
7

A Measurement Study of Insecure JavaScript Practices on the Web

CHUAN YUE, University of Colorado Colorado Springs
HAINING WANG, The College of William and Mary

JavaScript is an interpreted programming language most often used for enhancing webpage interactivity
and functionality. It has powerful capabilities to interact with webpage documents and browser windows,
however, it has also opened the door for many browser-based security attacks. Insecure engineering practices
of using JavaScript may not directly lead to security breaches, but they can create new attack vectors and
greatly increase the risks of browser-based attacks. In this article, we present the first measurement study
on insecure practices of using JavaScript on the Web. Our focus is on the insecure practices of JavaScript
inclusion and dynamic generation, and we examine their severity and nature on 6,805 unique websites. Our
measurement results reveal that insecure JavaScript practices are common at various websites: (1) at least
66.4% of the measured websites manifest the insecure practices of including JavaScript files from external
domains into the top-level documents of their webpages; (2) over 44.4% of the measured websites use the
dangerous eval() function to dynamically generate and execute JavaScript code on their webpages; and (3) in
JavaScript dynamic generation, using the document.write() method and the innerHTML property is much
more popular than using the relatively secure technique of creating script elements via DOM methods. Our
analysis indicates that safe alternatives to these insecure practices exist in common cases and ought to be
adopted by website developers and administrators for reducing potential security risks.

Categories and Subject Descriptors: H.3.5 [Information Storage and Retrieval]: Online Information
Services—Web-based services; H.4.3 [Information Systems Applications]: Communications Applica-
tions—Information browsers; I.7.2 [Document and Text Processing]: Document Preparation—Scripting
languages; K.6.5 [Management of Computing and Information Systems]: Security and Protection—
Unauthorized access

General Terms: Design, Experimentation, Languages, Measurement, Security

Additional Key Words and Phrases: JavaScript, execution-based measurement, security, same origin policy,
AST tree matching, Web engineering

ACM Reference Format:
Yue, C. and Wang, H. 2013. A measurement study of insecure JavaScript practices on the web. ACM Trans.
Web 7, 2, Article 7 (May 2013), 39 pages.
DOI: http://dx.doi.org/10.1145/2460383.2460386

1. INTRODUCTION

Security is an important aspect of Web engineering, and it should be taken into serious
consideration in the development of high-quality Web-based systems [Ceri et al. 2002;
Kappel et al. 2006; Mendes and Mosley 2005; Murugesan and Deshpande 2001; Powell
et al. 1998]. In many cases, however, security does not receive sufficient attention due
to the complexity of Web-based systems, the ad hoc processes of system development,

A short version of this article appears in Proceedings of the International World Wide Web Conference [Yue
and Wang 2009].
Authors’ addresses: C. Yue (corresponding author), University of Colorado, Colorado Springs; email: cyue@
uccs.edu; H. Wang, The College of William and Mary.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1559-1131/2013/05-ART7 $15.00

DOI: http://dx.doi.org/10.1145/2460383.2460386

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

7:2 C. Yue and H. Wang

and even the fact that many designers or developers lack security knowledge on Web
development techniques. It is not a surprise, therefore, that website security breaches
are common [Suh 2005] and Web applications are more susceptible to malicious attacks
than traditional computer applications [Rossi et al. 2007].

Browser-based attacks have posed serious threats to the Web in recent years. Ex-
ploiting the vulnerabilities in Web browsers [Reis et al. 2006; Chen et al. 2007] or
Web applications [Huang et al. 2004; Kals et al. 2006], attackers may directly harm a
Web browser’s host machine and user through various attacks such as drive-by down-
load [Moshchuk et al. 2006; Wang et al. 2006; Provos et al. 2008; Egele et al. 2009;
Cova et al. 2010; Canali et al. 2011], cross-site scripting [CERT 2000; Fogie et al.
2007], cross-site request forgery [SANS 2007; Barth et al. 2008a], phishing [Jakobsson
and Myers 2006; Dhamija et al. 2006; Yue 2012; Yue and Wang 2010], password crack-
ing or stealing [Florêncio and Herley 2007; Stone-Gross et al. 2009; Komanduri et al.
2011; Zhao and Yue 2013], and Web privacy attacks [Jackson et al. 2006; Bortz et al.
2007]. Attackers may even use browsers to indirectly launch large-scale distributed
attacks against Web servers [Lam et al. 2006] or propagate Internet worms [Livshits
and Cui 2008].

Most of these browser-based attacks are closely tied with JavaScript, which is an
interpreted programming language most often used for client-side scripting. JavaScript
code embedded or included in HTML pages runs locally in a user’s Web browser, and
is mainly used by websites to enhance the interactivity and functionality of their
webpages. However, because JavaScript is equipped with a powerful and diverse set of
capabilities in Web browsers [Flanagan 2006], it has also become the weapon of choice
for attackers.

Modern Web browsers impose two restrictions to enforce JavaScript security: the
sandbox mechanism and the same-origin policy. The former limits JavaScript to execute
only in a certain environment without risking damage to the rest of the system, while
the latter prevents JavaScript in a document of one origin from interacting with another
document of a different origin [Flanagan 2006; WikiSOP 2011]. Unfortunately, most
JavaScript-related security vulnerabilities are still the breaches of either of these two
restrictions [WikiJS 2011]. Some of these vulnerabilities are due to Web browser flaws,
but the majority of them have been attributed to the flaws and insecure practices of
websites [SANS 2007; Symantec 2008].

A great deal of attention has been paid to the JavaScript-related security vulner-
abilities such as cross-site scripting [Fogie et al. 2007; SANS 2007; Vogt et al. 2007;
Wassermann and Su 2008; Symantec 2008; Kirda et al. 2009; Hooimeijer et al. 2011;
WikiXSS 2011] that could directly lead to security breaches. However, little attention
has been given to websites’ insecure practices of using JavaScript on their webpages.
Similar to websites’ other insecure practices such as using the customers’ social secu-
rity numbers as their login IDs [Falk et al. 2008], insecure JavaScript practices may
not necessarily result in direct security breaches, but they could definitely cultivate
the creation of new attack vectors.

In this work, we present the first measurement study on insecure practices of using
JavaScript at different websites. We mainly focus on two types of insecure practices:
insecure JavaScript inclusion and insecure JavaScript dynamic generation. We define
the first type of practices as using the src attribute of a <script> tag to directly or
indirectly include a JavaScript file from an external domain into the top-level document
of a webpage. A top-level document is the document loaded from the URL displayed in
a Web browser’s address bar. By “directly”, we mean that the <script> tag belongs to
the top-level document, and by “indirectly”, we mean that the <script> tag belongs to
a sublevel frame or iframe document whose origin is the same as that of the top-level
document. Either directly or indirectly, the included scripts will inherit the origin of

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

A Measurement Study of Insecure JavaScript Practices on the Web 7:3

the top-level document and will obtain maximum permissions to control the top-level
document and the browser window; therefore, both cases should be considered in our
measurement to ensure the completeness of our analysis. We define the second type
of practices as using dangerous techniques such as the eval() function to dynamically
generate new scripts. Both types of insecure practices create new vectors for attackers
to inject malicious JavaScript code into webpages and launch attacks such as cross-site
scripting and cross-site request forgery.

The primary objective of our work is to examine the severity and nature of these
two types of insecure JavaScript practices on the Web. To achieve this goal, we de-
vised an execution-based measurement approach. More specifically, we instrumented
the Mozilla Firefox 2 Web browser and visited the homepages of 6,805 popular web-
sites in 15 different categories. The instrumented Firefox nonintrusively monitors the
JavaScript inclusion and dynamic generation activities on these webpages, and it pre-
cisely records important information for offline analysis.

Our measurement results reveal that insecure JavaScript inclusion and dynamic
generation practices are widely prevalent among websites. At least 66.4% of the mea-
sured websites have the insecure practices of including scripts from external domains
into the top-level documents of their homepages. Over 74.9% of the measured web-
sites use one or more types of JavaScript dynamic generation techniques, and insecure
practices are quite common. For example, eval() function calls exist at 44.4% of the
measured websites. Using the document.write() method and the innerHTML property
is much more popular than using the relatively secure method of creating JavaScript
elements via DOM (Document Object Model) [W3CDOM 2011] methods. Our results
also show that around 94.9% of the measured websites register various event han-
dlers on their homepages, implying that the captured insecure JavaScript practices in
inclusion and dynamic generation are likely conservative estimates.

The main contribution of our work is threefold. First, we introduce a browser in-
strumentation framework that enables us to capture essential JavaScript execution
behavior on webpages. Not only can this framework measure the insecure JavaScript
practices, it can also examine other JavaScript execution characteristics such as func-
tion call patterns and code (de)obfuscation activities. Second, we present a classification
method to analyze and classify different types of dynamically generated JavaScript
code. By extracting the AST (Abstract Syntax Tree) trees of scripts and performing
AST signature creation and matching, our classification method can effectively as-
sist us in understanding the structural information of the hundreds of thousands of
dynamically generated scripts. Third, our measurement study sheds light on the in-
secure JavaScript practices and especially reveals the severity of insecure JavaScript
inclusion and dynamic generation practices on the Web. Our in-depth analysis further
indicates that safe alternatives to these insecure practices do exist in common cases.
We therefore suggest website developers and administrators pay serious attention to
these insecure engineering practices and use safe alternatives to avoid them.

The remainder of this article is structured as follows. Section 2 explains why the
two types of JavaScript practices are insecure. Section 3 introduces our measurement
and analysis methodologies. Section 4 describes the dataset of this study. Section 5
presents and analyzes our measurement results. Section 6 reviews related work, and
finally, Section 7 concludes the article.

2. BACKGROUND

In the same-origin policy, the origin of a document is defined using the protocol, domain
name, and port of the URL from which the document is loaded. It is important to real-
ize that this policy does not limit the origin of a script itself. Although JavaScript code
cannot access another document loaded from a different origin, it can fully access the

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

7:4 C. Yue and H. Wang

document in which it is embedded or included even when the code has a different origin
than the document [Flanagan 2006]. Including scripts from an external domain into
the top-level document of a webpage is very dangerous because it grants the scripts the
maximum permissions allowed to control the webpage and the browser window. There-
fore, if the author of a script file or the administrator of a script hosting site is insincere
or irresponsible, insecure JavaScript inclusion practices could lead to serious security
and privacy breaches. Moreover, script hosting sites could become attractive targets of
attacks, especially when their JavaScript files are included by multiple websites. To
lower the potential risks, websites should avoid external JavaScript inclusion by using
internal JavaScript files from the same sites when possible. Otherwise if external in-
clusion is really inevitable, for example, some advertising sites or traffic analysis sites
may necessitate it [Oda et al. 2008], external included scripts should be retrieved using
HTTPS connections and should be restricted within a sublevel HTML frame or iframe
document whose origin is different from that of the top-level document.

The eval() function takes a string parameter and evaluates it as JavaScript code. This
function is dangerous because it executes the passed script code with the privileges of
the function’s caller [EvalMDC 2011]. Therefore, attackers may endeavor to inject ma-
licious code into the evaluated string in order to take advantage of this capability.
Meanwhile, since scripts are dynamically generated and evaluated, it is very challeng-
ing to effectively filter out maliciously injected code [Jim et al. 2007; Reis et al. 2006;
Yu et al. 2007]. Eval() should be avoided1 if at all possible, and its safe alternatives
should be used [Willison 2005; EvalMDC 2011]. Other JavaScript dynamic generation
techniques such as using the document.write() function and the innerHTML property
also pose similar security risks, as discussed in Section 5.

Once attackers have successfully exploited these insecure practices and injected
their malicious JavaScript code, they can easily launch severe attacks such as cross-
site scripting and cross-site request forgery. These attacks can be used to conduct
many malicious activities such as account hijacking, user behavior tracking, denial-of-
service attacking, and website defacing. Therefore, insecure engineering practices of
using JavaScript should be thoroughly investigated, their risks should be highlighted
to Web developers, and safe alternatives should be used to avoid them.

