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Abstract

The NSFNET Backbone Network interconnects six supercomputer sites, several regional net-
works and ARPANET. It supports the DARPA Internet protocol suite and DCN subnet protocols,
which provide delay-based routing and very accurate time-synchronization services. This paper
describes the design and implementation of this network, with special emphasis on robustness
issues and congestion-control mechanisms.

1.  Introduction and Background

The NSFNET is a loosely organized community of networks funded by the National Science
Foundation to support the sharing of national scientific computing resources, data and informa-
tion [7]. NSFNET consists of a large number of industry and academic campus and experimental
networks, many of which are interconnected by a smaller number of regional and consortium net-
works. The NSFNET Backbone Network is a primary means of interconnection between the
regional networks and is the subject of this report.

The NSFNET Backbone Network, called simply the Backbone in the following, includes switch-
ing nodes located at six supercomputer sites: San Diego Supercomputer Center (SDSC), National
Center for Supercomputer Applications (NCSA) at the University of Illinois, Cornell National
Supercomputer Facility (CNSF), Pittsburgh Supercomputer Center (PSC), John von Neumann
Center (JVNC) and the National Center for Atmospheric Research (NCAR). The six nodes are
interconnected by 56-Kbps internode trunks (see Figure 1).The Backbone is extended for regional
interconnects (not shown) to the University of Michigan and the University of Maryland, with a
further one planned at Rice University. Additional nodes (not shown) are used for program devel-
opment and testing, bringing the total to about thirteen.

Each Backbone node is connected to an onsite Ethernet, which serves as the attachment point for
supercomputers and other local hosts. Most sites have an extensive system of local networks and
gateways, including high-speed bus, ring and point-to-point links, which serve to concentrate traf-
fic from throughout the site. Other gateways connect to regional and consortium networks, which

1. Sponsored by: Defense Advanced Research Projects Agency contract number N00140-87-C-
8901 and by National Science Foundation grant number NCR-86-12015.

2. Reprinted from: Mills, D.L., and H.-W. Braun. The NSFNET Backbone Network. Proc. ACM
SIGCOMM 87 Symposium (Stoweflake VT, August 1987), 191-196.



2

in some cases span large regions of the country. Some sites are connected to other backbone net-
works such as ARPANET and public data networks as well.

The Backbone uses the DARPA Internet architecture, which is based on the IP and TCP protocols
[8]. Most of the regional and consortium networks, as well as the campus networks they connect
also use these protocols. There are several thousand service hosts and gateways connected to the
Internet, as well as many more personal computers and workstations. In late July, 1987, there
were 4625 hosts on 676 networks interconnected by 184 gateways listed at the Department of
Defense Network Information Center alone, which by itself is only a small fraction of the overall
Internet. There are presently about 63 networks either directly connected to the Backbone or by
means of gateways and other regional and consortium networks, while over 250 networks are in
regular operation on the Internet system as a whole.

In following sections the Backbone subnet architecture and protocols are described along with its
hardware and software components. Its design features are summarized, including factors related
to robustness, congestion control and services. Operation and maintenance issues are described,
including system control, monitoring and performance measurement. Finally, plans for further
expansion are summarized.

2.  Network Architecture

The Backbone, as well as the onsite local-net complexes, regional networks and the campus net-
works they connect, are part of the Internet System developed by the Defense Advanced Research
Agency (DARPA) over the last several years and conform to its architecture and protocols. The
Internet operates in connectionless mode using the Internet Protocol (IP) [20] as the basic inter-
networking mechanism. End-to-end reliability is maintained using the Transmission Control Pro-
tocol (TCP) [22], which assembles and reorders datagrams (protocol data units) received over
possibly diverse and unreliable paths using retransmissions as necessary. The User Datagram Pro-
tocol (UDP) [19] provides direct IP datagram access for transaction services, including routing
and network control in some cases.

Figure 1. NSF Backbone Network
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Since the basic service expected of the Backbone is connectionless, no provision for end-to-end
reassembly, reordering or retransmission is necessary. The network does not support end-to-end
virtual circuits and has no implicit connection-setup or other resource-binding mechanisms as
does, for example the ARPANET. However, in order to improve overall service, reliable (retrans-
mission) services are provided on selected internode trunks, in particular the 56-Kbps trunks
interconnecting the Backbone sites, which use the DEC Digital Data Communications Message
Protocol (DDCMP) for the pragmatic reason that the hardware interfaces happen to support this
protocol.

