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Abstract

We develop a statistical framework to study the relationship between chromatin features and gene expression. This
can be used to predict gene expression of protein coding genes, as well as microRNAs. We demonstrate the
prediction in a variety of contexts, focusing particularly on the modENCODE worm datasets. Moreover, our
framework reveals the positional contribution around genes (upstream or downstream) of distinct chromatin
features to the overall prediction of expression levels.

Background
In eukaryotes, nuclear chromosomes are organized into
chains of nucleosomes, which are in turn composed of
octamers of four types of histones wrapped around
147 bp of DNA. Modifications of these core histones are
central to many biological processes, including tran-
scriptional regulation [1], replication [2], alternative spli-
cing [3], DNA repair [4], apoptosis [5,6], gene silencing
[7], X-chromosome inactivation [8] and carcinogenesis
[9,10]. Among them, transcriptional regulation is one of
the most important and thereby intensively investigated
processes [1,11,12]. Histone modifications have been
demonstrated to regulate gene transcription in positive
or negative manners depending on the modification site
and type [13-18]. For example, a genome-wide map of
18 histone acetylation and 19 histone methylation sites
in human T cells indicates that H3K9me2, H3K9me3,
H3K27me2, H3K27me3 and H4K20me3 are negatively
correlated with gene expression, whereas most other
modifications, including all the acetylations, are corre-
lated with gene activation [18,19]. As an extreme case,
histone modifications play critical roles in X-chromo-
some inactivation in females to equalize the expression
of X-linked genes to those in male animals [19,20]. His-
tone modifications are thought to affect transcription
through two mechanisms: modifying the accessibility of

DNA to transcription factors by altering the local chro-
matin structure; and providing specific binding surfaces
for the recruitment of transcriptional activators and
repressors [11,17,21-23].
The large number of possible histone modifications

has led to the ‘histone code’ hypothesis, which states
that combinations of different histone modifications spe-
cify distinct chromatin states and bring about distinct
downstream effects [24-26]. Moreover, one histone
modification may influence another by recruiting or
activating chromatin-modifying complexes [27]. How-
ever, a study in yeast revealed only simple and cumula-
tive functional consequences for combinations of
histone H4 acetylation rather than a complicated syner-
gistic histone code [28]. Two other studies, one in yeast
and the other in Drosophila, also demonstrated that his-
tone modifications are highly correlated with each other
and are partially redundant in function [13,17], presum-
ably conferring robustness in relation to epigenetic regu-
lation [29]. Alternatively, the high correlation between
histone modifications may have been overestimated as a
result of differences in nucleosome density or other
unknown biases [29]. So far, knowledge about the effect
of histone modifications on transcriptional regulation is
still limited, and the degree of complexity of the histone
code is far from clear. To further understand the rela-
tionship between histone modifications and gene expres-
sion, we require a systematic analysis that integrates
histone modification maps with other genome-wide
datasets.
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The model organism encyclopedia of DNA elements
(modENCODE) project was launched in 2007 for the
purpose of generating a comprehensive annotation of
functional elements in the Caenorhabditis elegans and
Drosophila melanogaster genomes [30]. By using
recently developed genome-wide experimental techni-
ques such as ChIP-chip, ChIP-seq and RNA-seq [31,32],
modENCODE has generated a large amount of data,
including gene expression profiles, histone modification
profiles, and DNA binding data for transcription factors
and histone-modifying proteins. This large compendium
of datasets provides an unprecedented opportunity to
investigate the relationship between chromatin modifica-
tions and transcriptional regulation using an integrative
approach.
In this study, we endeavor to construct a general fra-

mework for relating chromatin features with gene
expression. We apply a multitude of supervised and
unsupervised statistical methods to investigate different
aspects of gene regulation by chromatin features. Lever-
aging the rich data generated by the modENCODE pro-
ject, we use C. elegans as a primary model to illustrate
our formalism. Nevertheless, we tested the generality of
our methods using a variety of species ranging from
yeast to human. More specifically, we show that chro-
matin features can accurately predict the expression
levels of genes and collectively account for at least 50%
of the variation in gene expression. We also study the
importance of individual features, examine the combina-
torial effects of chromatin features, and investigate to
what extent the histone code hypothesis is valid. By
applying the chromatin-based model to predict the
expression of coding genes and microRNAs at different
developmental stages, we further address the develop-
mental stage specificity of chromatin modifications and
suggest that chromatin features regulate transcription of
coding genes and microRNAs in a similar fashion.
As more and more genome-wide ChIP-Seq and RNA-

Seq data are going to be generated via the modEN-
CODE project and the ENCODE project [2] in the near
future, the methods of data integration proposed in this
work have various potential applications.

Results
Chromatin features show distinct signal patterns around
genic regions
To systematically study the genome-wide properties of
various chromatin features, we collected more than 50
ChIP-chip and ChIP-seq profiles of histone modifica-
tions and DNA binding factors in C. elegans from the
modENCODE project (see Materials and methods). We
divided the DNA regions around (± 4 kb) the transcrip-
tion start site (TSS) and transcription termination site
(TTS) of each transcript into small 100-bp bins and

calculated the average signal of the chromatin features
in each bin. As a result, each bin was assigned a matrix
whose elements are the average signals of different fea-
tures in different transcripts (Figure 1). Figure 2a shows
the rich spatial pattern of 16 features in the early
embryonic (EEMB) stage, where the signals are averaged
over all transcripts. We first observed that the upstream
and downstream regions of TSSs and TTSs are clearly
distinct. Most chromatin features have higher signals in
the transcribed regions (downstream of TSSs and
upstream of TTSs). Interestingly, we found that RNA
polymerase II (Pol II) has the strongest binding signal in
regions right after the TTS, rather than within the tran-
scribed region (Figure 2a). The enriched binding signals
right after the TTS may indicate the importance of anti-
sense transcription as a regulatory mechanism for gene
expression [14,33]. Strong Pol II signal was also
observed at regions before the TSS in some other devel-
opmental stages (Figure S1 in Additional file 1), which
was also reported previously in C. elegans by [34], and
was thought to be related to the accumulation of TSS-
associated RNAs in mouse and human [35,36]. The sig-
nal pattern of histone H3 suggests that nucleosomes
have lower occupation density in regions around the
TSS and TTS than within the transcribed regions.
H3K4me2 and H3K4me3 are enriched upstream of the
TSS, consistent with their reported role as histone
marks for active promoters [14]. On the other hand, sig-
nals for H3K9me2 and H3K9me3 are depleted around
TSS compared to neighboring regions, which may
reflect the low density of nucleosomes around the TSS
of genes [28].