3. METHODOLOGY

We devised an execution-based measurement approach to study the insecure
JavaScript practices on the Web. Our strategy is to first use an instrumented Web
browser to obtain actual JavaScript execution trace information on different web-
pages, and then use offline analysis to characterize and understand various JavaScript
practices. An alternative approach is to simply perform static analysis on webpages.
However, this approach suffers the problem of undecidability and is unable to precisely
determine which scripts will be generated and executed. In contrast, our approach
allows us to effectively capture the dynamics of webpages and JavaScript code in their
real runtime environments. Figure 1 gives an overview of our instrumentation frame-
work and analysis toolkit.

3.1. Instrumentation Framework

To achieve an accurate and efficient measurement, we employed the source-code in-
strumentation technique and instrumented the most popular open-source Web browser,
Mozilla Firefox. Our instrumentation method is similar to program tracing, which is
a well-known approach for monitoring program behavior and measuring program per-
formance. We followed a few rules suggested in Ball and Larus [1994] to minimize

1Searching “eval is evil” on the Web for many discussions.

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

A Measurement Study of Insecure JavaScript Practices on the Web 7:5

Web Browser

Instrumented
SpiderMonkey

JavaScript
Engine

Offline Analysis Toolkit

Instrumented
Content Module

Instrumented
DOM Module

JavaScript Code Classification Tools

Other Tools

AST Tree
Extraction

=

a +

b c

AST Signature
Creation and

Matching

Web
Pages

Trace
Files

AST
Signature

Categorization

Fig. 1. Overview of the instrumentation framework and analysis toolkit.

instrumentation overhead. More specifically, we attempted to insert less instrumen-
tation code and place the code only at necessary points with low execution frequency.
In terms of “less instrumentation code”, we mean that the code will be mainly used to
monitor the JavaScript execution and record the essential information to trace files;
no or the least number of computation or analysis tasks should be performed by the
instrumented code. In terms of “necessary points with low execution frequency”, we
mean that the instrumented code should not be unnecessarily executed; for example,
although instrumenting low-level functions in the JavaScript engine can reduce the to-
tal number of instrumentation points, it often incurs more overhead because low-level
functions are executed more frequently than high-level functions.

We mainly instrumented three modules of Firefox 2 source code: the JavaScript en-
gine, the content module, and the DOM module. Firefox uses SpiderMonkey as its
JavaScript engine [SpiderMonkey 2012]. SpiderMonkey JavaScript engine is written
in C programming language and is a relatively independent module in Firefox. The
major interface between SpiderMonkey and other modules in Firefox is the Spider-
Monkey JSAPI [JSAPI 2011]. JSAPI facilitates other modules in Firefox to use the
core JavaScript data types and functions of SpiderMonkey, and it also allows other
modules to expose some of their objects and functions to JavaScript code.

Inside the SpiderMonkey, our instrumented code written in C consists of three parts.
First, eight trace logging functions were integrated into the JSAPI interface. These
functions facilitate the trace collection in a consistent manner, recording various infor-
mation such as script text, function calls, and event handler registrations. Second, we
added code to the byte-code interpreter of SpiderMonkey so that we can record the ex-
ecution information of any global scripts and function scripts. Third, we instrumented
the object system implementation of SpiderMonkey to monitor the calls to the eval()
function and collect both the calling context information and the evaluated content in-
formation. The trace files generated in the preceding instrumentation points enable us
to analyze the practices of JavaScript inclusion and the practices of JavaScript dynamic
generation using eval().

We also need to monitor the practices of other JavaScript dynamic generation tech-
niques. Originally we attempted to fulfill this task by still instrumenting inside the
SpiderMonkey and monitoring the engine’s native callbacks to the content and DOM
modules. However, we found that this approach incurs high overhead, could easily
introduce errors in instrumentation, and could only record partial information. For
example, the js Interpret() function in the jsinterp.c of SpiderMonkey is the essen-
tial function where JavaScript interpretation happens. We tried to instrument this

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

7:6 C. Yue and H. Wang

function to record other JavaScript dynamic generation techniques; however, this low-
level function uses threaded interpretation via computed goto statements to achieve
high performance and is very complex. Instrumenting this function can incur seconds
of overhead on many webpages. Meanwhile, the complexity of its interrupt jump ta-
ble and lots of goto statements make it very difficult for us to properly add the code
to monitor all of our interested information. Therefore, we decided to directly instru-
ment the content module and the DOM module of Firefox to monitor the practices
of other JavaScript dynamic generation techniques. To identify and instrument all
the entry points from other modules to SpiderMonkey, we carefully inspected all the
major source-code modules of Firefox 2, and we also used the Mozilla cross-reference
tool [MXR 2012] for Firefox 2 and our own source-code search tool.

In the content module of Firefox, we integrated C++ code to measure the other
three types of JavaScript dynamic generation techniques. We instrumented the
document.write() method2 and the method for setting the innerHTML property of an
HTML element to track their invocations. Both techniques can be used to add new
content to an HTML document, and the added content may contain new JavaScript
code. We also added code to monitor the method for replacing, inserting, or appending
a new DOM element, which could be created by using DOM methods such as docu-
ment.createElement() and document.createTextNode(). Our instrumentation code can
identify the script type of elements and record their source and text information. Other
techniques such as the insertAdjacentHTML() method or the outerHTML property are
supported in the Internet Explorer Web browser only, and we cannot measure them in
Firefox.

In the DOM module and the content module, we added C++ code to measure various
event handler registration techniques supported in Firefox. Event handlers can be
triggered by user interaction or timer events. We collected event handler registration
information to show that further JavaScript inclusion and execution could happen
and our captured insecure practices are likely conservative estimates. Event handler
registration and other aspects of information described before are written into a set of
six different trace files to assist our offline analysis.

Since many internal user interface components of Firefox also heavily use JavaScript,
special care is needed to ensure that the preceding instrumentation code only
records the JavaScript execution activities of a visited webpage. Our code checks the
JSPrincipals [2011] information of an object or script to guarantee this requirement.
We also ensured that our instrumentation code only monitors and records essential
information and does not change the execution logic of Firefox and SpiderMonkey.
Our instrumentation is specific to the Firefox 2 Web browser and its SpiderMonkey
JavaScript engine. If we want to achieve the same instrumentation objective in other
browsers and their JavaScript engines such as Google Chrome and its V8 JavaScript
engine, we would like to take a very similar approach as what we did in this work.
That is, we will first examine whether the whole instrumentation can be purely per-
formed in the corresponding JavaScript engine; if a pure engine-based instrumentation
is not practical, we should only perform those practical instrumentation tasks in the
JavaScript engine, and should identify and perform those impractical instrumentation
tasks in other relevant modules of the browser.

3.2. Analysis Toolkit

We took an offline analysis approach so that we can sufficiently analyze the trace
information without interfering with the actual measurement process. We developed
an offline analysis toolkit that consists of a set of tools written in approximately 9,000

2In this work, it also includes the document.writeln() method.

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

A Measurement Study of Insecure JavaScript Practices on the Web 7:7

new_off.src = dir + "new_off.gif";
(a)

document.getElementById("noticia").innerHTML = NoticiaStr[posNot] +
" (Ir al comunicado)";

(b)

document.getElementById("num_img" + imgNo);
(c)

loadBanner(http_request.responseXML);
(d)

Fig. 2. Four real JavaScript examples: (a) a simple assignment statement; (b) a complex assignment state-
ment; (c) a method call; (d) a function call.

lines of Java code, 200 lines of C code, 500 lines of Linux shell script code, and 300 lines
of Matlab script code. Most of the tools are used for classifying dynamically generated
JavaScript code, and the others are used for processing trace records and calculating
statistical information. The detailed description of the JavaScript code classification
tools is as follows.

The motivation for developing these classification tools is to automate the challenging
task of understanding a large amount of dynamically generated JavaScript code. To
achieve this goal, we explored the concepts in software engineering and developed an
AST-based classification method. As illustrated in Figure 1, the key idea is to first
extract the AST trees of scripts, then create and match AST signatures, and finally
merge signatures into different categories. We devised such an AST-based approach in
that ASTs have been demonstrated effective in program understanding [Baxter et al.
1998; Welty 1997].

The AST tree extraction tool is a stand-alone C program that embeds the
SpiderMonkey 1.7 [SpiderMonkey 2012]. This is the same version of the SpiderMonkey
as used in our instrumented Firefox 2 Web browser. Therefore, our extraction tool can
create a token stream and parse the stream into a syntax tree for a script in the same
manner as in the instrumented Firefox. The tool finally constructs the essential struc-
ture of a syntax tree as an AST tree and writes the tree into an XML file to facilitate
further comparison.

To implement this AST tree extraction tool, we partially ported the source-code pro-
vided in the js.c, jsapi.c, jsscan.h, jsscan.c, jsparse.h, and jsparse.c of SpiderMonkey
1.7 [SpiderMonkey 2012] and an example provided at siliconforks.com [SiliconForks
2012]. In more details, 87 token types are defined in the jsscan.h of SpiderMonkey 1.7.
These token types represent different operators, keywords, operand types, statement
separators or terminators, and special tags, etc., used in the JavaScript programming
language. A dynamically generated script (could be a list of JavaScript statements)
will be parsed into a syntax tree, and each node in the tree is a JSParseNode structure
defined in the jsparse.h. A constructed AST tree has the same structure as the corre-
sponding syntax tree, but each of its nodes is simply represented by the token type
value and some other associated properties of the corresponding JSParseNode.

Figure 2 illustrates four real JavaScript examples (a), (b), (c), and (d) recorded into
our trace files. Figure 3 illustrates the four real AST trees (a), (b), (c), and (d) extracted
from the corresponding JavaScript examples in Figure 2. These four extracted AST
trees were written into XML files.

In these four AST tree examples shown in Figure 3, TOK * XML tags are the token
types defined in the jsscan.h. TOK SEMI represents the semicolon statement termi-
nator “;”; TOK ASSIGN represents any assignment operator such as “=”, “+=”, or

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

7:8 C. Yue and H. Wang

<TOK_LC ...>
<TOK_SEMI ...>

<TOK_ASSIGN ...>
<TOK_DOT ...>
</TOK_DOT>
<TOK_PLUS ...>
<TOK_NAME ...>
</TOK_NAME>
<TOK_STRING ...>
</TOK_STRING>

</TOK_PLUS>
</TOK_ASSIGN>

</TOK_SEMI>
</TOK_LC>

(a)

<TOK_LC ...>
<TOK_SEMI ...>

<TOK_ASSIGN ...>
<TOK_DOT ...>
</TOK_DOT>
<TOK_PLUS ...>

<TOK_LB ...>
<TOK_NAME ...>
</TOK_NAME>
<TOK_NAME ...>
</TOK_NAME>

</TOK_LB>
<TOK_STRING ...>
</TOK_STRING>
<TOK_LB ...>

<TOK_NAME ...>
</TOK_NAME>
<TOK_NAME ...>
</TOK_NAME>

</TOK_LB>
<TOK_STRING ...>
</TOK_STRING>

</TOK_PLUS>
</TOK_ASSIGN>

</TOK_SEMI>
</TOK_LC>

(b)

<TOK_LC ...>
<TOK_SEMI ...>

<TOK_LP ...>
<TOK_DOT ...>
</TOK_DOT>
<TOK_PLUS ...>

<TOK_STRING ...>
</TOK_STRING>
<TOK_NAME ...>
</TOK_NAME>

</TOK_PLUS>
</TOK_LP>

</TOK_SEMI>
</TOK_LC>

(c)

<TOK_LC ...>
<TOK_SEMI ...>
<TOK_LP ...>

<TOK_NAME ...>
</TOK_NAME>
<TOK_DOT ...>
</TOK_DOT>

</TOK_LP>
</TOK_SEMI>

</TOK_LC>

(d)

Fig. 3. Four real AST trees (a), (b), (c), and (d) extracted from the corresponding JavaScript examples in
Figure 2. Their heights (visualized by their maximum indentation levels) are 5, 6, 5, and 4, respectively.

“−=”; TOK DOT represents the member operator “.”; TOK PLUS represents the
addition operator “+”; TOK NAME represents an identifier; TOK STRING represents
a string constant; TOK LB represents the left bracket “[”; TOK LP represents the left
parenthesis “(”. The root of these AST trees is an element defined by the TOK LC tag,
which is the left curly brace “{” and is a special token type used by SpiderMonkey to
represent a list of statements. This root is common to all the extracted AST trees. The
“...” represents other properties of tokens such as their line and column numbers in
the original JavaScript code; these properties can be used to manually compare an
AST tree with its original JavaScript code for verifying the correctness of the AST
extraction. The heights of the four AST trees are 5, 6, 5, and 4, respectively.