2.1  Subnet Architecture 

The Backbone subnet protocols are based on the Distributed Computer Network (DCN), which
uses Internet technology and an implementation of PDP11-based software called the Fuzzball.
DCN networks of hosts and gateways are now in regular service in the INTELPOST facsimile-
mail system, which was built by COMSAT Laboratories and operated by the U.S. Post Office and
international affiliates, as well as the Backbone and about a dozen campus networks in the U.S.
and Europe, including the Universities of Maryland, Michigan and Delaware, Ford Scientific
Research Laboratories and M/A-COM Linkabit.

The DCN architecture is intended to provide connectivity, routing and timekeeping functions for a
set of gateways, service hosts and personal workstations using a specialized protocol called
HELLO [10], which is based on IP. HELLO services include delay-based routing and clock-syn-
chronization functions in an arbitrary topology including point-to-point links and multipoint bus
systems. However, the DCN architecture is not intended for use in very large networks such as
ARPANET, since it does not include load-adaptive routing algorithms and comprehensive con-
gestion controls.

A brief description of the process and addressing structure used in the DCN may be useful in the
following. A physical host is a PDP11-compatible processor which supports a number of cooper-
ating sequential processes, each of which is given a unique identifier called its port ID. Every
physical host contains one or more designated internet processes, each of which supports a virtual
host assigned a unique identifier called its host ID. Virtual hosts can migrate among the physical
hosts at will, as long as their host IDs remain unchanged, since the routing tables are automati-
cally updated by the HELLO protocol.

The physical host also supports other processes for input/output devices (disks, terminals and net-
work-interface devices), as well as spooling systems, various network daemons and users, which
are provided with separate virtual address spaces. The physical host is identified by a host ID for
the purpose of detecting loops in routing updates, which establish the minimum-delay paths
between the virtual hosts. Additional host IDs are assigned dynamically by the operations of other
routing and address-binding protocols such as the Internet Control Message Protocol (ICMP)
[21], Address Resolution Protocol (ARP) [18], Exterior Gateway Protocol (EGP) [11] and related
protocols.

Each virtual host can support multiple transport protocols, connections and, in addition, a virtual
clock. Selected virtual hosts can act as gateways to other networks as well. Each physical host
contains a physical clock which can operate at an arbitrary rate and, in addition, a 32-bit logical
clock which operates at 1000 Hz and is assumed to be reset each day at 0000 hours UT. Not all
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physical hosts implement the full 32-bit precision; however, in such cases the resolution of the
logical clock may be somewhat less.

DCN networks are self-configuring for all hosts and networks; that is, the routing algorithm will
automatically construct entries in the various tables, find minimum-delay paths and synchronize
logical clocks among all virtual hosts and gateways supporting the DCN protocols. For routing
beyond the span of the DCN routing algorithm, the tables can be pre-configured or dynamically
updated using the ICMP, ARP and EGP protocols. In addition, a special entry can be configured
in the tables which specifies the gateway for all address ranges not explicitly designated in the
tables.

2.2  Subnet Addressing and Routing

The correspondence between IP addresses and host IDs is determined by two tables, the Local
Mapping Table and the Global Mapping Table, which are structured in the same way. Each entry
in these tables defines a range of IP addresses which map onto a specified host ID and thus a vir-
tual host. There is no restriction on the particular range or ranges assigned a virtual host, so that
these hosts can be multi-homed at will and in possibly exotic ways. The mapping function also
supports the subnetting and filtering functions outlined in [2]. By convention, one of the addresses
assigned to a virtual host in each physical host is declared the base address of the physical host
itself. Entries in these tables can be pre-configured or dynamically updated using the HELLO,
ICMP, ARP and EGP protocols.

Datagram routing is determined entirely by IP address - there is no subnet address as in the
ARPANET. Each physical host contains a table called the Host Table, which is used to determine
the port ID of the network-output process on the minimum-delay path to each virtual host. This
table also contains estimates of roundtrip delay and logical-clock offset for all virtual hosts
indexed by host ID. For the purpose of computing these estimates the delay and offset of each vir-
tual host relative to the physical host in which it resides is assumed zero. The single exception to
this is a special virtual host associated with an NBS radio time-code receiver, where the offset is
computed relative to the broadcast time.