Chromatin features exhibit distinct spatial correlation
patterns with gene expression levels
The different chromatin features display distinct spatial
patterns. It is thus worthwhile to explore the relationship
between these patterns and the level of gene expression.
Making use of RNA-seq data obtained from the different
stages of C. elegans, we quantified the expression level of
each gene. For each bin, we then calculated the correlation
between the gene expression levels and the average signals
of each chromatin feature of the bin. Figure 2b shows the
spatial variation of these correlation coefficients around
TSSs and TTSs. According to the correlation patterns,
there are two main types of chromatin features: ones that
are positively correlated with gene expression (such as
H3K79me1, H3K79me2 and H3K79me3); and ones that
are negatively correlated with gene expression (such as
H3K9me2 and H3K9me3). While some features show lar-
gely uniform correlations across the 16-kb regions, some
others are more variable across the regions. For example,
H3K79me2 has a high correlation coefficient (0.65) near
the TSS, but rather a low correlation (0.10) downstream of

Cheng et al. Genome Biology 2011, 12:R15
http://genomebiology.com/2011/12/2/R15

Page 2 of 18



the TTS. It is interesting to observe that the negative fea-
tures tend to have more uniform spatial patterns while the
positive features tend to show greater variation. In addi-
tion, for chromatin features such as H3K79me2, although
the average signal intensity decreases with distance

downstream from the TSS, the correlation between the
feature signal and the expression level remains high. This
pattern suggests that, while some chromatin features have
the strongest average signals only at some highly specific
regions, the differences of their signals between genes with

Figure 1 Schematic diagram of our data binning and supervised analysis. (a) DNA regions around the transcription start site (TSS) and
transcription terminal site (TTS) of each transcript were separated into 160 bins of 100 bp in size. Average signal of each chromatin feature was
calculated for all transcripts, resulting in a predictor matrix for each bin. These predictor matrices were used to predict expression of transcripts
by support vector machine (SVM) or support vector regression (SVR) models. The genome-wide data for chromatin features and gene expression
were generated by the modENCODE project using ChIP-chip/ChIP-seq and RNA-seq experiments, respectively. (b) A summary of datasets used in
our analysis. L, larval; TF, transcription factor; YA, young adult.
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low and high expression levels remain strong over much
broader regions.
We chose the long window size of 4 kb in order to

inspect how fast the signals of the chromatin features fade
out as we move away from the TSS and TTS. Indeed, the
correlations of some chromatin features (for example,
H3K9me3) remain strong a few kilobases away from the
TSS and TTS, and the fading could only be observed at
the 4-kb boundaries. To make sure that our conclusions
are not affected by short genes with some bins having
both the identities of being within 4 kb downstream of the
TSS and within 4 kb upstream of the TTS, we also did the
correlation analysis only on transcripts longer than 8 kb,
and found that the correlation patterns are the same
(Figure S2 in Additional file 2). Also, as the C. elegans gen-
ome is quite compact, the region 4 kb upstream of a TSS
or downstream of a TTS could be overlapping with
another gene. We thus repeated the analysis using tran-
scripts that are at least 4 kb away from any other known
transcripts, and again obtained similar correlation patterns
(Figure S3 in Additional file 3). Furthermore, analysis
based on bins within intergenic regions again resulted in a
similar correlation pattern. Therefore, the high correlation
of gene expression with feature signal at distant locations
does reflect the long-range effects of their regulation,
instead of an artifact caused by chromatin structure of the
nearby genes.

Furthermore, to assess whether the trends we
observed are universal to all developmental stages rather
than specific to the EEMB stage, we repeated the analy-
sis in other stages, including late embryo, larval stages
and young adult. Although the exact values of correla-
tion coefficients vary across stages, the spatial patterns
are consistent in all stages (Figure S4 in Additional file
4). In addition, a large number of genes are associated
with multiple transcripts corresponding to different
alternative splicing isoforms. In many cases, the overlap
between these transcripts is substantial, which might
affect the correlation patterns between chromatin fea-
tures and expression. We thus repeated the correlation
analysis using only genes with a single transcript,
and obtained the same qualitative results (Figure S5 in
Additional file 5).
Among the chromatin features shown in Figure 2,

MES-4 and MRG-1 are factors associated with
X-chromosome inactivation [37,38]. These factors are
supposed to have different binding patterns in the X
chromosome than in autosomes. We therefore analyzed
their correlation patterns in X genes and autosomal
genes separately. As expected, we found that MES-4 and
MRG-4 associate predominantly with autosomal DNAs,
while the dosage compensation complex (DCC) subunits
bind specifically with X-chromosomal DNAs (data not
shown), which is in line with previous reports [19].

Figure 2 Chromatin feature patterns. (a,b) Signal pattern (a) and correlation pattern (b) of each chromatin feature in the 160 bins around the
TSS and TTS (from 4 kb upstream to 4 kb downstream) of worm transcripts at the EEMB stage. In (a), the signal of each chromatin feature for
each bin is averaged across all transcripts. In (b), the Spearman correlation coefficient of each chromatin feature with gene expression levels was
calculated for each bin. Ab1 and Ab2 represent experimental results using different antibodies for a chromatin feature. DNA region from 2 kb
upstream of the TSS to 2 kb downstream of the TTS is shown in the rectangle.
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Consistent with this finding, MES-4 and MRG-4 show
stronger positive correlation with autosomal gene
expression.