We applied top-down tree matching techniques to perform AST signature creation
and matching, and the high-level procedure is illustrated in Figure 4. First, an empty
AST signature set S is initialized. Next, for each AST tree in the XML files, its top
N-level structure is used to generate an AST signature, denoted as thisSig. Then, top-
down tree comparisons are made to seek a match between the thisSig and an existing

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

A Measurement Study of Insecure JavaScript Practices on the Web 7:9

SigCreateMatch (XMLfiles, N)
1. Initialize an empty AST signature set S;
2. for each AST tree in the XML files do
3. thisSig=the top N level structure of the AST tree;
4. if thisSigmatches an existing signature in S then
5. Record the information of this matching;
6. else
7. S = S ∪ {thisSig};
8. endif
9. endfor
10. return the result set S;

Fig. 4. High-level AST signature creation and matching procedure.

TOK_LC
TOK_SEMI
TOK_ASSIGN

(a)

TOK_LC
TOK_SEMI

TOK_ASSIGN
TOK_DOT
TOK_PLUS

(b)

TOK_LC
TOK_SEMI

TOK_ASSIGN
TOK_DOT
TOK_PLUS
TOK_NAME
TOK_STRING

(c)

TOK_LC
TOK_SEMI
TOK_ASSIGN

TOK_DOT
TOK_PLUS

TOK_LB
TOK_STRING
TOK_LB
TOK_STRING

(d)

Fig. 5. AST signature examples based on the first two AST trees (a) and (b) in Figure 3: (a) is based on the
top three-level AST trees (a) and (b) in Figure 3; (b) is based on the top four-level AST trees (a) and (b) in
Figure 3; (c) is based on the top five-level AST tree (a) in Figure 3; (d) is based on the top five-level AST tree
(b) in Figure 3.

signature in the set S. If a match exists, this procedure keeps a record of the related
information; otherwise, the thisSig is added to the set S as a new AST signature.
Finally, this procedure returns the signature set S as its output.

To be accurate and representative, an AST signature only keeps the type information
of an operator node, and it also only keeps the type information of an operand node.
Other associated properties such as line and column numbers of tokens are also dis-
carded in an AST signature. Top-down tree matching techniques can capture the key
structural differences between trees, and they have been used in several Web-related
projects [Reis et al. 2004; Yue et al. 2010; Zhai and Liu 2005]. The signature compar-
ison algorithm used in line 4 of this procedure is adapted from the STM (Simple Tree
Matching) algorithm presented in Yang [1991]. STM is an efficient top-down tree dis-
tance comparison algorithm, and our adaptation is to only compare the top N levels of
trees. Our adapted algorithm is similar to the RSTM algorithm presented in Figure 9
of Yue et al. [2010].

Such a top N-level adaptation is effective in striking a good balance between retaining
the accuracy and reducing the total number of signatures. Figure 5 illustrates four AST
signature examples based on the first two AST trees (a) and (b) in Figure 3. Figure 6
illustrates four AST signature examples based on the last two AST trees (c) and (d) in
Figure 3.

On the one hand, if the input parameter N for the AST signature creation and
matching procedure (Figure 4) is too large, then the same category of JavaScript code
may not be directly summarized by the same AST signature. For example, if the top
three levels of AST trees are compared (i.e., N = 3), then the same AST signature
shown in Figure 5(a) will be created or matched for the two AST trees (a) and (b) in

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

7:10 C. Yue and H. Wang

TOK_LC
TOK_SEMI

TOK_LP

(a)

TOK_LC
TOK_SEMI

TOK_LP
TOK_DOT
TOK_PLUS

(b)

TOK_LC
TOK_SEMI

TOK_LP
TOK_NAME
TOK_DOT

(c)

TOK_LC
TOK_SEMI

TOK_LP
TOK_DOT
TOK_PLUS
TOK_STRING
TOK_NAME

(d)

Fig. 6. AST signature examples based on the last two AST trees (c) and (d) in Figure 3: (a) is based on the
top three-level AST trees (c) and (d) in Figure 3; (b) is based on the top four-level AST tree (c) in Figure 3;
(c) is based on the top four-level AST tree (d) in Figure 3; (d) is based on the top five-level AST tree (c) in
Figure 3.

Figure 3. Similarly, if the top four levels of AST trees are compared, then the same
AST signature shown in Figure 5(b) will be created or matched for the two AST trees
(a) and (b) in Figure 3. However, if the top five levels of AST trees are compared, then
the AST signature shown in Figure 5(c) will be created or matched for the AST tree
(a) in Figure 3, and a different AST signature shown in Figure 5(d) will be created or
matched for the AST tree (b) in Figure 3. In such a case, the two assignment statements
((a) and (b) in Figure 2) cannot be directly summarized by the same AST signature.

On the other hand, if the input parameter N for the AST signature creation and
matching procedure (Figure 4) is too small, then different categories of JavaScript
code may not be directly differentiated by distinct AST signatures. Although the AST
signature in Figure 5(a) (N = 3) can still well represent the two assignment statement
AST trees (a) and (b) in Figure 3, a larger N value should be used in some other
cases. For example, if the top three levels of AST trees are compared (i.e., N = 3), then
the same AST signature shown in Figure 6(a) will be created or matched for the two
AST trees (c) and (d) in Figure 3. However, these two AST trees represent different
categories of JavaScript code: one is a method call and the other is a function call
((c) and (d) in Figure 2). If the top four levels of AST trees are compared, then the
AST signature shown in Figure 6(b) will be created or matched for the AST tree (c)
in Figure 3, and a different AST signature shown in Figure 6(c) will be created or
matched for the AST tree (d) in Figure 3. In Figure 6(b), the first child of TOK LP is
TOK DOT, which means the left side of the left parenthesis “(” is a method name; in
Figure 6(c), the first child of TOK LP is TOK NAME, which means the left side of the
left parenthesis “(” is a function name. Therefore, with N = 4, these two AST trees
can be properly summarized by distinct AST signatures. If N = 5, the AST signature
shown in Figure 6(d) will be created or matched for the AST tree (c) in Figure 3, but
using N = 5 is not necessary because we do not want to further consider the input to
the method call.

Different selections of the input parameter N for the AST signature creation and
matching procedure will also result in different total numbers of the AST signatures.
Examples will be provided in Section 5.3.3. In addition, because our AST tree extrac-
tion tool is implemented based on the SpiderMonkey 1.7, the selection of the input
parameter N is closely related to this specific JavaScript engine as illustrated by the
aforementioned examples. However, the basic principle should be the same; that is, N
should not be too large as to summarize many AST trees of the same category using
different AST signatures, and it should not be too small as to summarize many AST
trees of different categories using the same AST signature.

The AST signature categorization tool was developed to further merge AST sig-
natures into different categories. We simply defined categories according to different
types of JavaScript expressions and statements such as arithmetic expressions and as-
signment statements. Such a categorization can help us understand the use purposes

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

A Measurement Study of Insecure JavaScript Practices on the Web 7:11

Table I. Category Breakdown by Top-Level Domain

Category com org gov net edu cc other Total
arts 417 16 0 27 1 39 0 500
business 430 7 10 4 0 49 0 500
computers 432 29 1 21 1 15 1 500
games 428 13 0 43 0 14 2 500
health 277 107 41 8 33 30 4 500
home 415 28 22 14 2 18 1 500
news 412 24 6 12 3 43 0 500
recreation 409 19 12 19 0 40 1 500
reference 116 17 11 4 192 158 2 500
regional 292 23 21 6 3 152 3 500
science 209 96 68 8 47 64 8 500
shopping 479 2 0 2 0 17 0 500
society 302 84 34 11 3 58 8 500
sports 403 13 0 21 0 62 1 500
world 199 15 1 23 0 262 0 500
Total 5220 493 227 223 285 1021 31 7500
Uniq-Total 4727 445 170 212 276 950 25 6805

of JavaScript code from a programming language perspective. This tool is especially
useful for analyzing dynamically generated scripts, most of which have specific use
purposes in terms of programming language functionality as revealed in Section 5.3.

4. DATASET

To obtain a representative dataset, we followed a similar method as used in
Krishnamurthy and Wills [2006] and selected top websites listed by Alexa.com. We
chose 15 categories and then top 500 sites from each of these categories. Table I gives
the breakdown of 15 categories by DNS Top-Level Domain (TLD). JavaScript is often
used for enhancing webpage interactivity and functionality. Different types of websites
could be developed by different types of developers and could have different interac-
tivity and functionality requirements. Considering sites from different categories and
TLDs allows us to measure whether the prevalence of insecure JavaScript practices
changes with the types of websites. This website selection method is also similar to
the one used in Krishnamurthy and Wills [2006]. Because some sites appear in multi-
ple categories, the total number of unique sites is 6,805 in our study. This number is
over five times larger than that in Krishnamurthy and Wills [2006], and we also only
visited the homepages of those sites so that we can have a consistent measurement.
Meanwhile, measuring the insecure JavaScript practices on homepages is sufficient to
illustrate the severity of the problem. Table I shows that the majority of the 6,805 sites
come from the .com TLD and the country code (denoted as the cc) TLD. The former
contributes 4,727 unique sites and the latter contributes 950 unique sites.

The execution of JavaScript on a webpage can be roughly divided into two phases:
the document loading and parsing phase and the event-driven phase [Flanagan 2006].
When the document loading and parsing phase ends, the event-driven phase starts and
event handlers can be asynchronously executed in response to various user interaction
and timer events. In our study, we developed a browser extension to automatically visit
each of the 6,805 webpages using our instrumented Firefox Web browser. On each page,
our browser extension waits for the end of the document loading and parsing phase
and then stays in the event-driven phase for 10 seconds. Our browser extension has
no intention to trigger the execution of any specific event handlers on a page. In other
words, we did not intentionally click buttons, fill in forms, or do any specific actions

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

7:12 C. Yue and H. Wang

Table II. JavaScript Presence by Category and Top-Level Domain

Category/ Pages with any JS Pages with
TLD embedded JS included JS Total DJS
arts 484(96.8%) 483(96.6%) 491(98.2%) 437(87.4%)
business 482(96.4%) 473(94.6%) 492(98.4%) 380(76.0%)
computers 471(94.2%) 465(93.0%) 484(96.8%) 374(74.8%)
games 471(94.2%) 473(94.6%) 488(97.6%) 375(75.0%)
health 467(93.4%) 451(90.2%) 481(96.2%) 330(66.0%)
home 479(95.8%) 471(94.2%) 487(97.4%) 389(77.8%)
news 477(95.4%) 475(95.0%) 483(96.6%) 430(86.0%)
recreation 477(95.4%) 467(93.4%) 487(97.4%) 389(77.8%)
reference 455(91.0%) 443(88.6%) 476(95.2%) 286(57.2%)
regional 479(95.8%) 457(91.4%) 492(98.4%) 401(80.2%)
science 421(84.2%) 405(81.0%) 449(89.8%) 274(54.8%)
shopping 487(97.4%) 486(97.2%) 493(98.6%) 393(78.6%)
society 441(88.2%) 435(87.0%) 466(93.2%) 329(65.8%)
sports 492(98.4%) 482(96.4%) 496(99.2%) 456(91.2%)
world 481(96.2%) 438(87.6%) 489(97.8%) 377(75.4%)
com 4551(96.3%) 4504(95.3%) 4629(97.9%) 3838(81.2%)
org 401(90.1%) 378(84.9%) 422(94.8%) 247(55.5%)
gov 150(88.2%) 137(80.6%) 160(94.1%) 75(44.1%)
net 194(91.5%) 189(89.2%) 204(96.2%) 153(72.2%)
edu 239(86.6%) 223(80.8%) 250(90.6%) 122(44.2%)
cc 863(90.8%) 817(86.0%) 902(94.9%) 654(68.8%)
other 23(92.0%) 22(88.0%) 24(96.0%) 9(36.0%)
All 6421(94.4%) 6270(92.1%) 6591(96.9%) 5098(74.9%)

on a page. This is because the event handlers registered on different webpages could
be very diverse, and it is difficult to trigger their executions in a consistent manner on
a large number of webpages. Therefore, the JavaScript execution dataset collected in
our measurement study covers the whole document loading and parsing phase and 10
seconds of the event-driven phase for each of the 6,805 homepages. The dataset was
collected in the second week of July 2008.