Host Table entries are updated by HELLO messages exchanged frequently over the links connect-
ing physical-host neighbors. At present, the overhead of these messages is controlled at about 3.4
percent of the aggregate network traffic. They include data providing an accurate measurement of
delay and offset between the neighbors on the link itself, as well as a list of the delay and offset
entries in the Host Table for all virtual hosts. There are two list formats, a short format with
indexed entries used when the neighbors share the same subnet and a long format including the IP
address used in other cases.

The routing algorithm is a member of the Bellman-Ford class [1], which includes those formerly
used in the ARPANET and presently used in several Internet gateway systems. The measured
roundtrip delay to the neighbor is added to each of the delay estimates in its HELLO message and
compared with the corresponding delay estimates in the Host Table. If the sum is less than the
value already in the Host Table or if the HELLO message is received on the next-hop interface, as
previously computed by the routing algorithm, the sum replaces the value and the routing to the
corresponding virtual host is changed accordingly. In other cases the value in the Host Table
remains unchanged.
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Each entry in the Host Table is associated with a time-to-live counter, which is reset upon arrival
of an update for the entry and decrements to zero otherwise. If this counter reaches zero, or if an
update specifying infinite distance is received on the next-hop interface, the entry is placed in a
hold-down condition where updates are ignored for a designated interval, in the Backbone case
two minutes. The hold-down interval is necessary for old routing data, which might cause loops to
form, to be purged from all Host Tables in the system. In order to further reduce the incidence of
loops, the delay estimate is set at infinity for all hosts for which the next-hop interface is the one
on which the HELLO message is sent, regardless of the value in the Host Table. 

3.  Switching Nodes

A Backbone node consists of a Digital Equipment Corporation LSI-11/73 system with 512K bytes
of memory, dual-diskette drive, Ethernet interface and serial interfaces. One or two low-speed
asynchronous interfaces are provided, as well as one to three high-speed synchronous interfaces.
All Backbone nodes include crystal-stabilized time bases. One node (NCAR) is equipped with a
WWVB radio time-code receiver providing a network time reference accurate to the order of a
millisecond.

Other nodes connected to the Backbone and running DCN protocols use LSI-11 and other PDP11-
compatible systems with from 256K to 2048K bytes of memory, plus various hard disks and serial
interfaces, including ARPANET interfaces, X.25 interfaces and terminal multiplexors. Most of
these nodes also include crystal-stabilized time bases, while two are equipped with WWVB time-
code receivers and one with a GOES time-code receiver. Some of these systems are used for gen-
eral-purpose network access for mail, word-processing and file staging, as well as packet-switch-
ing and gateway functions.

The software system used in the Backbone nodes, called the Fuzzball, includes a fast, compact
operating system, comprehensive network-support system and a large suite of application pro-
grams for network protocol development, testing and evaluation. The Fuzzball software has been
rebuilt, modified, tinkered and evolved over several generations spanning a twenty-year period
[9]. It has characteristics similar to many other operating systems, in some cases shamelessly bor-
rowing their features and in others incorporating innovative features well before other systems
made these features popular.

Originally, the Fuzzball was designed primarily as an investigative tool and prototyping work-
bench. Many Fuzzballs have been deployed for that purpose at various locations in the U.S. and
Europe, including Norway, United Kingdom, Germany, Holland and Italy. Various organizations
use Fuzzballs as terminal concentrators, electronic-mail and word-processing hosts, network
monitoring and control devices and general-purpose packet-switches and gateways. For the Back-
bone the Fuzzball is used primarily as a packet switch/gateway, while the application programs
are used for network monitoring and control.

The Fuzzball implementation incorporates complete functionality in every host, which can serve
as a packet switch, gateway and service host all at the same time. The system includes host and
gateway software for the complete DARPA Internet protocol suite with network, transport and
applications-level support for virtual-terminal and file-transfer services, along with several mail
systems with text, voice and image capabilities. In order to provide a comprehensive user inter-
face and platform for program development and testing, a multiple-user, virtual-machine emulator
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supports the Digital Equipment Corporation RT-11 operating system for the PDP11 family, so that
RT-11 program-development utilities and user programs can be run along with network-applica-
tion programs in the Fuzzball environment.