Unsupervised clustering reveals general activating and
repressing chromatin features for individual genes
As some chromatin features are positively correlated
with gene expression levels and some are negatively cor-
related, the two groups potentially represent general
active and repressive marks of gene expression. Yet
since these correlations capture only the average beha-
vior across all genes, it is still not clear if these features
are strong indicators of the expression levels of indivi-
dual genes.
In order to examine the relationship between chroma-

tin features and the expression levels of all individual
genes, we performed a two-way hierarchical clustering
of both the chromatin features and the annotated genes,
according to the feature signals at the TSS bins (bin 1).
As shown in Figure 3a, genes can be divided into two
clusters (labeled as H and L, respectively) based on the
signals of the 16 features. We found that the two clus-
ters roughly correspond to genes with high expression
levels (H) and genes with low expression levels (L),
respectively (Figure 3b). These two clusters are charac-
terized by complementary patterns of chromatin fea-
tures. Cluster H is characterized by high signals of 11
features (the right component of the upper dendro-
gram), and low signals for the other 5 features. We note
in particular that highly expressed genes tend to have a
strong H3K36me3 signal, which is consistent with the
role of H3K36me3 as a chromatin mark that activates
transcription of associated genes. Similarly, the well-
known repressive mark H3K9me3 shows a low signal.
Compared to cluster H, genes in cluster L show the
opposite pattern of chromatin signals.
To explore which regions around the TSS and TTS

provide the greatest power in determining gene expres-
sion levels, we repeated the two-way clustering proce-
dure for each of the 160 bins around TSSs and TTSs.
Figure 3c shows the resulting t-statistics. We observe
that the signals slightly downstream of TSSs are the
most informative. In general, the t-statistics decrease as
the distance from the TSS or TTS increases. The decay
is steeper at the region downstream of TTSs.
The above integrative analysis involves all chromatin

features. To examine how each feature individually
affects gene expression, for each feature we performed
hierarchical clustering of the genes based on the collec-
tive signals of the feature at all 160 bins. An example is
shown in Figure 3d, in which signals of the single fea-
ture H3K79me2 at the different bins were used to clus-
ter the genes. As in the case when all chromatin
features were used, the signals from single chromatin

features can divide genes into two clusters (that are not
exactly the same as, but similar to, the ones obtained
from all features) with a significant difference in expres-
sion level (Figure 3e). Again we quantified the power of
each feature in distinguishing genes with high and
low expression levels using t-statistics. As shown in
Figure 3f, apart from a few exceptions (black bars), most
features are informative. The most informative features
are H3K79me2, H3K79me3 and H3K4me2. The infor-
mative features can be further grouped into two classes.
Activating features are those that are positively corre-
lated with gene expression (cyan) and repressive features
are those that are negatively correlated (blue).

Chromatin features can statistically predict gene
expression levels with high accuracy using supervised
integrative models
The above analyses suggest that gene expression levels
can be at least partially deduced from chromatin fea-
tures. To examine how much of gene expression is
determined by chromatin features, we tried to predict
gene expression levels using the features. We started
with the simplified task of distinguishing highly
expressed and lowly expressed transcripts, where the
two classes of transcripts were constructed by discretiz-
ing gene expression levels (see Materials and methods).
We divided all the transcripts into training and testing
sets, and learned a support vector machine (SVM)
model from the signals of all 13 chromatin features of
the training transcripts at a certain bin (Figure 1). The
model was then used to predict to which class each
transcript in the testing set belongs. We repeated the
procedure for all 160 bins, and 100 different random
splitting of the transcripts into training and testing sets
for each bin (see Materials and methods). We repre-
sented the overall performance of the model using the
receiver operating characteristic (ROC) curve and
further quantified the accuracy using the area under the
curve (AUC). Figure 4a shows the ROCs corresponding
to the prediction performance of five different bins.
Compared to random ordering, which would give a
diagonal ROC curve on average with an expected AUC
of 0.5, we observed that all five curves are much better
than random but with diverse performance, which indi-
cates that all the bins are useful to classify gene expres-
sion but they are not equally informative. This result is
consistent with what we have observed using the unsu-
pervised method described above (Figure 3f). Instead of
using SVM, we also learned support vector regression
(SVR) models using similar procedures (see Materials
and methods) to predict expression values directly.
Figure 4b shows that there is a high positive correlation
(0.75) between the predicted levels from an SVR model
and the actual expression levels measured by RNA-seq.
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Figure 3 Hierarchical clustering using either chromatin feature profiles (a-c) or bin profiles (d-f) discriminates highly and lowly
expressed genes. (a) Hierarchical clustering of 16 chromatin features in bin 1 (0 to 100 nucleotides upstream of a TSS). The resulting tree is
split at the top branch, which divides genes into two clusters, cluster H and cluster L, as labeled. (b) Distributions of expression levels of genes
in cluster H (red) and cluster L (green). Expression levels are significantly different between the two clusters according to t-test (P = 3E-202).
Expression levels were measured by RNA-seq (see Materials and methods). (c) T-scores for the differential expression of the top two gene
clusters based on hierarchical clustering of chromatin features in each of the 160 bins. For each bin, hierarchical clustering was performed to
separate genes into two clusters. Expression levels between the two clusters were compared and a t-score calculated to measure the capability
of the bin to discriminate between genes with high and low expression levels. (d) Hierarchical clustering of the genes based on the signal
profiles of H3K79me2 across the 160 bins. The resulting tree is also split at the top branch, leading to two gene clusters. (e) Distributions of
expression levels of genes in the two clusters in (d). The expression levels are significantly different according to t-test (P = 4E-93). (f) T-scores for
the differential expression of the two gene clusters based on hierarchical clustering of bin profiles for each individual chromatin feature. Cyan
and blue colors indicate a significant positive and negative correlation between a chromatin feature and gene expression levels, respectively.
Black color indicates that a chromatin feature could not significantly discriminate between genes with high and low expression levels. To
visualize the clustering, 2,000 randomly selected genes are shown. The data for gene expression levels and chromatin features are from the
EEMB stage.
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This analysis suggests that chromatin features explain at
least 50% of gene expression variation (see Materials
and methods).
We then compared the prediction accuracy of all 160