5. RESULTS AND ANALYSIS

We present and analyze our measurement results in this section. We first briefly present
the results on JavaScript presence. Second, we detail the results on the insecure prac-
tices of JavaScript inclusion and dynamic generation. Third, we summarize the results
on event handler registrations. Finally, we discuss the limitations of our measurement
study and their implications.

5.1. Overall JavaScript Presence

Table II lists the results of overall JavaScript presence for the 6,805 measured home-
pages. We use JS to represent any JavaScript code, and we use DJS to represent the
JavaScript code that is dynamically generated by using one of the four dynamic genera-
tion techniques measured in our instrumented Firefox Web browser. The embedded JS
indicates that the executed JavaScript code is embedded within an HTML document,
and the included JS indicates that the executed JavaScript code is included from a
separate file.

Overall, JavaScript execution has been widely observed on 6,591(96.9%) homepages.
Both the JS embedding and JS inclusion are very common, and they are practiced
on 6,421 and 6,270 pages, respectively. For the percentage of webpages containing
JavaScript execution within a category, the lowest percentage is 89.8% for science, the

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

A Measurement Study of Insecure JavaScript Practices on the Web 7:13

highest percentage is 99.2% for sports, and the range is 9.4%. For the percentage of web-
pages containing JavaScript execution within a TLD, the lowest percentage is 90.6%
for .edu, the highest percentage is 97.9% for .com, and the range is 7.3%. JavaScript
dynamic generation is also very popular, and there are 5,098 (74.9%) sites containing
DJS on their homepages. For the DJS presence within a category, the lowest percentage
is 54.8% for science, the highest percentage is 91.2% for sports, and the range is 36.4%.
For the DJS presence within a TLD, the lowest percentage is 36.0% for other domains
such as .mil and .info, the highest percentage is 81.2% for .com, and the range is 45.2%.
It is interesting to note that the range of DJS presence within a category is much larger
than the range of JS presence within a category (36.4% versus 9.4%); meanwhile, the
range of DJS presence within a TLD is also much larger than the range of JS presence
within a TLD (45.2% versus 7.3%). These results demonstrate that the prevalence of
JavaScript dynamic generation practices indeed changes with the types of websites.
We can also see that the prevalence of included JS does not change dramatically with
the types of websites. For the included JS presence within a category, the lowest per-
centage is 81.0% for science, the highest percentage is 97.2% for shopping, and the
range is 16.2%. For the included JS presence within a TLD, the lowest percentage is
80.6% for .gov, the highest percentage is 95.3% for .com, and the range is 14.7%.

5.2. Insecure JavaScript Inclusion

Among all the 6,270 webpages with the included JS, we identify and analyze inse-
cure practices of JavaScript inclusion. Note that we defined the insecure JavaScript
inclusion as the practices of using the src attribute of a <script> tag to directly or indi-
rectly include a JavaScript file from an external domain into the top-level document of
a webpage. Keeping JavaScript code separate from HTML markups is actually a good
engineering practice, advocated especially in the unobtrusive JavaScript programming
paradigm [Flanagan 2006; Heilmann 2011]. Therefore, there is no need to analyze the
good practices of including JavaScript files from the same host or domain, and we only
focus on the insecure inclusion practices.

5.2.1. Results and Analysis. To our surprise, insecure JavaScript inclusion is very preva-
lent. Around 66.4% (4,517 out of 6,805) of websites directly or indirectly include
JavaScript files from external domains into the top-level documents of their home-
pages. Note that our analysis tool applies a conservative standard to compare the
domain name of a JavaScript file and that of its including homepage. Two domain
names are regarded as different only if, after discarding their top-level domain names
(e.g., .com) and the leading name “www” (if existing), they do not have any common
subdomain name3. Therefore, this 66.4% result is basically an objective estimate of
the severity of insecure JavaScript inclusion practices. We provide a simple manual
verification of the effectiveness of this domain name comparison method at the end of
this subsection.

After further analyzing the domain name relationship between JavaScript file in-
clusion sites and JavaScript file hosting sites, we found that those 4,517 sites include
JavaScript files from a diverse set of 1,985 external domains. We can use a directed
graph to characterize the domain name relationship between these sites. Different ver-
tices represent different domain names, and a direct edge from vertex A to vertex B
means that the homepage in domain A includes at least one JavaScript file from do-
main B. Therefore, 4,517 vertices have a greater than zero outdegree value, and 1,985
vertices have a greater than zero indegree value.

3For example, two domain names www.d1sub2.d1sub1.d1tld and d2sub3.d2sub2.d2sub1.d2tld are regarded
as different only if the intersection of the two sets {d1sub2, d1sub1} and {d2sub3, d2sub2, d2sub1} is empty.

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

7:14 C. Yue and H. Wang

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The outdegree value

F
ra

ct
io

n
of

 J
av

aS
cr

ip
t f

ile
 in

cl
us

io
n

do
m

ai
ns

Fig. 7. Cumulative distribution of the 4,517 JavaScript file inclusion domains in terms of their outdegree
values.

Fig. 8. Distribution of the 4,517 JavaScript file inclusion domains in terms of their categories.

Figure 7 illustrates the CDF (Cumulative Distribution Function) of the 4,517
JavaScript file inclusion domains in terms of their outdegree values. We can see that
approximately 43.6% of the 4,517 sites include JavaScript files from at least three
external domains. While the mean value of outdegree is 3.1, the maximum value of
outdegree reaches 24. These results indicate that not only 66.4% of measured sites
are at the risk of having their homepages under the control of the included JavaScript
code, but many of them also face higher risks from multiple sources.

Figure 8 further illustrates the distribution of the 4,517 JavaScript file inclusion
domains in terms of their categories. We can see that only 3.6% and 4.7% of the 4,517
sites belong to the regional and science categories, respectively; most of the 4,517 sites
belong to other categories. Figure 9 further illustrates the distribution of the 4,517
JavaScript file inclusion domains in terms of their TLDs. From those absolute bars
(the ratio between the number of JavaScript file inclusion domains within a TLD and
4,517), we can see that the majority (76.0%) of the 4,517 sites belong to the .com TLD.
This is mainly because the majority of the measured websites as shown in Table I
belong to the .com TLD. From those relative bars (the ratio between the number of
JavaScript file inclusion domains within a TLD and the total number of unique sites

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

A Measurement Study of Insecure JavaScript Practices on the Web 7:15

Fig. 9. Distribution of the 4,517 JavaScript file inclusion domains in terms of their TLDs.

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The indegree value

F
ra

ct
io

n
of

 J
av

aS
cr

ip
t f

ile
 h

os
tin

g
do

m
ai

ns

Fig. 10. Cumulative distribution of the 1,985 JavaScript file hosting domains in terms of their indegree
values.

within a TLD as shown in the last row of Table I), we can see that insecure JavaScript
inclusion practices appeared on 74.5% of the .net sites and 72.6% of the .com sites, but
only appeared on 16.5% of the .gov sites.

From a different perspective, Figure 10 depicts the CDF of the 1,985 JavaScript file
hosting domains in terms of their indegree values. We can observe two interesting
phenomena. On the one hand, JavaScript files in approximately 60.6% of the host-
ing domains are only included by one of our visited homepages. On the other hand,
JavaScript files in approximately 7.7% of the hosting domains are included by at least
10 of our visited homepages, and JavaScript files in 14 sites are even included by at
least 100 of our visited homepages. The mean value of indegree is 7.2, but the maximum
value of indegree reaches a very high value of 2,606. What we need to emphasize is
that external JavaScript file hosting sites, especially those high-profile ones, create new
vectors for large-scale browser-based attacks. Even a single compromised JavaScript
file could directly cause security breaches on thousands of websites.

We further inspected these high-profile JavaScript file hosting domains and many
other low-profile domains, and we found that a few of them are popular traffic analysis
service sites and advertising servers. However, most of them are the type of “hidden”

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

7:16 C. Yue and H. Wang

Table III. Twenty High-Profile JavaScript File Hosting Domains with the Largest Indegree Values

Meaningful Example URL paths and
Indegree information names of the included

Hosting Domains Value on root URL? JavaScript files

www.google-analytics.com 2606 Yes urchin.js, ga.js, siteopt.js
pagead2.googlesyndication.com 1076 No pagead/show ads.js, pagead/ads?***
ad.doubleclick.net 596 Yes adj/***, click***
edge.quantserve.com 471 Yes quant.js
m1.2mdn.net 320 No ***/flashwrite 1 2.js,

***/MotifExternalScript 01 01.js,
***/DartRichMedia 1 03.js,
***/EventBin 01 17.js,
***/WMPlayer 01 17.js

an.tacoda.net 287 No an/12426/slf.js
js.revsci.net 224 No gateway/gw.js, common/pcx.js
anrtx.tacoda.net 216 No opt/r.js, dastat/ping.js
a.tribalfusion.com 188 No j.ad?***, h.click/***
tags.expo9.exponential.com 158 No tags/GamingSource/ROS/tags.js
www.google.com 156 Yes coop/cse/brand?***, jsapi,

uds/api/search/***/default.I.js,
cse/api/overlay.js, uds/Gfeeds?***,
uds/?***

ssl.google-analytics.com 128 Yes urchin.js, ga.js, siteopt.js
partner.googleadservices.com 114 No gampad/google service.js,

gampad/google ads.js,
gampad/slotdata.js, gampad/cookie.js,
gampad/ads?***

statse.webtrendslive.com 107 No ***/wtid.js
www.statcounter.com 98 Yes counter/counter.js,

counter/counter xhtml.js,
counter/frames.js

media.fastclick.net 97 No w/get.media?***, w/pop.cgi?***
uac.advertising.com 95 No wrapper/aceUAC.js
servedby.advertising.com 88 Yes site=***
js.adsonar.com 77 No js/adsonar.js, js/tw adsonar.js,

js/tw dfp adsonar.js, js/tw cnn adsonar.js
s7.addthis.com 77 No js/***/addthis widget.js,

js/addthis widget.php?***,
custom/***/addthis widget.js,
js/widget.php?***

The “***” in the last column represents varying (or long) path names or parameters.

sites that provide no meaningful information on their root URLs but just point to
some stored JavaScript files using URL paths. For one example, Table III lists the 20
high-profile JavaScript file hosting domains with the largest indegree values. From the
third column, we can see that 13 (i.e., cells with “No” values) out of 20 sites are the
type of “hidden” sites. The last column provides the example URL paths and names of
the JavaScript files hosted on these domains. These JavaScript files were insecurely
included by the homepages of our measured websites. For another example, Table IV
lists 20 examples of low-profile JavaScript file hosting domains with indegree value
one. From the second column, we can see that 15 (i.e., cells with “No” values) out of 20
sites are the type of “hidden” sites. In addition, in the last 10 examples, IP addresses
instead of domain names were used by those JavaScript file hosting sites, and we
observed 29 more such type of examples.

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

A Measurement Study of Insecure JavaScript Practices on the Web 7:17

Table IV. Twenty Examples of Low-Profile JavaScript File Hosting Domains with Indegree Value One

Meaningful Example URL paths and
information names of the included

Hosting Domains on root URL? JavaScript files

app.communicatorcorp.com No public/scripts/ConversionTracking.js
w00tpublishers.wootmedia.net No delivery/ajs.php?***
houston.backpage.com Yes gyrobase/classifieds/include?***
mxmtrack.com No tag/floating icon/discuss.js
fwevents.planetdiscover.com Yes GreatJobs/fw scripts/rounded corners.js
server2.web-stat.com No wtslog.js
openads.aawsat.com No adx.js
www.fidweb.net No reciprok/Cartouche?***
www.tsgonline.com Yes studies/zd/INVITES/pcm200805/invite.js
ads2.vortexmediagroup.com Yes advertpro/servlet/view/banner/

javascript/zone?***
204.2.168.8 No deliverjs.nmi?***
65.215.109.89 No dcs8u0ga210000478ev8s20t9 1m4z/wtid.js
216.187.72.70 No phpAdsNew/www/delivery/ajs.php?***
72.20.109.42 Yes gyan/g.php
213.8.192.102 No e-dologic/red/codeRed.js
63.214.178.49 No abm.aspx?***
72.3.233.244 No feed2js/feed2js nobullets.php?***
213.239.222.7 No publisher/gulli.php?***
122.70.135.87 No rm6 stat.do?***
80.87.128.204 No rwtag.js

The “***” in the last column represents varying or long path names or parameters.