3.1  Robustness Issues

When the Internet was small and growing rapidly there was great concern about its potential vul-
nerability to destructive routing loops or black holes that could form when more than one routing
algorithm was used or when an protocol misbehaved because of algorithmic instability or defec-
tive implementation. The solution to this problem was to partition the Internet into multiple, inde-
pendent systems of gateways, called autonomous systems, where each system could adopt any
routing algorithm it chose, but exchange routing information with other systems using the Exte-
rior Gateway Protocol (EGP).

The expectation was that the Internet would evolve into a relatively small, centrally managed set
of backbone gateways called the core system, together with a larger set of unmanaged gateways
grouped into stub systems with single-point attachments to the core system. In this model the stub
systems would normally not be interconnected to each other, except via the core system, with
exceptions handled on an ad-hoc, engineered basis.

As the Internet evolved into a richly interconnected, multiple-backbone topology with large num-
bers of regional and campus networks, the stub-system model became less and less relevant.
Requirements now exist in NSFNET where gateways within and between autonomous systems
need to interoperate with different routing algorithms and metrics and with different trust models.
Backbones now connect to backbones, while regional systems now connect wily-nily to each
other and to multiple backbones at multiple points, so that the very concept of a core system as
effective management tool has become obsolete.

As specified, EGP by is designed primarily to provide routing information between the core sys-
tem and stub systems. In fact, only the core system can provide routing information for systems
not directly connected to each other. The enhancements to EGP described in [14] suggest restruc-
turing the Internet as a number of autonomous-system confederations, as well as an outline for a
universal metric. Neither the baseline or enhanced EGP model is adequate to cope with the evolv-
ing requirements of NSFNET.

A great deal of study was given these issues during the design phase of the Backbone. One issue is
the vulnerability of NSFNET as a whole to routing loops, either due to adventurous, unstable con-
figurations or defective implementations. Another is the robustness of the various metrics (e.g.
hop-count based and delay based) with respect to the various transformations required between
them. Still another is protection from false or misleading addressing information received from or
transmitted to neighboring systems. Each of these issues will be discussed in following sections.

3.2  Metric Transformations

Since it is not possible for the Backbone routing algorithm to have unlimited scope, there exist
demarcations where the algorithm must interoperate with other routing algorithms, protocols and
metrics. In order to support multiple routing algorithms in a single autonomous system or confed-
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eration, it is necessary to explore how they can safely interoperate without forming destructive
routing loops.

Consider two Bellman-Ford algorithms one with metric R, which might for example represent
hop count, and the other with metric H, which might represent measured delay. Nodes using each
metric send periodic updates to their neighbors, some of which may use a different metric. Each
node receiving an update in a different metric must be able to transform that metric into its own.
Suppose there are two functions: Fh, which maps R to H, and Fr, which maps H to R. In order to

preserve the non-negative character of the metrics, both Fh and Fr must be positive and mono-

tone-increasing functions of their arguments.

It is not difficult to show [16] that loops will not occur if both of the following conditions are sat-
isfied:

    and     (1)

As long as these conditions are satisfied and both the domains and ranges are restricted to non-
negative values, mutually inverse functions for Fh and Fr can readily be found, such as linear

transformations Ax + B, powers xn and exponentials ex, together with their inverses. Note that
these conditions require careful analysis of the finite-precision arithmetic involved and the errors
inevitably introduced.

Several of the Backbone nodes are connected to extensive regional networks, some of which use a
routing protocol called the Routing Information Protocol (RIP) [6]. In some cases a regional net-
work is connected to more than one Backbone node. A typical case involves the translation
between RIP and HELLO at both sites, in which case the above conditions come into play. Note
that these conditions do not guarantee the shortest path relative to either metric, just that whatever
path is chosen, no loops will form.

3.3  Fallback Routing

Ordinary routing algorithms compute shortest paths on a directed, labeled graph. If there are mul-
tiple paths between given endpoints, the algorithm will select the one with minimum total dis-
tance, but will make an arbitrary choice when more than one path exists with that distance. A
reachability algorithm is defined as a routing algorithm in which all paths between given end-
points have the same distance; therefore, the algorithm will select one of them arbitrarily. In prac-
tice such algorithms are useful mainly in tree-structured topologies where autonomous systems
with only a few reachable networks are interconnected by one or at most a few gateways, such as
the stub-system model commonly associated with EGP.