SVM models learned from the different bins. As shown
in Figure 4c, the models learned from regions around
the TSS (-300 to 500 bp) and upstream of the TTS
(-200 bp to 0 bp) have highest accuracy, with AUC
values greater than 0.9. Prediction accuracy decreases
gradually as we move away from these regions, which
confirms the spatial effects that we observed from the
unsupervised analysis (Figure 3c).
We have also tested more comprehensive models that

combine the chromatin features in 40 bins around the
TSS (-2 kb to 2 kb). These comprehensive models achieve
slightly higher prediction accuracy than those based on
single bins, yet the enhancement is not dramatic, with an
average AUC of 0.94 for the classification model (SVM)
and an average correlation coefficient of 0.75 for the
regression model (SVR) (Figure 6 in Additional file 6).
We then learned SVM models using only features of

individual types. As shown in Figure 5a, the AUC

obtained by using all features (black) is comparable to
the AUCs obtained from models using only particular
subsets of features. Strikingly, the model involving only
the 9 histone modification features is almost as accurate
as the model involving all 16 features. We further
divided the histone modification features into four sub-
sets: modifications on K4, K9, K36 and K79, respec-
tively. While the integrated model with all histone
modifications achieves an AUC value of 0.9, using just
one of the subsets can yield an AUC higher than 0.8
(Figure 5b). In particular, the set H3K79 is found to be
most predictive, which again confirms our previous find-
ing of the importance of these histone modifications in
regulating gene expression (Figure 3f).
The results of the supervised analysis suggest that

chromatin features are not only correlated with expres-
sion but are also predictive of the expression levels of
individual genes with good accuracy and could explain a
large portion of the expression differences between dif-
ferent genes. We note that histone modifications may
have other regions of enrichment that are informative
about gene expression: for instance, the percentage of

Figure 4 Prediction power of the supervised models. (a) ROC curves for five different bins based on the results of the SVM classification
models. (b) Predicted versus experimentally measured expression levels. The SVR regression model was applied to bin 1 for predicting gene
expression levels. (PCC, Pearson correlation coefficient). (c) The prediction accuracy of SVM classification models for all the 160 bins. For each bin,
we constructed an SVM classification model and summarized its accuracy using the AUC score. The AUC scores were calculated based on cross-
validation repeated 100 times for each bin. The red curve shows the average AUC scores (mean of 100 repeats) of the bins and the blue bars
indicate their standard deviations. The positions of the TSS and TTS are marked by dotted lines.
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gene length with strong histone modification signals.
We therefore examined the power of using these fea-
tures for predicting gene expression levels. Specifically,
we calculated the percentage of transcribed regions with
strong signals (>10%) for all genes. Using them as pre-
dictors, we obtained high prediction accuracy (AUC =
0.90). However, a combination of these percentage fea-
tures with the original chromatin features does not lead
to obvious improvement in prediction accuracy, indicat-
ing that they are redundant.

Combination of chromatin features contribute to gene
expression prediction
Both the unsupervised and supervised analyses above
suggest that chromatin features possess a certain level of
redundancy. In the unsupervised clustering (Figure 3a),
different chromatin features show similar signal patterns
around the TSS regions of genes. In the supervised pre-
dictions (Figure 5), high accuracy was achieved by multi-
ple features as well as feature subsets. Though the SVR
model offers good prediction power, it may be instruc-
tive to build a simpler linear regression model to
explore to what extent the chromatin features are
redundant, and to what extent they are interacting in a
combinatorial fashion. Specifically, for each bin, we
modeled the expression level y as a linear combination
of the effects of individual histone modification features
xi and their products xixj:

y x x xi i j

i j

~ +
<
∑∑

We found that among the 66 (12 × 11/2) possible
interactions between the 12 distinct histone modification
features, many interactions are statistically significant.

For example, for bin 1, we detected 12 significant inter-
actions (P < 0.001, linear regression) between the his-
tone modifications (Table S7 in Additional file 7).
To quantify the importance of these interactions in

determining gene expression levels, we compared the
above regression model with a singleton model that
does not contain the interaction terms:

y xi~ ∑
By evaluating the prediction power of the two models

using a cross-validation method, we found that with
respect to the singleton model the interaction model
improves prediction accuracy by 4%. Thus, the contribu-
tion of interactions among chromatin features to gene
expression prediction is not substantial.
We further examined each pair of modifications indivi-

dually to see if there is any redundancy between any of the
modifications. Using simplified models each involving only
two modification features, we found that no two histone
modifications are completely redundant (Table S8 in Addi-
tional file 8). These results were confirmed by a similar
analysis based on mutual information (Figure S9 in Addi-
tional file 9). Two examples are shown in Figure 6. In each
example, we considered a specific pair of histone modifica-
tion features, and divided all genes into four categories
based on the signals of the two features at their TSS bins.
In the first example (Figure 6a), expression levels are the
lowest when both H3K4me3 and H3K36me3 are low but
moderate if either one of them is high. This suggests that
both features are activators. When both features have high
signals, an even higher expression level is observed, show-
ing that the two are not totally redundant. In the second
example (Figure 6b), H3K9me3 is found to repress gene
expression in general, while H3K79me3 is found to activate

Figure 5 Prediction power of the SVM models using the signals from different subsets of chromatin features in the 100 nucleotides
around the TSS (bin 1). The results are based on cross-validation with 100 trials. (a) ALL, all 21 chromatin features; H3, the two H3
features; HIS, the 11 chromatin modification features; XIF, the seven binding profile features for X-inactivation factors; POLII, the binding profile
feature for RNA polymerase II. (b) HIS, the 11 chromatin modification features; H3K79ME, H3K79me1, H3K79me2 and H3K79me3; H3K9ME,
H3K9me2, H3K9me3(Ab1) and H3K9me3(Ab2); H3K36ME, H3K36me2(Ab1), H3K36me2(Ab2) and H3K36me3; H3K4ME, H3K4me3 and H3K4me3.
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gene expression. As expected, a combination of high
H3K9me3 signal and low H3K79me3 signal results in a
lower expression level than when both signals are low.
When the signals of both features are high, we observe a
significant difference in gene expression compared to the
other three cases, indicating that the features contribute to
gene expression regulation in a collective manner.
Our analyses of the interactions between the above

chromatin features only considered binary interactions
between two features. For higher-order relationships invol-
ving more features, it is infeasible to perform the same
type of analyses, as the number of feature combinations
would become intractable. Also, the above analyses only
suggest which features interact with each other, but do

not explain how the features interact. In particular, the
complex correlations between features and gene expres-
sion make it difficult to extract directional relationships
between them (Figure S10 in Additional file 10). We there-
fore used Bayesian networks to study the higher order
relationships between the chromatin features and gene
expression (see Additional file 11 for details).