We checked the trustworthiness of all the 30 domain names4 listed in Table III
and Table IV using a very popular community-based safe browsing tool WOT (Web
of Trust) [WOT 2012] in April 2012. The ratings provided by WOT “are based on real
user ratings and they tell you how much other users trust this site” [WOT 2012].
WOT did not have the records for w00tpublishers.wootmedia.net and www.fidweb.net.
Among the other 28 domains, nine domains received poor or very poor ratings as
shown in Table V. WOT displayed the warning message “Warning! This site has a
poor reputation.” for all these nine domains. The first eight of these nine domains are
indeed high-profile domains listed in Table III. Therefore, from real users’ point of
view, many JavaScript file hosting domains are even untrustworthy. We can imagine
that including JavaScript files from untrustworthy domains could be more risky
than from trustworthy domains. However, we want to emphasize that no matter
JavaScript file hosting domains are trustworthy or not, insecure inclusion practices
themselves are risky. A recent large-scale evaluation of remote JavaScript inclusions
conducted by Nikiforakis et al. provides more insights on the risks of insecure inclusion
practices [Nikiforakis et al. 2012].

Among the 4,517 sites that include JavaScript files from external domains, we also
observed that 125 sites only use the HTTPS protocol to retrieve JavaScript files and
138 sites use both the HTTP protocol and the HTTPS protocol to retrieve different
JavaScript files. In total, there are 263 sites using HTTPS to include scripts from
72 JavaScript file hosting sites. These observations imply that some JavaScript file
hosting sites do provide the secure transmission service for accessing their hosted

4WOT did not return results for those 10 IP addresses listed in Table IV.

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

7:18 C. Yue and H. Wang

Table V. Nine JavaScript File Hosting Domains with Poor or
Very Poor WOT (Web of Trust) Rating

Hosting Domains Trustworthiness Rating

edge.quantserve.com poor
an.tacoda.net very poor
js.revsci.net very poor
anrtx.tacoda.net poor
a.tribalfusion.com poor
tags.expo9.exponential.com poor
statse.webtrendslive.com very poor
js.adsonar.com poor
ads2.vortexmediagroup.com very poor

JavaScript files, and some of our measured sites do use this service. However, this
secure JavaScript transmission service is not popular. Only 3.6% (72 out of 1,985) of
the JavaScript file hosting sites provide the service, and only 5.8% (263 out of 4,517)
of the JavaScript file inclusion sites use the service. Also note that HTTPS protects
data in transit, but it does not guarantee that a JavaScript file is uncompromised in a
hosting site.

In contrast to these 4,517 sites, we did find that there are 324 other sites, in which an
external included JavaScript file is always restricted within a sublevel HTML frame
or iframe document whose origin is different from that of the top-level document.
This observation implies that some sites do limit the permissions of external included
JavaScript code within sublevel documents and provide a protection to the top-level
documents of their homepages. However, such a relatively secure practice is exclusively
followed by only 324 measured sites, and those 4,517 sites still use a very insecure way
to include external JavaScript files.

Finally, we performed a simple manual verification of the effectiveness of the domain
name comparison method described at the beginning of this subsection. We found
that among the 40 sites listed in Table III and Table IV, only www.google.com and
www.statcounter.com belong to our 6,805 measured websites. By further searching
domain name registration information and by using common knowledge, we found that
www.google-analytics.com, pagead2.googlesyndication.com, and ad.doubleclick.net
belong to www.google.com that we measured; meanwhile, uac.advertising.com and
servedby.advertising.com belong to www.advertising.com that we measured. All of
these overlapped seven sites are high-profile ones listed in Table III, and none of the
sites listed in Table IV belongs to our 6,805 measured websites. The other 33 sites
do not overlap with our measured 6,805 websites; thus, we can say that they are
indeed external JavaScript file hosting sites. We further manually examined which of
these 4,517 JavaScript file inclusion sites included scripts from the seven overlapped
sites. We found that six Google-related sites included www.google-analytics.com,
and none of Google-related sites included either pagead2.googlesyndication.com or
ad.doubleclick.net. Meanwhile, no misclassification happened on www.google.com,
www.statcounter.com, uac.advertising.com, and servedby.advertising.com. Overall,
we only clearly observed six misclassification cases based on those 40 examples of
JavaScript file hosting sites; therefore, our domain name comparison method works
well for our purpose.

5.2.2. Safe Alternatives to Insecure Inclusion. Our results show that insecure JavaScript
inclusion is widely practiced by the majority (66.4%) of our measured sites. Our in-
depth analysis on the domain name relationship between JavaScript file inclusion
sites and hosting sites further reveals the severity and nature of these insecure prac-
tices. Although HTTPS and sublevel documents are used by a small portion of sites to

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

A Measurement Study of Insecure JavaScript Practices on the Web 7:19

Table VI. DJS Presence by Category and Top-Level Domain

Category/ eval- write- innerHTML- DOM-
TLD generated generated generated generated
arts 258(51.6%) 403(80.6%) 76(15.2%) 83(16.6%)
business 253(50.6%) 295(59.0%) 73(14.6%) 56(11.2%)
computers 205(41.0%) 307(61.4%) 55(11.0%) 55(11.0%)
games 203(40.6%) 327(65.4%) 58(11.6%) 57(11.4%)
health 190(38.0%) 276(55.2%) 35(7.0%) 34(6.8%)
home 240(48.0%) 357(71.4%) 57(11.4%) 73(14.6%)
news 314(62.8%) 412(82.4%) 161(32.2%) 110(22.0%)
recreation 229(45.8%) 310(62.0%) 67(13.4%) 57(11.4%)
reference 144(28.8%) 214(42.8%) 44(8.8%) 22(4.4%)
regional 258(51.6%) 337(67.4%) 97(19.4%) 58(11.6%)
science 137(27.4%) 234(46.8%) 39(7.8%) 35(7.0%)
shopping 245(49.0%) 307(61.4%) 37(7.4%) 38(7.6%)
society 163(32.6%) 283(56.6%) 42(8.4%) 42(8.4%)
sports 322(64.4%) 424(84.8%) 114(22.8%) 95(19.0%)
world 212(42.4%) 341(68.2%) 92(18.4%) 55(11.0%)
com 2359(49.9%) 3359(71.1%) 724(15.3%) 656(13.9%)
org 109(24.5%) 195(43.8%) 25(5.6%) 22(4.9%)
gov 32(18.8%) 50(29.4%) 9(5.3%) 9(5.3%)
net 77(36.3%) 135(63.7%) 26(12.3%) 21(9.9%)
edu 50(18.1%) 92(33.3%) 17(6.2%) 7(2.5%)
cc 393(41.4%) 558(58.7%) 130(13.7%) 79(8.3%)
other 4(16.0%) 7(28.0%) 3(12.0%) 0(0.0%)
All 3024(44.4%) 4396(64.6%) 934(13.7%) 794(11.7%)

enhance the security of external JavaScript file inclusion, we believe that the majority
of measured JavaScript file inclusion sites and hosting sites have not paid sufficient
attention to the potential risks of insecure JavaScript inclusion. For JavaScript file
inclusion sites, we suggest they: (1) avoid external JavaScript inclusion by using inter-
nal JavaScript files from the same sites, if at all possible; (2) restrict the permission
of external included scripts by placing them within a sublevel HTML frame or iframe
document whose origin is different from that of the top-level document, if external
inclusion is really inevitable; and (3) retrieve external JavaScript files using HTTPS
connections, if the HTTPS service is available. The third suggestion needs a hosting
site to provide the HTTPS service for accessing its JavaScript files, but the first two sug-
gestions can be easily adopted by JavaScript file inclusion sites. Regarding our second
suggestion, the JavaScript file inclusion sites may use some secure client-side frame
communication techniques [Jackson and Wang 2007; Wang et al. 2007, 2009; Barth
et al. 2008b; HTML5comm 2012; Zalewski 2012] if they need to support the interac-
tions between sublevel and top-level HTML documents. We review these techniques
in Section 6. Regarding our third suggestion, using HTTPS can at least protect the
transmission of JavaScript files from external domains, especially if these JavaScript
files are high-profile ones that are more likely to be targeted by attackers.

5.3. Insecure JavaScript Dynamic Generation

Since 74.9% of measured sites (5,098 out of 6,805) contain DJS scripts on their home-
pages, we now characterize all the DJS scripts based on their generation techniques
and analyze insecure practices.

5.3.1. DJS Presence by Category and TLD. Table VI lists the overall DJS presence by
category and TLD for the four different DJS generation techniques. We can see that
the eval() function and the document.write() method are widely used on 44.4% and

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

7:20 C. Yue and H. Wang

(a) (b) (c)

Fig. 11. DJS instance summary for pre-onload/post-onload phases: (a) total number of DJS instances;
(b) total number of webpages on which those DJS instances are identified; (c) mean value of IPP (Instance
Per Page).

64.6% of webpages, respectively. In contrast, the innerHTML property and the DOM
methods (i.e., replacing, inserting, or appending a new created script element) are only
used on 13.7% and 11.7% of webpages, respectively. It is also interesting to notice that
the categories with the highest DJS presence values are news and sports for all the four
generation techniques. The TLDs with the highest DJS presence values are .com, .net,
and country code domains. These results indicate that JavaScript dynamic generation
is more likely to be used on those sites that have more dynamic contents.

5.3.2. DJS Instance Summary. We now examine the generated DJS instances on each
webpage. A DJS instance is identified using different methods for different generation
techniques. For the eval() function, the whole evaluated string content is regarded as
a DJS instance. Within the written content of the document.write() method and the
value of the innerHTML property, a DJS instance can be identified from three sources:
(1) between a pair of <script> and </script> tags; (2) in an event handler specified
as the value of an HTML attribute such as onclick or onmouseover; and (3) in a URL
that uses the special javascript:protocol specifier [Flanagan 2006]. For the DOM
methods, each new script element is identified as a DJS instance. These identification
methods are used no matter the DJS instances are obfuscated or not.

Figure 11 gives a summary of DJS instances for the document loading and parsing
phase, denoted as the pre-onload phase, and the event-driven phase, denoted as the
post-onload phase. Figure 11(a) illustrates the total number of DJS instances identified
in the two execution phases for the four different techniques. Figure 11(b) illustrates
the total number of webpages on which these DJS instances are identified. Figure 11(c)
illustrates the average IPP (Instance Per Page) values.

It is evident that the eval() function generates the largest number of DJS instances
in both phases (194,676 in the pre-onload phase and 22,632 in the post-onload phase).
The mean value of IPP for eval-generated DJS instances is 65.2 in the pre-onload phase
and 62.3 in the post-onload phase. The maximum value of IPP for eval-generated DJS
instances reaches 2,543 in the pre-onload phase and 6,350 in the post-onload phase.
These numbers indicate that eval() may be misused or abused. The document.write()
method also generates a large number of DJS instances (67,446 DJS instances on
4,385 pages) in the pre-onload phase, but it only generates 519 DJS instances on

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

A Measurement Study of Insecure JavaScript Practices on the Web 7:21

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

IPP for eval−generated DJS instances

F
ra

ct
io

n
of

 p
ag

es
 w

ith
 e

va
l−

ge
ne

ra
te

d
D

JS

pre−onload
post−onload

(a)

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

IPP for write−generated DJS instances

F
ra

ct
io

n
of

 p
ag

es
 w

ith
 w

rit
e−

ge
ne

ra
te

d
D

JS

pre−onload
post−onload

(b)

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

IPP for innerHTML−generated DJS instances

F
ra

ct
io

n
of

 p
ag

es
 w

ith
 in

ne
rH

T
M

L−
ge

ne
ra

te
d

D
JS

pre−onload
post−onload

(c)

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

IPP for DOM−generated DJS instances

F
ra

ct
io

n
of

 p
ag

es
 w

ith
 D

O
M

−
ge

ne
ra

te
d

D
JS

pre−onload
post−onload

(d)

Fig. 12. Cumulative distribution of the webpages in terms of IPP (Instance Per Page) for (a) eval-generated;
(b) write-generated; (c) innerHTML-generated; (d) DOM-generated DJS instances.