Cases exist in NSFNET where several autonomous systems with many reachable networks are
haphazardly interconnected by multiple gateways. In order to insure stability, it is desirable to
hide the internal routing details of each system; however, for reasons of load balancing it is desir-
able to control which gateway is to be used for normal traffic in to and out of the system and
which is to be used as backup should the normal gateway fail. A fallback algorithm is defined as a
routing algorithm in which two sets of paths exist between given endpoints, one intended as pri-

x Fr Fh x( )( )≤ x Fh Fr x( )( )≤
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mary paths and the other as fallback paths should all primary paths fail. However, in both the pri-
mary or fallback set, the algorithm will select one of them arbitrarily.

In reachability algorithms it is not necessary to know the distance along the path selected, only
that it exists (i.e. the distance is less than infinity); therefore the metric has only two values: zero
and infinity. In fallback algorithms a finer distinction is necessary in order to determine whether a
primary or fallback path is in use; therefore, the metric has three values: zero, one and infinity. It
is not difficult to invent metric transformations which preserve this distinction without introduc-
ing loops [16].

Fallback routing is now used by the EGP-speaking gateways between the various Backbone site
networks and the core system. For each Backbone network one of these gateways is designated pri-
mary and uses an EGP metric of zero, while the remaining gateways are designated fallback and
use a nonzero metric. The primary gateway is assigned on the basis of pre-engineered configura-
tions and traffic forecasts. As a special experimental feature, the core-system EGP implementation
incorporates an ad-hoc form of fallback routing. The effect is that, if the primary gateway for a par-
ticular network fails, the load is nondeterministically shared among the fallback gateways.

4.  Routing Agents

Since the Backbone nodes are connected directly to Ethernets serving a general population of po-
tentially defective hosts and gateways, the Backbone design includes a special routing agent which
filters information sent between the switching nodes and other gateways in the local autonomous
system. In order to conserve resources in the node itself, the agent is implemented as a daemon in
a trusted Unix-based host attached to the same Ethernet. The agent, now installed at all Backbone
sites, mitigates routes computed by other routing systems, such as RIP and/or EGP, and communi-
cates with the Backbone node using the HELLO protocol. It consists of a portable C-language pro-
gram for the Berkeley 4.3 Unix system distribution [5].

Among the features implemented in the routing agent are exclusion lists, which delete selected net-
works known to the local routing algorithm from HELLO messages sent to the Backbone node.
Others include calculation of the metric transformations, when required, and management of the
various data bases involved. At present, the resources necessary to operate the routing agent are
provided by the sites themselves, while configuration control of the data bases is maintained by the
network operations center.

5.  Congestion Control

Like many networks designed for connectionless-mode service, the Backbone does not bind re-
sources to end-to-end flows or virtual circuits. In order to deal with traffic surges, the Internet ar-
chitecture specifies the ICMP Source Quench message, which is in effect a choke packet sent to
the originating host when a downstream gateway experiences congestion. While the choke packet
can be an effective mechanism to control long-term flows; that is, when the flow intensities are rel-
atively stable over periods longer then the nominal transit time of the network, it is usually not an
effective mechanism in other cases.

Therefore, when a short-term traffic surge occurs, the only defense possible is to either drop arriv-
ing packets or selectively preempt ones already queued for transmission. Previous designs drop
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arriving packets when the buffer pool becomes congested, which has unfortunate consequences
for fairness and end-to-end performance. Simply increasing the size of the buffer pool does not
help [17]. In addition, it has long been suspected that a major cause of Internet traffic surges is
defective transport-level implementations or antisocial queueing policies, resulting in large,
uncontrolled bursts of packets. Thus, an effective preemption strategy must take fairness into
account in order to avoid capture of excessive network resources by reckless customers.

Extensive experience in the design, implementation and experimental evaluation of connection-
less-mode networks suggests an interesting preemption strategy which has been implemented in
the Fuzzball system. It is based on two fairness principles:

1. Every customer (IP source host) has equal claim on buffer resources, so that new arrivals can 
preempt other customers until the space claimed by all customers is equalized.

2. When a preemption is necessary for a customer with buffers on multiple queues, the preemp-
tion rates for each of these queues are equalized.

The intent of the first rule is to identify the customer capturing the most buffer space, since this
customer is most likely a major contributor to the congestion. The intent of the second rule is to
spread the preemptions evenly over the output queues in case of ties.