The chromatin model is developmental stage-specific
We have previously constructed an integrative model
using chromatin features at the EEMB stage of C. elegans
development and used it to predict gene expression levels
at the same stage. How well can we predict gene expres-
sion levels at other developmental stages using the

Figure 6 Co-regulation of transcription by pairs of histone modifications. (a) Categorization of genes into four groups based on signals of
H3K4me3 and H3K36me3: HH (magenta), HL (green), LH (cyan) and LL (blue). The signals of histone marks H3K36me3 and H3K4me3 exhibit a
bimodal feature. Signals are thus classified into H and L by a Gaussian mixture model. The distributions of expression levels of the four gene
groups are shown on the right. (b) Same as (a), based on signals of H3K9me3 and H3K79me3. Same as above, the signal of H3K79me3 is again
classified by a Gaussian mixture model. The signals of H3K9me3 do not display a bimodal feature; signals are classified into H and L based on
whether the value is higher than or lower than the median.
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chromatin feature data from EEMB? To answer this ques-
tion, we applied the model to predict gene expression at
EEMB, L1 (larva stage 1), L2, L3, L4, and adult. Specifi-
cally, the chromatin feature data from EEMB were com-
bined with expression data from a stage to train a SVM
model, which was then used to predict gene expression
levels of other genes at that stage. As shown in Figure 7,
the chromatin model based on EEMB data is able to pre-
dict the expression at other developmental stages with rea-
sonable accuracy (AUC = 0.8). However, the predictions of
gene expression levels in all these stages have lower accu-
racy than the predictions for EEMB itself. This result sug-
gests that signals from chromatin features are
developmental stage-specific and regulate biological pro-
cesses in a dynamic manner depending on the particular
stage. The stage specificity is more apparent when we
apply the model to genes that are differentially expressed
between stages. For example, we have identified 4,042
genes that differ in expression levels by at least four-fold
between EEMB and L3 stages. Using the EEMB stage
chromatin model to predict the expression level of these
genes, the prediction accuracy further decreases (AUC =
0.70).

Chromatin features show different correlation patterns
with different genes in an operon
In C. elegans some neighboring genes are organized into
operons. The genes in an operon are co-transcribed as a
polycistronic pre-messenger RNA and processed into
monocistronic mRNAs [39,40]. Here we investigate the

differential signals of chromatin features among genes
in operons and how this organization affects their
expression levels. We collected the first, second and last
genes in 881 C. elegans operons and calculated the sig-
nals of chromatin features in each of the 160 bins
around their annotated TSS and TTS. We observed
strong correlations between expression levels and chro-
matin feature signals for the first genes (Figure 8). In
comparison, the correlation patterns for the second and
last genes of the operons are not as apparent (Figure
S12 in Additional file 12). The weaker correlations
could be caused by the lack of signals for some histone
modification types. As we observed, the mark for active
promoters, H3K4me3, demonstrates strong signals
around the TSS of the first genes, which is the shared
promoter of genes in the same operon. In the upstream
region of the internal genes, the H3K4me3 signal is
often relatively weak. Alternatively, the weak correlation
for internal genes may also be explained by the inten-
sive post-transcriptional regulation of these genes,
which can not be captured by our chromatin feature
based model [41]. In fact there is only weak correlation
(Pearson correlation coefficient (PCC) = 0.10) between
the expression levels of the first and the second genes.
Moreover, on average the first genes are two-fold and
three-fold more highly expressed than the second genes
and the last genes, respectively. Taken together,
although genes in the operons are co-transcribed, they
are regulated post-transcriptionally to achieve distinct
expression levels [41].

Figure 7 Developmental stage specificity of the chromatin model. The EEMB model was constructed using the chromatin features and
gene expression data both at the EEMB stage. The model was then used to predict gene expression levels at the EEMB stage and five other
developmental stages: L1, L2, L3, L4 and adult. ROC curves are plotted based on the results of 100 trials of cross-validation. For each trial, the
dataset was randomly separated into two halves: one half as training data and the other as testing data to estimate the accuracy of the model.
The values in parentheses are AUC scores.
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Chromatin models learned from protein-coding genes are
able to predict microRNA expression levels with high
accuracy
Do chromatin features influence transcription of micro-
RNAs in the same way as they do with protein-coding
genes? As a way to study the similarity of the two
mechanisms, we investigated the effectiveness of the
chromatin model learned from protein-coding genes in
predicting microRNA expression. Since precise TSSs are
not available for most worm microRNAs, we calculated
the signals of chromatin features in the genomic regions
corresponding to pre-microRNAs, and used them as the
input features for our chromatin model.

We predicted the expression levels of 162 worm
microRNAs with genomic locations obtained from miR-
BASE [42]. We then compared our predictions with the
experimental measurements performed by Kato et al.
[43]. As shown in Figure 9, our predictions are in good
agreement with the experimental results in the EEMB
stage (see also the prediction results for the L3 stage in
Figure S13 in Additional file 13). Some microRNAs
locate within or near gene loci, which may confound the
prediction of microRNA expression. To address this
issue, we also checked the prediction accuracy using
only microRNAs that are away from any known gene,
and obtained similar prediction accuracy (PCC = 0.62).

Figure 8 Correlation patterns of H3K4me3 and H3K79me3 in the 160 bins around the TSS and TTS (from 4 kb upstream to 4 kb
downstream) with the expression levels of the first, second and last genes of 881 C. elegans operons.

Figure 9 Prediction of expression levels of microRNAs at the EEMB stage. (a) Predicted expression levels of the experimentally measured
highly and lowly expressed microRNAs based on small RNA-seq results. Expression levels of microRNAs at the EEMB stage were predicted using
an SVR regression model trained on data for protein-coding genes at the same stage. (b) Predicted versus experimentally measured expression
levels of microRNAs at the EEMB stage. R is the Pearson correlation coefficient.
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It is interesting to see that the expression of micro-
RNAs can be accurately predicted using a chromatin
model trained by data for protein-coding genes. Consis-
tent with previous reports on microRNA transcriptional
regulation [44,45], this result suggests that microRNAs
and protein-coding genes share a similar mechanism of
transcriptional regulation by chromatin modifications.
As with the prediction of expression levels of protein-

coding genes, the prediction accuracy of microRNA
expression also shows developmental stage specificity.
When the signals of the chromatin features from the
EEMB stage were used, the resulting model achieved the
best accuracy when predicting microRNA expression at
the same stage (PCC = 0.60), whereas for stages L1, L2,
L3, L4 and adult, the accuracy is much lower (PCC <
0.50) (Figure S14 in Additional file 14). Similarly, when
chromatin features at L3 were used to train the model,
the model achieved better prediction results in L3 than
in other stages.