63 pages in the post-onload phase. Calling document.write() in the post-onload phase
is usually not desirable because it will overwrite the current document with the written
content. In both phases, the innerHTML property also generates a large number of DJS
instances with 28,717 DJS instances on 844 pages in the pre-onload phase and 6,626
DJS instances on 187 pages in the post-onload phase. However, DOM methods generate
much fewer DJS instances with 1,370 DJS instances on 680 pages in the pre-onload
phase and 557 DJS instances on 260 pages in the post-onload phase.

For the four JavaScript dynamic generation techniques, Figures 12(a) to 12(b) further
illustrate the cumulative distribution of the webpages in terms of IPP. In each of these
four figures, the “o” curve is for the pre-onload phase and the “∗” curve is for the post-
onload phase. Note that the total number of pages is different for the two phases (as
shown in Figure 11(b)), and we present the two curves together for ease of comparison.
We can see that the indication of misuse or abuse is especially evident for the eval()
function. While the majority (about 60%) of webpages have 10 or less eval-generated
DJS instances, nearly 17% and 11% of webpages have 100 or more eval-generated DJS
instances for the pre-onload phase and the post-onload phase, respectively.

5.3.3. Structural Analysis of Eval-Generated DJS. The prevalence of DJS on various cate-
gories of webpages and the high IPP values (Figure 12) motivate us to further under-
stand the use purposes of the large number of DJS instances. Using our JavaScript code
classification tools, we now uncover the use purposes of eval-generated DJS instances
in terms of programming language functionality.

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

7:22 C. Yue and H. Wang

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Height of an Abstract Syntax Tree

F
ra

ct
io

n
of

 A
S

T
 T

re
es

Fig. 13. Cumulative distribution of the AST trees in terms of the height of an AST tree for eval-generated
DJS instances.

From the total 217,308 (both the pre-onload phase and the post-onload phase) eval-
generated DJS instances, 217,308 AST trees are extracted by our AST tree extraction
tool. The maximum height of these AST trees is 19. Figure 13 shows the cumulative
distribution of the AST trees in terms of the height of an AST tree. Nearly 90% of AST
trees have a height less than or equal to 4. Therefore, distinct AST signatures can be
accurately created or matched for 90% of AST trees if top four levels of AST trees are
compared. Meanwhile, as exemplified in Section 3.2, selecting a smaller N value may
compromise accuracy, while selecting a larger N value may unnecessarily create more
AST signatures. Therefore, we selected N = 4 as the input parameter (Figure 4) and
used the top four-level structure of AST trees to create and match AST signatures.
Indeed, all the four JavaScript examples (a), (b), (c), and (d) illustrated in Figure 2 are
eval-generated DJS instances recorded from one arts website homepage, one science
website homepage, one regional website homepage, and one health website homepage,
respectively.

With N = 4, a total number of 647 AST signatures are created and matched from the
217,308 AST trees. These 647 AST signatures capture the essential structural infor-
mation of the 217,308 AST trees, and they greatly facilitate our further analysis. Using
more levels of AST tree structure is unnecessary because lower-level AST tree nodes
only contain less important structural information; meanwhile, more AST signatures
will be created and matched. For example, with N = 5, about 808 AST signatures will
be created and matched from the 217,308 AST trees.

Finally, AST signatures with the same programming language functionality are
merged into the same category by using our AST signature categorization tool. For ex-
ample, two AST signatures representing two types of function calls with different num-
ber or type of parameters are merged into the same function calls category. Table VII
lists the final 17 categories of DJS instances classified from the 647 AST signatures,
and in turn from the 217,308 DJS instances.

We can see that 0.05% of the DJS instances have parse error when AST trees are
extracted, and 0.13% of the DJS instances have empty content. The majority (around
98.6%) of the eval-generated DJS instances are classified into the 14 categories from
simple expression to try-catch statements. The DJS instances in these 14 categories all
have specific use purposes in terms of programming language functionality. Only 1.2%
of the DJS instances have mixed programming language functionalities, and they are

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

A Measurement Study of Insecure JavaScript Practices on the Web 7:23

Table VII. The 17 Categories of Eval-Generated DJS Instances

Presence Number of Average
Category in Pages DJS instances DJS length
parse error 20(0.7%) 111(0.05%) 1175.5
empty content 124(4.1%) 291(0.13%) 0.0
simple expression 1209(40.0%) 134251(61.8%) 13.9
arithmetic expression 12(0.4%) 158(0.1%) 67.9
relational expression 79(2.6%) 3246(1.5%) 31.7
logical expression 159(5.3%) 3249(1.5%) 75.8
object/array literal 265(8.8%) 4798(2.2%) 623.0
other expression 126(4.2%) 5789(2.7%) 18.5
variable declarations 98(3.2%) 411(0.2%) 586.0
function declarations 1157(38.3%) 1929(0.9%) 13380.7
assignment statements 1289(42.6%) 42015(19.3%) 51.9
function calls 527(17.4%) 2733(1.3%) 368.9
method calls 561(18.6%) 2062(0.9%) 75.9
object/array creations 29(1.0%) 212(0.1%) 41.3
conditional statements 181(6.0%) 9371(4.3%) 519.1
try-catch statements 1075(35.5%) 4127(1.9%) 51.7
mixed statements 910(30.1%) 2555(1.2%) 6884.1

classified into the last category of mixed statements. The generated DJS instances in
the last 15 categories are either various expressions (from simple expression to other
expression) or various statements (from variable declarations to mixed statements). In
general, a JavaScript expression is used only to produce a value, while a JavaScript
statement normally has side-effects and is often used to accomplish some tasks. Also
note that these categories do not represent the semantic meanings of DJS instances.
For example, eval() is often used to convert a string into a JSON [2011] object. We found
many JSON evaluation DJS instances such as ({“system”:[{“id”:“286”,“name”:“General
5 Star”}]}) in the “object/array literal” category. However, JSON evaluation itself can
also be a component of more complex DJS instances that belong to other categories
such as the “assignment statements” category.

From the preceding result that the majority of the eval-generated DJS instances
have specific use purposes in terms of programming language functionality, we
would like to suggest replacing the eval() function with DOM methods such as doc-
ument.createElement() and document.createTextNode() to generate those DJS in-
stances. This replacement could be feasibly performed since those DJS instances have
specific use purposes, and it could also bring the most security benefit to us since the
majority of eval-generated DJS instances will be replaced. Researchers and developers
may consider to design new algorithms or tools to automate this replacement. Lan-
guage designers may even consider to devise new DOM methods that can be more
conveniently or efficiently used as the replacements.

5.3.4. Safe Alternatives to Eval(). To further understand whether using eval() is neces-
sary in these different categories, we randomly sampled and inspected both the content
and the calling context of 700 DJS instances. We sampled 200 DJS instances from the
simple expression category and 200 DJS instances from the assignment statements
category. These two categories have the largest numbers of DJS instances, accounting
for 61.8% and 19.3%, respectively, of all the eval-generated DJS instances. The remain-
ing 300 DJS instances are sampled from the other 15 categories, with each of them
contributing 20 instances.

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

7:24 C. Yue and H. Wang

(a) (b)

Fig. 14. Domain-based analysis of eval-generated DJS instances. Category 1 to 4 represent “embedded in
the top-level document”, “securely included into the top-level document from the same domain”, “insecurely
included into the top-level document”, and “embedded or included into the frame or iframe documents with
domains different from that of the top-level document”, respectively. (a) illustrates the total number of DJS
instances; (b) illustrates the total number of webpages on which those DJS instances are identified.

In at least 70% of the sampled cases, the eval() function is misused or abused while
safe alternatives can be easily identified. Here we illustrate three representative sam-
pled cases. The first one is: this.homePos = eval(“0” + this.dirType + this.dim), in
which a string simple expression “0-500” is generated. Indeed, such a kind of string
concatenation directly generates a string value, and using eval() is redundant. The
second one is: var ff nav=eval(“nav ”+tt[i][1]), in which a variable name “nav 20912”
is dynamically accessed. A safe alternative is using the JavaScript window object to
directly access the variable, that is, var ff nav=window[“nav ”+tt[i][1]]. The third one
is: var responses = eval(o.responseText), in which the response content of an XML-
HttpRequest [XHR 2011] is directly evaluated. This practice is used in many of our
sampled cases to convert a responseText into a JSON object. However, since malicious
JavaScript code could be injected into the responseText, it would be better to use a
JSON parser rather than the eval() function to perform such a transformation [JSON
2011]. The other 30% of the sampled cases usually have complex calling context, so we
do not further identify their safe alternatives.

We suggest that eval() should be avoided if at all possible. In addition to the safe
alternatives exemplified earlier, DOM methods can be generally used to generate and
execute various JavaScript statements. In a recent large-scale study of the use of eval()
function in Web applications, Richards et al. [2011b] provided more examples of safe
alternatives to the eval() function.

5.3.5. Domain-Based Analysis of Eval-Generated DJS. To estimate the extent to which the
measured websites can directly replace those eval() function calls, we perform a domain-
based analysis of the eval-generated DJS instances. Using the top-level document as
the base, we classify the eval-generated DJS instances into four categories as shown
in Figure 14.

In the first category, each eval-generated DJS instance is directly embedded in the
top-level document of a homepage. We identified 5,840 this category of DJS instances on
422 homepages. Because these measured websites directly control the eval() function
calls embedded in the top-level documents, they can definitely analyze their webpages
to check whether safe alternatives can be used to directly replace those eval() function
calls.

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

A Measurement Study of Insecure JavaScript Practices on the Web 7:25

Table VIII. Structural Analysis of DJS Instances Generated by the Document.write()
Method, innerHTML Property, and DOM Methods

Technique Presence Number of Avg.
and Type in Pages DJS instances length Main usage

write
jscode 4000 26125 77 JS inclusion

eventhandler 1773 38650 39 function call
jsprotocol 501 3190 45 function call

innerHTML
jscode 120 503 262 JS inclusion

eventhandler 747 31267 60 function call
jsprotocol 336 3573 33 function call

DOM
src 779 1866 - JS inclusion
text 33 61 623 assignment

In the second category, each eval-generated DJS instance is securely included into the
top-level document of a homepage from the same domain. This means these measured
websites themselves host the included JavaScript files and completely control these
JavaScript files. Therefore, these websites can also directly analyze their webpages
and replace eval() function calls whenever possible. We identified 173,833 this category
of DJS instances on 2,124 homepages. These instances account for the majority (80.0%)
of eval-generated DJS instances.

In the third category, each eval-generated DJS instance is insecurely included into
the top-level document of a homepage. In other words, these DJS instances are asso-
ciated with the insecure JavaScript inclusion practices as defined in Section 5.2. We
identified 35,708 this category of DJS instances on 964 homepages. These measured
websites cannot directly control or replace the eval() function calls because these calls
are made in the JavaScript files from external domains. Our suggestion to these web-
sites is to first fix the insecure JavaScript inclusion problem, and then replace the eval()
function calls with safe alternatives.

In the fourth category, each eval-generated DJS instance is embedded or included
into a sublevel HTML frame or iframe document whose domain is different from that
of the top-level document. We identified 1,927 this category of DJS instances on 233
homepages. These DJS instances are not insecurely included, but they still cannot
be directly replaced by the measured websites because they belong to documents of
external domains. DJS instances in this category need to be replaced by those frame
or iframe document websites themselves.

Overall, the first two categories account for the majority (82.7%) of all the eval-
generated DJS instances. Fortunately, these DJS instances are fully controlled by
the measured websites; therefore, they can be directly replaced by these websites if
corresponding safe alternatives exist. The replacement of eval-generated DJS instances
in the last two categories has to be done by those external JavaScript file hosting sites
or those external HTML frame or iframe document hosting sites.