It is not possible without a heavy performance penalty to implement the above rules in their purest
form. In the Fuzzball implementation an input buffer is almost always available for an arriving
packet. Upon arrival and inspection for correct format and IP checksum, the (sometimes consider-
able) unused space at the end of the buffer is returned to the buffer pool and the packet inserted on
the correct output queue, as determined by the routing algorithm. A preemption is necessary when
an input buffer must be allocated for the next following packet.

When preemption is necessary, each output queue is scanned separately to find the customer with
the largest number of 512-octet blocks. Then the queue with the largest number of such blocks is
determined and the last buffer for the associated customer is preempted, even if the buffer pre-
empted was the one just filled. In case of ties, the queue with the most packets transmitted since
the last preemption is chosen. The entire process is repeated until sufficient buffer space is avail-
able for the input buffer request.

The experience with the Fuzzball implementation has been very satisfying, as shown below and in
Section 7. Table 1 Illustrates the performance of the policy over a typical period of several days.

Line Rate Timeout Preempt Total
1 0.32 .767 .0 .767
2 0.62 .504 .0 .504
3 1.56 .058 .0 .058
4 1.91 .020 .0 .020
5 0.30 .059 .0 .059
6 0.58 .141 .0 .141
7 2.23 .018 .025 .044
8 3.02 .045 .018 .063

Figure 2. Dropped Packet Rate
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Therre sixteen internode trunks in the Backbone (including the SURA regional network). The
Rate column shows the mean packets per second sent on the trunk, while the Timeout and Pre-
empted columns show the percentage of packets deleted from the trunk queue due these causes.

These data should be compared with the weekly statistics collected for the seven ARPANET/
MILNET gateways operated by Bolt Beranek Newman for the Defense Communication Agency
[3]. These gateways, which operate in an environment similar to the Backbone, drop an arriving
packet when the output queue for an ARPANET/MILNET destination subnet address exceeds
eight packets. On a typical week in late July 1987 these gateways carried an aggregate of 56.74
packets per second for an equivalent of 14 lines, with a mean drop rate of 7.035 percent, almost
two orders of magnitude greater than the Backbone. The busiest gateway carried an estimated
6.44 packets per second per line and dropped 12.5 percent of these packets.

6.  Network Services

The Backbone nodes are intended primarily to serve as IP packet switches and gateways for NSF-
NET client networks. However, There are several other services available, some for the general
user population and others for monitoring and control purposes. These include some applications
based on TCP and some on UDP (see [4] for service descriptions and protocols, unless indicated
otherwise):

1. TCP-based virtual-terminal (TELNET), file-transfer (FTP) and mail (SMTP) services 
intended for system monitoring and control purposes.

2. UDP-based name-lookup (NAME and DOMAIN-NAME), file-transfer (TFTP) and time 
(TIME, NTP) services, as well as a special statistics (NETSPY) service [15] intended for net-
work monitoring.

3. IP-based utilities (ECHO, TIMESTAMP), primarily intended for system monitoring and fault 
isolation.

The UDP-based time services TIME and NTP are unique features of the Fuzzball. The physical-
clock hardware and Fuzzball software, as well as the DCN protocols, have been specially
designed to maintain network time synchronization to an unusual precision, usually less than a
few milliseconds relative to NBS broadcast standards. The Network Time Protocol (NTP) [13]
implemented by every Fuzzball provides accurate timestamps in response to external requests, as

9 1.82 .110 .026 .137
10 1.61 .056 .0 .056
11 2.20 .021 .162 .184
12 3.41 .059 .071 .130
13 3.79 .034 .027 .061
14 3.98 .027 .0 .027
15 2.79 .033 .0 .033
16 1.39 .052 .004 .056

Average 1.97 .060 .028 .088

Line Rate Timeout Preempt Total

Figure 2. Dropped Packet Rate (Continued)
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well as providing internal synchronization and backup for a network of NTP servers spanning the
entire Internet.

There are presently five Fuzzball systems with WWVB or GOES time-code receivers on the
Internet, with at least one attached via high-speed lines to the Backbone, ARPANET and MIL-
NET. A conforming NTP daemon program has been written for the Berkeley 4.3 Unix system dis-
tribution. A discussion of the synchronization algorithms used can be found in [12].