Application to other organisms
The models described above provide a useful tool to
integrate gene expression and chromatin data. Currently,
the C. elegans dataset is the best one to demonstrate the

utility of the method and we have focused on it here.
However, we know that further integrated genomic
datasets (comprising matched genome-wide histone fea-
tures and expression measurements) are coming in
many other organisms. Thus, to illustrate the broad uti-
lity of our method, we demonstrate here how readily it
can be applied in other contexts. Specifically, we have
packaged our methods as a tool and applied it to data
sets from four other organisms: yeast, fruit fly, mouse
and human. The results indicate that chromatin fea-
tures, in particular histone modifications, are highly cor-
related to gene expression levels in all these organisms
(Figure 10). More importantly, the relative statistical
contribution of each histone modification type to
expression is similar in tested organisms (and also in
different tissues, cell-lines, and developmental stages).
For example, H3K4me3 signals around the TSS of genes
show high predictive capability in all the analyses we
have performed. We also found that the models based
on expression levels measured by RNA-seq achieved
higher prediction accuracy than those by microarrays,
consistent with the higher measurement accuracy of
RNA-seq compared to microarrays. Our method can, of
course, be applied to multiple data sets in each species

Figure 10 Prediction accuracy of the chromatin model in four other species. (a-d) Expression levels of genes are predicted using the SVR
method. In yeast, average signals of chromatin features from the TSS to 500 bp upstream were used as predictors (a); in the other species,
signals of chromatin features within the bin at the TSS (bin 1) were used as predictors (b-d). E4-8 h: embryonic stage at 4 to 8 h; ESC, embryonic
stem cell.
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(for example, different developmental stages in fruit fly).
Figure 10 shows only a single illustrative example for
each species. We only show initial statistical analysis
here, further biological interpretation would, of course,
be the subject of future studies.

Discussion
In this study, we present a systematic analysis of the
genome-wide relationship between chromatin features
and gene expression. We have shown that, in terms of
gene expression prediction, information from different
histone modification features is considerably redundant.
Here in this paper, we use the modENCODE worm data
to exemplify our analysis. In fact, we have applied our
methods to two other histone modification data sets:
human CD4+ T-cell data [46] and mouse embryonic
stem cell deta [47]. In both data sets, we found that his-
tone modifications account for more than 50% of varia-
tion of gene expression and distinct modification types
were redundant for predicting gene expression levels.
This is consistent with a recent study by Karlic et al.
[48] performed in human CD4+ T cells.
The existence of a ‘histone code’ has been intensively

debated since the time that the hypothesis was first pro-
posed 10 years ago [24,25]. Previous studies have
demonstrated both pros and cons for the hypothesis
[11,28,49,50]. Indeed, for some specific genes, it has
been demonstrated that the patterns of a subset of his-
tone marks could be viewed as an accurate predictor of
gene regulation in non-trivial manners [50]. Neverthe-
less, the readout of these patterns is largely gene specific
and dependent on the cellular context, which makes it
difficult for these cooperative effects to be viewed as a
universal ‘code’. Therefore, by using the term histone
code, we might have underestimated the complexity and
over-generalized the meaning of chromatin modifica-
tions and their roles in biological processes. On the
other hand, at a global level, previous studies have
reported substantial correlations among distinct chro-
matin features [13,14,17,28,51]. These results, and the
information redundancy we observed, are consistent
with the simple ‘histone code’ argument [28], in which
the combinatorial effects are cumulative rather than
synergistic.
We have shown that chromatin features are strongly

correlated with gene expression. Nevertheless, it should
be noted that our models could not reveal if histone
modifications are the ‘cause’ or ‘consequence’ of tran-
scription. In fact, both directions of causality have been
previously reported. Some studies have proposed that
some histone modifications are the memory of past
transcriptional events resulting from previous active
transcription [52-54]. For instance, it has been shown
that phosphorylation in the tail of Pol II is required for

H3K4me3, revealing that it is a direct consequence of
Pol II passing through the TSS [55]. Other studies, how-
ever, have shown that chromatin modification changes
precede changes in gene expression [56]. A recent study
in human T cells suggested that, for both protein-coding
and miRNA genes, activating histone marks were
already in place before induction of expression, and
these marks were maintained even after the genes were
silenced [45]. This finding shows that histone modifica-
tion can be both cause and consequence of gene tran-
scription, and that a full explanation will require
incorporation of additional data. Generalizing our model
to follow a time course of changing histone modifica-
tions might be helpful for understanding this issue.
The supervised chromatin model trained from expres-

sion data for protein-coding genes can accurately predict
the abundance of both protein-coding genes and micro-
RNAs, which suggests that microRNAs and protein-cod-
ing genes share similar mechanisms of transcriptional
regulation by chromatin modifications [44,45]. To pre-
dict the expression levels of microRNAs, we used the
signal of chromatin features around the start sites asso-
ciated with pre-microRNAs, which might be several
kilobases from the actual TSS of microRNA genes.
Despite this caveat, our model still achieved high predic-
tion power. We expect to obtain more accurate predic-
tions if more precise annotation for microRNA genes
becomes available in the future.
In summary, we have presented a series of supervised

and unsupervised methods for analyzing multiple
aspects of the regulation of gene expression by chroma-
tin features. Apart from predicting gene expression,
these methods can be used to address important biologi-
cal questions such as combinatorial regulation and
microRNA transcription. These and other statistical
methods will be essential to gaining new understanding
of biological processes from the tremendous amount of
data that will soon be made available by large collabora-
tive projects such as modENCODE.