5.3.6. Structural Analysis of Other Types of DJS. As mentioned before, the DJS instances
generated by the document.write method() and the innerHTML property are identified
from three different sources. We use jscode to represent a DJS instance identified
between a pair of <script> and </script> tags, use eventhandler to represent a DJS
instance identified in an event handler, and use jsprotocol to represent a DJS instance
identified in a javascript:protocol URL. The DJS instances generated by the DOM
methods are specified in either the src attribute or the text attribute of a script
element. Table VIII gives the overall structural analysis results of the DJS instances
generated by these three dynamic generation techniques. The main usage of each type
of DJS instance is summarized in the last column of Table VIII.

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

7:26 C. Yue and H. Wang

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Height of an Abstract Syntax Tree

F
ra

ct
io

n
of

 A
S

T
 T

re
es

(a)
0 1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Height of an Abstract Syntax Tree
F

ra
ct

io
n

of
 A

S
T

 T
re

es
(b)

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Height of an Abstract Syntax Tree

F
ra

ct
io

n
of

 A
S

T
 T

re
es

(c)

Fig. 15. Cumulative distribution of the AST trees in terms of the height of an AST tree for write-generated
(a) jscode type of; (b) eventhandler type of; (c) jsprotocol type of DJS instances.

The detailed structural analysis of the write-generated, innerHTML-generated, and
DOM-generated DJS instances is as follows.

(1) Detailed analysis of write-generated DJS instances. As shown in Table VIII, there
are three types of write-generated DJS instances. From the total 26,125 jscode type
of DJS instances, 26,125 AST trees are extracted by our AST tree extraction tool.
The maximum height of these AST trees is 14. Figure 15(a) shows the cumulative
distribution of these AST trees in terms of the height of an AST tree. Over 96% of AST
trees have a height less than or equal to 4. Therefore, we selected N = 4 as the input
parameter (Figure 4) and used the top four-level structure of AST trees to create and
match AST signatures. A total number of 357 AST signatures are created and matched
from the 26,125 AST trees. These 357 AST signatures capture the essential structural
information of the 26,125 AST trees.

Similarly, from the total 38,650 eventhandler type of DJS instances, 38,650 AST
trees are extracted by our AST tree extraction tool. The maximum height of these
AST trees is 8. Figure 15(b) shows the cumulative distribution of these AST trees in
terms of the height of an AST tree. Over 92% of AST trees have a height less than or
equal to 4. Therefore, we selected N = 4 as the input parameter (Figure 4) and used
the top four-level structure of AST trees to create and match AST signatures. A total
number of 376 AST signatures are created and matched from the 38,650 AST trees.
These 376 AST signatures capture the essential structural information of the 38,650
AST trees.

Furthermore, from the total 3,190 jsprotocol type of DJS instances, 3,190 AST trees
are extracted by our AST tree extraction tool. The maximum height of these AST trees
is 6. Figure 15(c) shows the cumulative distribution of these AST trees in terms of the
height of an AST tree. Over 99% of AST trees have a height less than or equal to 5.
Therefore, we selected N = 5 as the input parameter (Figure 4) and used the top five-
level structure of AST trees to create and match AST signatures. A total number of
85 AST signatures are created and matched from the 3,190 AST trees. These 85 AST
signatures capture the essential structural information of the 3,190 AST trees.

Finally, AST signatures with the same programming language functionality are
merged into the same category by using our AST signature categorization tool. Table IX
lists the final categories of DJS instances classified from the 357, the 376, and the
85 AST signatures for the three types of write-generated DJS instances, respectively.

(2) Detailed analysis of innerHTML-generated DJS instances. As shown in
Table VIII, there are three types of innerHTML-generated DJS instances. From the
total 503 jscode type of DJS instances, 503 AST trees are extracted by our AST tree
extraction tool. The maximum height of these AST trees is 11. Figure 16(a) shows the
cumulative distribution of these AST trees in terms of the height of an AST tree. Nearly

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

A Measurement Study of Insecure JavaScript Practices on the Web 7:27

Table IX. Categories of Write-Generated DJS Instances

Type and Presence Number of Average
Category in Pages DJS instances DJS length

jscode

parse error 202(5.1%) 342(1.3%) 1095.5
empty with src 3891(97.3%) 21678(83.0%) 0.0
variable declarations 418(10.5%) 629(2.4%) 311.8
function declarations 198(5.0%) 275(1.1%) 309.9
assignment statements 435(10.9%) 1194(4.6%) 108.7
function calls 77(1.9%) 172(0.7%) 182.8
method calls 269(6.7%) 464(1.8%) 237.0
object/array creations 24(0.6%) 24(0.1%) 660.0
conditional statements 35(0.9%) 114(0.4%) 257.1
try-catch statements 3(0.1%) 30(0.1%) 44.7
mixed statements 649(16.2%) 1203(4.6%) 852.8

eventhandler

parse error 13(0.7%) 75(0.2%) 52.9
dumb return statement 95(5.4%) 175(0.5%) 11.8
variable declarations 3(0.2%) 216(0.6%) 31.5
assignment statements 545(30.7%) 7566(19.6%) 40.9
function calls 1227(69.2%) 22166(57.4%) 28.9
method calls 358(20.2%) 6320(16.4%) 46.1
conditional statements 66(3.7%) 413(1.1%) 67.9
try-catch statements 2(0.1%) 72(0.2%) 54.5
mixed statements 112(6.3%) 1647(4.2%) 123.7

jsprotocol

parse error 11(2.2%) 29(0.9%) 73.2
dumb return statement 109(21.8%) 1237(38.8%) 6.7
variable declarations 2(0.4%) 13(0.4%) 215.1
assignment statements 5(1.0%) 5(0.2%) 49.4
function calls 310(61.9%) 1478(46.3%) 42.9
method calls 93(18.6%) 267(8.4%) 135.0
try-catch statements 2(0.4%) 2(0.1%) 38.0
mixed statements 30(6.0%) 159(5.0%) 199.3

90% of AST trees have a height less than or equal to 4. Therefore, we selected N = 4
as the input parameter (Figure 4) and used the top four-level structure of AST trees
to create and match AST signatures. A total number of 58 AST signatures are created
and matched from the 503 AST trees. These 58 AST signatures capture the essential
structural information of the 503 AST trees.

Similarly, from the total 31,267 eventhandler type of DJS instances, 31,267 AST
trees are extracted by our AST tree extraction tool. The maximum height of these
AST trees is 8. Figure 16(b) shows the cumulative distribution of these AST trees in
terms of the height of an AST tree. Over 87% of AST trees have a height less than or
equal to 4. Therefore, we selected N = 4 as the input parameter (Figure 4) and used
the top four-level structure of AST trees to create and match AST signatures. A total
number of 286 AST signatures are created and matched from the 31,267 AST trees.
These 286 AST signatures capture the essential structural information of the 31,267
AST trees.

Furthermore, from the total 3,573 jsprotocol type of DJS instances, 3,573 AST trees
are extracted by our AST tree extraction tool. The maximum height of these AST trees
is 6. Figure 16(c) shows the cumulative distribution of these AST trees in terms of the
height of an AST tree. Nearly 85% of AST trees have a height less than or equal to 4.
Therefore, we selected N = 4 as the input parameter (Figure 4) and used the top five-
level structure of AST trees to create and match AST signatures. A total number of

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

7:28 C. Yue and H. Wang

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Height of an Abstract Syntax Tree

F
ra

ct
io

n
of

 A
S

T
 T

re
es

(a)
0 1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Height of an Abstract Syntax Tree
F

ra
ct

io
n

of
 A

S
T

 T
re

es
(b)

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Height of an Abstract Syntax Tree

F
ra

ct
io

n
of

 A
S

T
 T

re
es

(c)

Fig. 16. Cumulative distribution of the AST trees in terms of the height of an AST tree for innerHTML-
generated (a) jscode type of; (b) eventhandler type of; (c) jsprotocol type of DJS instances.

Table X. Categories of innerHTML-Generated DJS Instances

Type and Presence Number of Average
Category in Pages DJS instances DJS length

jscode

parse error 4(3.3%) 5(1.0%) 3077.4
empty with src 53(44.2%) 175(34.8%) 0.0
variable declarations 9(7.5%) 12(2.4%) 216.0
function declarations 12(10.0%) 13(2.6%) 595.6
assignment statements 26(21.7%) 45(8.9%) 203.0
function calls 37(30.8%) 76(15.1%) 339.6
method calls 28(23.3%) 50(9.9%) 292.2
conditional statements 5(4.2%) 5(1.0%) 497.2
try-catch statements 1(0.8%) 1(0.2%) 47.0
mixed statements 37(30.8%) 121(24.1%) 395.7

eventhandler

parse error 10(1.3%) 17(0.05%) 68.7
dumb return statement 40(5.4%) 371(1.2%) 9.2
assignment statements 148(19.8%) 4359(13.9%) 61.2
function calls 500(66.9%) 22154(70.9%) 34.4
method calls 275(36.8%) 3503(11.2%) 82.6
object/array creations 2(0.3%) 3(0.01%) 109.3
conditional statements 29(3.9%) 105(0.3%) 112.9
try-catch statements 7(0.9%) 12(0.04%) 248.3
mixed statements 57(7.6%) 743(2.4%) 708.2

jsprotocol

parse error 8(2.4%) 32(0.9%) 64.8
dumb return statement 119(35.4%) 764(21.4%) 9.2
simple expression 2(0.6%) 3(0.1%) 63.0
function calls 159(47.3%) 1945(54.4%) 30.7
method calls 103(30.7%) 811(22.7%) 59.3
conditional statements 1(0.3%) 1(0.03%) 112.0
mixed statements 5(1.5%) 17(0.5%) 91.7

64 AST signatures are created and matched from the 3,573 AST trees. These 64 AST
signatures capture the essential structural information of the 3,573 AST trees.

Finally, AST signatures with the same programming language functionality are
merged into the same category by using our AST signature categorization tool. Table X
lists the final categories of DJS instances classified from the 58, the 286, and the 64 AST
signatures for the three types of innerHTML-generated DJS instances, respectively.

(3) Detailed analysis of DOM-generated DJS instances. As shown in Table VIII, there
are two types of DOM-generated DJS instances. The src type of DJS instances contain

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

A Measurement Study of Insecure JavaScript Practices on the Web 7:29

0 2 4 6 8 10 12
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Height of an Abstract Syntax Tree

F
ra

ct
io

n
of

 A
S

T
 T

re
es

Fig. 17. Cumulative distribution of the AST trees in terms of the height of an AST tree for DOM-generated
DJS instances.

Table XI. Categories of DOM-Generated DJS Instances

Type and Presence Number of Average
Category in Pages DJS instances DJS length

text

variable declarations 9(27.3%) 10(16.4%) 32.8
function declarations 2(6.1%) 3(4.9%) 923.3
assignment statements 10(30.3%) 20(32.8%) 655.3
function calls 4(12.1%) 5(8.2%) 103.6
conditional statements 11(33.3%) 18(29.5%) 696.8
mixed statements 4(12.1%) 5(8.2%) 1742.0

the URL of JavaScript files, so we only further analyze the text type of DJS instances.
From the total 61 text type of DJS instances, 61 AST trees are extracted by our AST
tree extraction tool. The maximum height of these AST trees is 12. Figure 17 shows
the cumulative distribution of these AST trees in terms of the height of an AST tree.
Because there are only 61 DJS instances, we manually analyzed them and classified
them into the six categories as shown in Table XI.

5.3.7. Safe Alternatives to Jscode Generation via Document.write() and innerHTML. For the
eventhandler and jsprotocol DJS instances generated by document.write() and inner-
HTML, their usages are relatively safe. When new content is added to a document,
event handlers are directly specified on various elements of the newly added content
to respond to various events. The javascript:protocol scripts are often used on links
to execute some statements without loading a new document.