7.  Network Operations

The NSFNET Backbone Network Project is presently managed by the University of Illinois. Net-
work operations, including configuration control and monitoring functions, are managed by Cor-
nell University. Additional technical support is provided by the Information Sciences Institute of
the University of Southern California, and the Universities of Michigan, Delaware and Maryland.
The NSFNET Network Services Center (NNSC), operated by Bolt Beranek Newman, provides
end-user information and support.

The NSF Information and Services Center (NISC) at Cornell University is presently responsible
for the day-to-day operations and maintenance functions of the Backbone. They are assisted by
staff at the various sites and regional operating centers for hardware maintenance, as well as the
resolution of node and trunk problems. Most of the software maintenance, including bugfixes,
version updates and general control and monitoring functions, are performed remotely from Cor-
nell.

The Fuzzball includes event-logging features which record exception events in a log file suitable
for periodic retrieval using the standard Internet file-transfer protocols FTP and TFTP. In addition,
a special UDP-based server has been implemented [15] so that cumulative statistics can be gath-
ered from all nodes with minimum impact on ongoing service. At present, statistics are gathered
on an hourly basis from every node and incorporated in a data base suitable for later analysis.
About nine months of history data are now available in the data base, which is used to produce
periodic management reports with performance statistics similar to those shown in this report.

A great deal of additional information is available from the Backbone nodes, the Unix-resident
routing agent (gated) and various other sources. This information, which is available via remote
login (TCP/TELNET), includes the contents of various routing tables, the state of system
resources such as the buffer pool, state variables for the various protocols in operation and so
forth. An interesting sidelight is that the time-synchronization function, which requires precise
measurement of network delays and logical-clock offsets, serves as a delicate indicator of net-
work stability. If the network becomes congested or routing loops form, the delays and offsets
usually become unstable and are readily noticed by an experienced operator. In fact, the precision
of the system is so exquisite that the temperature of the machine room can be estimated from the
drift-compensation term of the logical-clock corrections computed by each node.

The growth in traffic carried by the Backbone over the nine-month period since October 1986 is
clearly apparent in Figure 2, which shows the number of packets delivered to the destination Eth-
ernets per week. Figure 3 shows the preemption rate (percentage of packets preempted per packet
delivered) per week. The dramatic reduction in preemption rate at about week 27 was due to an
expansion in buffer space together with adjustments to system parameters such as retransmission
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limits. A second dramatic drop in preemption rate at about week 33 was due to the introduction of
the new preemption policy described previously. The effectiveness of this policy is evident by the
fact that, during a period in which the packets delivered rose by 50 percent, there was a six-fold
decrease in the number of packets preempted.

8.  Future Plans

Today the Backbone is an integral part of the Internet system; in fact, over one-fourth of all Inter-
net networks are reachable via this network. As evident from the previous section, the aggregate
traffic carried by the Backbone is currently approaching that of the ARPANET/MILNET gate-
ways, which are overloaded and soon to be replaced. Moreover, although the preemption policy is
working well and suggests that additional node and trunk capacity remains, the alarming rate of
growth indicates the current Backbone configuration will be inevitably overwhelmed within a
short time.

Current plans are to augment Backbone service by the addition of high-speed nodes and addi-
tional trunking capacity. While no decision has been made on the node configuration or trunk
speeds, it is likely that T1 speeds (1.544 Mbps) and new high-speed packet switches will become

Figure 3. Packets Delivered, Averaged by Week

Figure 4. Percentage of Packets Dropped, by Week
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available in 1988. The migration path from the existing Backbone to a new one using this technol-
ogy is now under review.

It is anticipated that the current interim network-management structure will be replaced by a per-
manent one. The National Science Foundation has solicited a Cooperative Agreement for "Project
Solicitation for Management and Operation of the NSFNET Backbone Network," with award
expected by November of 1987. The awardee will have primary responsibility for designing,
installing and operating upgrades to the Backbone. The emerging OSI protocols will become a
very important factor for the future evolution of the NSFNET. The migration of NSFNET to an
OSI connectionless-mode environment will become imperative as the OSI protocols mature and
implementations become widely available. A most likely migration strategy will be to support
both Internet IP and OSI connectionless-mode (CNLS) protocols in all NSFNET gateways,
including the Backbone. This will allow hosts supporting either or both protocol suites to coexist
in the same internetwork. Changes in subnet protocols and addressing mechanisms necessary to
implement this strategy are already in progress. In addition, it is likely that application-level gate-
ways may be installed at strategic points in order to support essential services such as mail during
the migration period.
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