Materials and methods
Datasets and gene annotation
Expression levels for all annotated worm transcripts at dif-
ferent stages of development, including EEMB, mid-L1,
mid-L2, mid-L3, mid-L4 and young adult stages, were
quantified using RNA-seq. Pol II binding across the gen-
ome at different stages was profiled using ChIP-seq. All the
other chromatin features were profiled using ChIP-chip
experiments. These chromatin features include histone H3
occupation, histone methylations (H3K4me2, H3k4me3,
H3K9me2, H3k9me3, H3k27me3, H3K36me2, H3K36me3,
H3K79me1, H3K79me2 and H3K79me3), binding of
dosage compensation complex (DCC) proteins (SDC2,
SDC3, DPY27, DPY28 and MIX1) and other X-
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chromosome inactivation factors (MES4 and MRG1). For
some chromatin features such as H3K9me3, biological
replicates using different antibodies were available. Profiles
of these chromatin features were measured for different
developmental stages, in particular at EEMB and L3 stages.
A list of the data, with their Gene Expression Omnibus IDs
can be found in Additional file 15. All these data are avail-
able from the modENCODE website at [57]. Operon infor-
mation for C. elegans was obtained from a previous study
by Blumenthal et al. [39]. The dataset contains a total of
881 operons with 2.6 genes in each of them on average.
MicroRNA expression levels at different developmen-

tal stages of C. elegans were obtained from small RNA-
seq measurements performed by Kato et al. [43]. Anno-
tation of worm transcripts was downloaded from
WormBase at [58,59]. Annotation of nematode micro-
RNAs was downloaded from the microRNA database
miRBASE at [42,60]. Assembly version WS180 of C. ele-
gans was used for gene and microRNA annotations and
data processing of all the chromatin features.

Binning DNA regions
We obtained the genomic locations and structures of
27,310 protein-coding transcripts of C. elegans from
WormBase. The contribution of each chromatin feature
to gene expression is thought to be affected by many
factors, in particular its position relative to the TSS. We
therefore divided the DNA region from 4 kb upstream
to 4 kb downstream of the TSS of each transcript into
80 small bins, each of 100 bp in size. The DNA region
around the TTS of each transcript was also divided into
80 100-bp bins. For each bin, we calculated the average
signal of each chromatin feature across all transcripts.
Specifically, for chromatin features profiled by ChIP-
chip experiments, the signals of the probes that fall into
a bin were averaged. For features profiled by ChIP-seq
experiments, the number of reads that cover a bin was
counted and weighted according to their overlap with
the bin. We note that for short transcripts less than 8
kb in length, some bins around the TSS and TTS over-
lap, and for transcripts representing alternative splicing
isoforms of the same gene or located close to each other
in the genome, their bins can also overlap. To ensure
these issues do not affect our main findings, we have
performed analysis using only genes that are longer than
8 kb and genes that are far away from coding genes (see
main text). It should also be noted that the precise TSS
and TTS of worm transcripts are largely unknown and
the locations used here usually represent the start and
end positions of the protein-coding regions.

Hierarchical clustering
The data processing described above results in a matrix
An × m for each of the 160 bins, where n is the number

of transcripts and m is the number of chromatin fea-
tures. To make the signals for different chromatin fea-
tures comparable, we normalized the columns of A by
subtracting the median and then divided by the standard
deviation of each column across all transcripts. We per-
formed hierarchical clustering analysis using the normal-
ized matrix for a given bin. To evaluate the capability of
a bin to discriminate between genes with high and low
expression levels, we divided the transcripts into two
clusters by splitting the resulting hierarchical tree at the
top level. The expression levels of transcripts in the two
clusters measured by RNA-seq experiments were com-
pared using t-test. We repeated this procedure for all
160 bins, which resulted in a t-score for each bin. Those
t-scores reflect the capability of chromatin features in
these bins to separate genes with low and high expres-
sion levels.
Similarly, given a specific feature, we performed hier-

archical clustering using its signals across all 160 bins.
The clustering analysis was conducted for all chromatin
features, and the capability of each feature to predict
gene expression was evaluated and compared by their t-
scores calculated as described above.

Supervised models for gene expression prediction
We constructed supervised learning models to integrate
the chromatin features for gene expression prediction.
In principle, the chromatin features of each of the 160
bins could contribute to regulation of gene expression.
We therefore constructed the model in a bin-specific
manner to investigate the relative importance of each
bin for regulation of gene expression. We devised both
classification and regression models, implemented by
using the SVM and SVR [61] methods, respectively.
In the classification model the expression levels of

transcripts at a particular developmental stage (mea-
sured by RNA-seq and quantified as RPKM (reads per
kilobases per million mapped reads)) were discretized
into two classes, with high and low expression level,
respectively, by setting the median expression levels as
the cutoff values. The chromatin features in a given bin
were then used as classifiers to predict the two classes.
The prediction power of the classification model was
evaluated using cross-validation. Specifically, we split the
whole dataset into two halves, the training data and the
testing data. The SVM model was first trained on the
training data and then used to predict the classes of
expression levels of the transcripts in the testing data.
The predicted classes at various thresholds were com-
pared with their actual classes to calculate the sensitivity
(also called true positive rate, the proportion of actual
positives that are correctly identified) and specificity
(also called true negative rate, the proportion of nega-
tives that are correctly identified). The tradeoff between
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sensitivity and specificity can be best visualized as a gra-
phical plot of the sensitivity against 1 - specificity, which
is called a ROC curve. The area under the ROC curve
(AUC) is a frequently used summary statistic for mea-
suring the prediction power of classification models.
In the regression model, we directly predicted the expres-

sion levels of transcripts rather than classifying them into
two broad expression categories. The prediction power of
the regression model was also checked using cross-valida-
tion. The SVR model was trained on the training data and
applied to the testing data. Then the predicted expression
levels for transcripts in the testing data were compared
with their actual levels measured by RNA-seq experiment.
The correlation between predicted and actual expression
level indicates the prediction power of the model.
In a linear regression model, the square of the correla-

tion (R2) between the predicted values and the actual
values is equal to the fraction of total variance in the
observed data explained by the predictions. We used
this quantity to estimate how much variation of gene
expression can be explained by the chromatin features.
To estimate the predictive power of classification and

regression models for each of the 160 bins, we repeated
the cross-validation procedure 100 times. The mean and
standard deviation of the resulting 100 AUC scores
were calculated for each bin as a measurement of the
predictive power of the SVM classification model. Simi-
larly, the accuracy of the SVR model for a bin was
reflected by the mean and standard deviation of the 100
correlation coefficients.

