structure is edited
in such a way that:

a) nonzero CSIDs of CSECT and ENTRY cards are replaced
by sequentially increasing integers (starting at one
for each core bank) and the cards are punched with
their new CSIDs.

b) FIELD cards are punched as-is.

c¢) Each time a CSECT or ENTRY card is punched, the
MDTAB-CSTAB structure is searched for occurrences
of EXTRN cards with the same name as that of the

CSECT or ENTRY card. If one or more such cards are

-15-

found, a field in the EXTRN card CSTAB entry is set
to be the same CSID of the CSECT or ENTRY card.
d) A dictionary consisting of the processed cards and

their presumed loading addresses is listed.

Finally, the temporary file containing the TXT and
RLD cards is rewound and rescanned. During this scan each
CSID found on a card is looked up for a match in the CSTAB
corresponding to the particular object deck in which it re-
sides. When such a match is found, the card is punched with
new CSIDs found from the CSTAB entries (see (a) and (c) above).
An END card is punched to terminate this process. The CSID
and starting address punched on the END card is determined
as that appearing in the last END card in the input module
with a nonzero CSID; or, if none was present, a zero.

The output module from the link editor may be stored
in three forms, depending upon end-use. If the module will
be saved in the system or punched on cards, then it should
be saved in column-binary card format. Such a format includes
checksum and length information on the card and may include
sequence identification. If the module will be transmitted
to a remote machine over a data link or saved on paper tape
for later use with the relocating loader described below, then
it should be saved in relocatable-tape format. Such a format
is in essentially a six-bit byte size with control codes

designated by a one in the seventh bit. No use is made of

-16-

the eighth bit whatsoever, so that vertical parity options
can be used if desired. If the module is to be loaded in
the PDP-8 using conventional DEC systems, then it should be
punched in PAL format on paper tape. 1In this case relocation
information is of course lost. At present it is impossible
to punch a link editor output module in PAL format if the
input which produced that module contained references to ex-

ternal symbols.

2.3 PDP-8 Loader

The relocating loader resides in any core bank in
the PDP-8. It occupies exactly one page of memory and is so
written as to be page relocatable with the exception of cer-
tain pointers to a region of memory in which the relocation
tables are kept during the loading process. As distributed,
the loader occupies locations 7400-7577, and the relocation
tables occupy locations 7276-7377. One of these tables 1is
kept in each core bank in the same storage locations, so that
these locations should not contain loaded text. The table sto-
rage can of course be used as scratch area once the loaded
program begins execution. Also, as distributed, the loader
is assumed to read input tapes from the high-speed reader.
Obvious patches or reassembly can change these parameters,

The loading process consists of three phases.

The first phase involves storage allocation for the various

CSECTs in the memory of the machine. This is accomplished

-17-

while reading the ESD and FIELD records from the input tape.
To facilitate this two words defining the origin and length
of the current control section are kept as the first two
words of the relocation table in each core bank. The initial
value for the length is zero, and the origin is specified in
the FIELD record for a core bank which should precede any
CSECT or ENTRY records for that core bank. The FIELD record
also causes the relocation factor for CSID zero to be set to
zero. This can be changed using a CSECT 0 card (see Assem-
bler). Following the FIELD records,space is allocated in the
various core banks as the CSECT records are read. Each CSID
is used as an index into the relocation table, which is 64
entries long for each core bank, and the relocation factors are
computed for each CSECT and entry record and stored in the
appropriate entries. A new FIELD card resets the origin

of the next control section.

In the second phase, the TXT records are loaded into
memory using the relocation factors defined by the preceding
CSECT and ENTRY records. Except for the actual machine loading
address, which is obtained from the origin address included
in the record and the appropriate relocation factor, the text
is not modified in any way during this phase.

The third and last phase involves the relocation of
adcons in the loaded text. This is performed while reading

the RLD records which follow the TXT records. Each RLD record

-18-

references a CSID, the relocation factor of which is used

to modify those adcons which occur at the locations given as
the RLD items. Each of these items indicates a CSID and
assembled address at which the adcon resides, together with
a flag which indicates whether the relocation factor is to
be added to or subtracted from the assembled value.

Following these three phases, a transfer to the loaded
program is effected if so specified on the END record. Check-
sum operations are separately controlled by special records
which may occur in multiple anywhere in the tape before the

END record.

APPENDIX A

CARD FORMATS

Eight types of cards are recognized by the various
system component programs. The formats and uses of each are
summarized below. Each card is assumed to be punched in
column-binary format with each column representing a 12-bit
word in the PDP-8 or two 6-bit bytes in MTS files. The order
of transmission of the card is from the + row to the 9 row
and from column 1 to column 80 in that order. In MTS files
the high-order two bits of each byte are set to zeros.

A1l cards are built about the following format:

Column + 01 9
1 Card
Code CSID
2 loading address
3 count _
N checksum

Column 1:
The card code is a three-bit field (+ through 0
rows) which identifies the card type according

to the following code:

0 - (special—see below) 4 - ESD (CSECT)
1 - TXT 5 - ESD (ENTRY)
2 - END 6 - ESD (EXTRN)
3 - FIELD 7 - RLD

-19-

-20-

The three high-order bits of the CSID (1 through 3 rows) are
used by convention to identify the core bank to which this
card applies.

The six low-order bits of the CSID (4 through 9
rows) are used to identify the control section within a core

bank to which this card applies.

Column 2:

The entire column contains a 12-bit loading address.

Column 3:
The entire column contains a 12-bit count of all

remaining columns in the card except the checksum column (N-4).

Columns 4 through N-1:

Text coded for the particular card type is stored
in these columns, which may contain either the name of an
external symbol, a control section length, loaded text, or

relocation information.

Column N:

The entire column contains the sum modulo 4096 of
all columns on the card except the checksum itself.

The text information of the various cards is coded

as follows, depending upon card code:

Code 0 (special):
Code reserved for future goodies. An all-zero

(blank) card indicates that the checksum of the associated

-21-

paper-tape image should be punched and reinitialized (see

Appendix B: '"Paper Tape Formats').

Code 1 (TXT):

Text information is punched exactly as assembled.

Code 2 (END):
Contains an optional four-column symbol (eight
bytes) punched in "trimmed EBCDIC'" consisting of the low-

order six bits of each character.

Code 3 (FIELD):

The text portion is not used.

Code 4 (CSECT), Code 5 (ENTRY), Code 6 (EXTRN):

Contains two items, the first being the CSECT length
(zero in ENTRY and EXTRN cards), and the second being a four-
column symbol (eight bytes punched in '"trimmed EBCDIC'") con-

sisting of the low-order six bits of each character.

Code 7 (RLD):
Contains a number of two-column (four-byte) RLD

items, each of which is coded as follows:

Column N flags RLID ‘

N + 1 assembled address ’

The RLID is coded exactly like the CSID entry in column 1
of the card (see above). The flags at present include only
one bit (bit position 1) which,if set,indicates a negative

rather than a positive relocation.

APPENDIX B

PAPER TAPE FORMATS

The relocating loader expects as input a tape trans-

cribed in a simple fashion from an object deck structured as

described above under "Card Formats.'" The transcription

process

a)

b)

c)

d)

is as follows:

Remove the count and checksum columns (two bytes
each) and condense the text to eliminate these bytes.
Force a (01) as the high-order two bits of the first
byte representing the card.

Punch the resultant record on paper tape with leader
and trailer as desired.

Maintain a checksum, initially zero, of all bytes
punched. Punch and reinitialize this checksum when

a checksum card is found. (A checksum card is one

with all bytes zero.)

-22.