Detecting combinatorial effects of chromatin features
using linear models
To investigate the interaction between chromatin fea-
tures, we constructed and compared the following two
linear models:

y x x xi i j

i j

~ ∑ ∑+ ( )
<

Interaction model

y xi~ ∑ ( )Singleton model

The Interaction model takes into account the interac-
tion terms. Based on the Interaction model, we identi-
fied significant interactions in each bin.
The power of the two models for predicting gene

expression was evaluated by cross-validation. Data were
randomly split into training and testing data sets. The
models were trained on the training model and then
applied to the testing data for validation. The accuracy of
the models was measured by the correlation between pre-
dicted expression levels and experimental measurement.

To investigate the interactions among pairs of chro-
matin features, we constructed the simplified models
involving only two features:

y x x x xi j i j~ + +

A significant interaction term would indicate that the
interaction between the two features has a significant
effect on gene expression.

Predicting expression levels of microRNAs
We downloaded the annotation of 162 C. elegans micro-
RNAs from the miRBASE database [42]. For most micro-
RNAs, the annotation provides no information about the
TSSs. Instead, only the start and end positions of the cor-
responding pre-microRNAs (about 100 nucleotides in
length) are available. To predict the expression levels of
microRNAs, we calculated the signals of all chromatin fea-
tures within the associated pre-microRNAs and applied
our model trained on chromatin features associated with
protein-coding genes. We applied both the SVM classifica-
tion and the SVR regression models to predict microRNA
expression. The resulting predictions were validated using
measured microRNA expression levels from small RNA
sequencing performed by Kato et al. [43].

Data sets for other organisms
In yeast, the expression levels of genes were measured
by microarrays and available from Wang et al. [62]; the
histone modification data are performed by Pokholok et
al. [63]. In fruit fly, the gene expression and chromatin
data at 12 different developmental stages were obtained
by using RNA-seq and ChIP-seq experiments, respec-
tively, which are available from the modENCODE web-
site at [57]. In mouse, the expression data for embryonic
stem cells and neural progenitor cells were from Cloo-
nan et al. [64]; and the histone modification data for
matched cell lines were obtained from Mikkelsen et al.
[47] and Meissner et al. [65]. In human, the gene
expression data in K562 and GM12878 cell lines were
performed by Mortazavi et al. [66], and chromatin data
were downloaded from the ENCODE project at [2,67].

Availability of our code
All the analysis described in this paper was performed
using the R package. The related R code and example
data sets are available for download from [68].

Additional material

Additional file 1: Signal patterns of Pol II around TSS and TTS
regions (from -4 kb to 4 kb) at different developmental stages. At
each stage, the signals were normalized by subtracting the average and
then divided by the standard deviation of the signals over all the 160
bins. The location of the TSS and TTS are marked as dotted lines.
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Additional file 2: Correlation patterns of chromatin features with
gene expression at the EEMB stage based on long transcript genes
only. Only genes longer than 8 kb were used for correlation
computations so that there is no overlap between the TSS and TTS bins.

Additional file 3: Correlation patterns of chromatin features with
gene expression at the EEMB stage based on transcripts that are
far away from any other transcripts. Only the transcripts that are at
least 4 kb away from any other transcripts were used for correlation
computations so that there is no overlap between bins of nearby
transcripts.

Additional file 4: Correlation patterns of chromatin features with
gene expression at the L3 stage. Correlation was calculated based on
long transcripts (>8 kb).

Additional file 5: Correlation patterns of chromatin features with
gene expression at the EEMB stage based on single-transcript
genes only.

Additional file 6: Prediction of gene expression using chromatin
features in all the 40 bins around the TSS (from -2 kb to 2 kb). (a)
ROC curve of the SVM classification model. (b) Predicted expression
levels versus actual expression levels measured by RNA-seq experiment.
PCC, Pearson correlation coefficient.

Additional file 7: Interaction between all possible pairs of histone
modifications. Interaction between all possible pairs of histone
modification as indicated by linear model in bin 1. For each pair, both
the results of linear models with the interaction terms (Interaction
models) and without the interaction terms (Singleton models) are
shown.

Additional file 8: The significant interactions between chromatin
features based on a linear model. The significant interactions between
chromatin features based on a linear model with 12 different chromatin
features and their pairwise interaction terms.

Additional file 9: Mutual information between expression and
pairwise histone modification signals. For each pair of histone
modifications (denoted as H1, H2), the heat map shows the normalized
mutual information I(E, H1 AND H2)/max(I(E,H1),I(E,H2)). For pairs such as
H3K4me2 and K4K36me3, the combination of two features gives a
higher predictive power than the two individual features.

Additional file 10: Interactions among chromatin features and
expression. (a) Node colors indicate the correlation of the
corresponding features with gene expression. Edge colors indicate the
correlation between the two connected features. Only interactions with a
strong correlation (|PCC| >0.3) are shown. (b) The directional
relationships inferred from Bayesian network analysis. Arrow sizes indicate
the confidence scores of the directed edges. Only interactions with a
confidence score (combined for both directions) of at least 80% are
shown.

Additional file 11: Supplementary documents about the Bayesian
network analysis and so on. The file contains additional information
about the Bayesian network analysis.

Additional file 12: Correlation patterns of chromatin features in 40
bins around the TSS and TTS (from -2 kb to 2 kb) of the first and
the second genes in 881 worm operons.

Additional file 13: Predicted expression levels of microRNAs at
stage L3. MicroRNAs are divided into high (red) and low (green) groups
based on their measured expression levels in small RNA-seq experiments.

Additional file 14: Stage specificity of chromatin models for
microRNA expression predictions. The chromatin model was trained
using the chromatin and expression data of protein-coding genes at the
EEMB stage. The model was then used to predict microRNA expression
levels at six stages. R indicates the Pearson correlation coefficient
between the predicted expression levels and the actual expression levels
from RNA-seq experiments.

Additional file 15: Gene Expression Omnibus accession ID of data
sets used in this work.
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AUC: area under the curve; bp: base pairs; ChIP: chromatin
immunoprecipitation; ChIP-chip: ChIP-on-chip; ChIP-Seq: ChIP-sequencing;
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