What we emphasize is that generating jscode using document.write() and inner-
HTML is not desirable. For document.write(), the generated jscode is immediately
executed. Multiple document.write() calls can be used to construct a jscode, and docu-
ment.write() calls can be nested. All these factors make the filtering of write-generated
malicious JavaScript code a very challenging task [Yu et al. 2007]. However, our results
show that 26,125 instances of write-generated jscode are identified on a large number
of 4,000 homepages. For innerHTML, the generated jscode is recognized by a browser,
but it is not necessarily executed. For example, Firefox does not directly execute a jscode
generated by innerHTML. In Internet Explorer, the defer attribute and some tricks
need to be used to execute an innerHTML-generated jscode, but this practice is also

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

7:30 C. Yue and H. Wang

(a) (b) (c)

Fig. 18. Event handler registration summary for pre-onload/post-onload phases: (a) total number of event
handler registration instances; (b) total number of webpages on which these registrations occurred; (c) mean
value of IPP (Instance Per Page).

not recommended due to potential script-injection attacks [MSDN 2011]. Fortunately,
only 503 instances of this practice are identified on 120 pages as shown in Table VIII.

The best practice is to use DOM methods to dynamically generate JavaScript
code. Using DOM methods (such as createElement() and createTextNode()) to cre-
ate JavaScript elements explicitly declares that the new elements are scripts. This
practice can enable potential Web content protection mechanisms such as those pre-
sented in Jim et al. [2007], Reis et al. [2006], and Yu et al. [2007] to accurately define
security policies and weed out potential malicious JavaScript code. Unfortunately, only
1,927(1,866 plus 61) instances of this practice are identified.

Our results show that the main usage of jscode generated by document.write() and in-
nerHTML is for including other JavaScript files (denoted as JS inclusion in Table VIII).
Indeed, by specifying the src attribute of a script element, DOM methods fit well for
such a usage. By specifying the text attribute of a script element, DOM methods can
also be used to generate and execute various statements such as assignment state-
ments or function calls, thus safely replacing the relatively insecure practices of jscode
generation via document.write() and innerHTML.

5.4. Event Handler Registration

Overall, event handler registrations occurred on 6,456 (94.9%) homepages. Figure 18
provides a detailed event handler registration summary for both the pre-onload phase
and the post-onload phase. About 698,057 event handler registrations occurred on
6,451(94.8%) pages in the pre-onload phase, with an average of 108.2 registrations
per page and a maximum of 5,074 registrations per page. About 108,428 event han-
dler registrations occurred on 1,767(26.0%) pages in the post-onload phase, with an
average of 61.4 registrations per page and a maximum of 2,229 registrations per page.
Figure 19 further illustrates the cumulative distribution of the webpages in terms of
IPP (Instance Per Page) for event handler registration. We can see that event handler
registrations are very popular. Over 30% of webpages have 100 or more event handler
registrations in the pre-onload phase, and over 20% of webpages have 100 or more
event handler registrations in the post-onload phase.

Our measurement results include all the popular event handler registration tech-
niques supported in Firefox. Figure 20 presents the summary of the event handler
registration instances based on five different registration techniques. From bottom to
top, the first technique “setting attribute event listeners” is the traditional technique

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

A Measurement Study of Insecure JavaScript Practices on the Web 7:31

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IPP for event handler registration

F
ra

ct
io

n
of

 p
ag

es
 w

ith
 e

ve
nt

 h
an

dl
er

 r
eg

is
tr

at
io

n

pre−onload
post−onload

Fig. 19. Cumulative distribution of the webpages in terms of IPP (Instance Per Page) for event handler
registration.

(a) (b)

Fig. 20. Analysis of five event handler registration techniques for (a) total number of event handler regis-
tration instances; (b) total number of webpages on which those registrations occured.

that directly sets the attribute event listeners for HTML elements. It can take different
forms such as the following three examples.

(1) <td id=“row1” onclick=“doSubmit()”> row one </td>
(2) document.getElementById(‘row1’).onclick=doSubmit;
(3) document.getElementById(‘row1’).setAttribute(‘onclick’, ‘doSubmit()’);

Here doSubmit() is a function, and the first example directly specifies the onclick
event handler for the td HTML element, and the last two examples specify the onclick
event handler using JavaScript. Overall, this traditional technique was widely used in
434,127 instances on 6,347 (93.3%) homepages.

The second technique “setting DOM Level 2 event listeners” is the addEventListener
method introduced in DOM Level 2 Events [DOM2Events 2012]. This technique allows
an HTML element to register multiple event handlers for an event type and also spec-
ify the activation phase of each handler [DOM2Events 2012]. This powerful technique

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

7:32 C. Yue and H. Wang

Fig. 21. Event handler registration: top 10 object types.

Fig. 22. Event handler registration: top 10 event types.

was also widely used in 257,282 instances on 3,879(57.0%) homepages. The third tech-
nique “setting timeout or interval” includes the using of two JavaScript functions
setTimeout() and setInterval()[HTMLTimers 2012], which can schedule a timeout to
run a specified handler once or periodically. These timer-based event handler registra-
tion techniques were used in 113,729 instances on 3,134(46.1%) homepages. In terms
of the XMLHttpRequest [XHR 2011]-related event handler registration techniques,
setting the popular onreadystatechange event handler occured in 1,278 instances on
466(6.8%) homepages, and setting other XMLHttpRequest event handlers such as on-
load and onerror only occured in 69 instances on 13(0.2%) homepages.

For the first two event handler registration techniques “setting attribute event listen-
ers” and “setting DOM Level 2 event listeners”, we further identified the corresponding
object types and event types for all the registration instances. Figure 21 illustrates the
top 10 types of objects on which event handlers were registered. We can see that the
majority (58.1%) of event handler registrations were for the anchor (i.e., the <a> tag)
type of objects. The division (i.e., the <div> tag) type of objects took the second po-
sition with about 12.6% of event handler registrations. Overall, these top 10 object
types account for 95.3% of our measured event handler registrations that use the first
two techniques. Figure 22 illustrates the top 10 event types. We can see that click is
the most popular event appearing in about 35.4% of registrations. It is followed by
mouseover, mouseout, and mousedown events appearing in about 18.0%, 15.0%, and
13.1% of registrations, respectively. Overall, these top 10 event types account for 95.5%
of our measured event handler registrations that use the first two techniques.

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

A Measurement Study of Insecure JavaScript Practices on the Web 7:33

5.5. Discussions

The insecure JavaScript practices captured in our measurement study are likely con-
servative estimates for two main reasons. One is that our results only include the
event-driven phase for a short period of time. We described in Section 4 that our
JavaScript execution dataset covers the whole document loading and parsing phase
and 10 seconds of the event-driven phase for each of the 6,805 homepages. As just
shown in Section 5.4, event handler registrations are very popular. Therefore, after
10 seconds of the event-driven phase, the execution of those registered event handlers
may trigger further JavaScript inclusion and dynamic generation as well as event
handler registration. Those JavaScript execution results are not included in our mea-
surement study. The other reason is that we only measured the homepages of 6,805
websites so that we can have a consistent measurement, while it is possible that inse-
cure JavaScript practices also exist on other types of webpages. These two reasons are
also the limitations of our measurement study; however, due to the importance of the
homepages to websites, measuring the insecure JavaScript practices on homepages is
sufficient to illustrate the severity of the problem and achieve the primary objective of
this work.

In a recent large-scale study of the use of eval() function, Richards et al. [2011b] mea-
sured three datasets: INTERACTIVE, PAGELOAD, and RANDOM. Their PAGELOAD
dataset and RANDOM dataset were based on the 10,000 most popular websites listed
by Alexa.com. The PAGELOAD dataset is similar to ours in the sense that the doc-
ument loading and parsing phase and a few seconds of the event-driven phase are
included but no events are intentionally triggered. Their RANDOM dataset extends
the PAGELOAD dataset by further randomly triggering events such as mouse move-
ment and link clicking. Their measurement results demonstrate that the difference in
the use of eval() function between RANDOM and PAGELOAD datasets is only 2%, in-
dicating that “sites relying on eval do so even without user interaction” [Richards et al.
2011b]. Based on their comprehensive results, we can say that our results, although
conservative, are still representative of the measured popular websites.

Our measurement study focuses on examining the severity and nature of two types
of insecure JavaScript practices on the legitimate websites. We do not have the data
to further answer the question regarding the extent to which today’s attackers are
taking advantage of those insecure practices to perform malicious activities. This is
another limitation of our work, and we believe the question can be properly answered
only if a representative set of real-world Web-based attack examples can be sufficiently
analyzed. However, even without answering this question, we should still emphasize
that website developers and administrators should pay serious attention to insecure
JavaScript practices and should reduce their potential security risks.

6. RELATED WORK

To the best of our knowledge, there is no directly related work on characterizing the in-
secure practices of JavaScript inclusion and dynamic generation. Therefore, we mainly
review some related JavaScript measurement studies and JavaScript security enhance-
ment approaches.

Krishnamurthy and Wills [2006] measured the homepages of 1,158 unique sites
selected from Alexa.com to study the content delivery trade-offs in Web access. The
focus of their study is on the performance impact of extraneous content, and their
results show that JavaScript is often used on popular webpages to retrieve extrane-
ous content such as images and advertisements. Richards et al. [2010] measured the
dynamic behavior of JavaScript programs on 100 websites and three industry bench-
mark suites. The main goal of their work is to either confirm or invalidate some common

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

7:34 C. Yue and H. Wang

assumptions about JavaScript programs made in the programming language research
area. Similarly, Ratanaworabhan et al. [2010] measured some popular Web applications
and JavaScript benchmarks, and they found that real Web applications behave very
differently from the benchmarks. In their following-up work, Richards et al. [2011a]
further proposed a record-and-replay approach to automatically generate realistic and
representative JavaScript benchmarks.

Richards et al. [2011b] also performed a large-scale study of the use of eval() func-
tion in Web applications. They categorized the behavior of the eval() function using
five important metrics: mix of operations, scope affected by operations, patterns of us-
age, provenance of arguments, and consistence of arguments [Richards et al. 2011b].
This comprehensive study also confirms that the eval() function is pervasively used
and indeed is often misused. Kiciman and Livshits [2010] designed AjaxScope, a flex-
ible platform that can perform on-the-fly parsing and instrumentation of JavaScript
code sent to users’ browsers. AjaxScope can remotely monitor and report the runtime
behavior of Web applications to perform many important tasks such as error report-
ing, performance profiling, memory leak detection, and optimization analyses. Using
AjaxScope, Kiciman and Livshits [2010] analyzed the behavior of over 90 Web 2.0
applications, and one of their interesting observations is that well-behaved Web 2.0 ap-
plications do not frequently use dynamic code generation techniques mainly due to the
performance penalty. The eval() function is a performance bottleneck as further high-
lighted in Richards et al. [2011b]. In general, the focuses of these related measurement
studies are not directly on security.

In the investigation of drive-by download attacks, several execution-based measure-
ment studies [Moshchuk et al. 2006; Wang et al. 2006; Provos et al. 2008; Cova et al.
2010] have been conducted to identify malicious webpages that contain code (in many
cases, JavaScript code) for exploiting Web browser vulnerabilities and installing mal-
ware. Instead of targeting at malicious sites, our focus in this work is on legitimate
websites’ insecure JavaScript practices.

Some browser-instrumentation-related Web security projects have also been done re-
cently. Finifter et al. [2010] demonstrated that existing blacklist-based static verifiers
used in advertising networks do not provide perfect containment of advertisements.
This is because malicious advertisements can exploit the new methods or properties
exposed by the publisher websites to mount cross-site scripting attacks against publish-
ers. The authors proposed a whitelist-based modification of the existing static verifiers,
so that security can be improved while the performance and deployment advantages
of static verification can be preserved. Singh et al. [2010] examined access control
policies in modern Web browsers and pointed out three major incoherences. They also
performed a measurement study to identify unsafe policies that could be removed by
browser vendors with little compatibility cost. Our work is related to these projects in
the sense that we all instrumented browsers to study different Web security problems.

A few mechanisms have been proposed to specifically improve the overall security
and reliability of client-side JavaScript programs, and some of them address the inse-
cure JavaScript dynamic generation problem. Guarnieri and Livshits [2009] proposed
GATEKEEPER, a mostly static approach to sound points-to analysis for JavaScript
programs. They defined nine security and reliability policies and demonstrated that
their approach can effectively reason about and identify malicious or buggy JavaScript
widgets. In GATEKEEPER, some JavaScript dynamic generation techniques such as
the eval() function are disallowed to enable sound static analysis, and this design choice
is also driven by the authors’ measurement results that the eval() function is only used
in 6% of their analyzed eight thousand JavaScript widgets. Later, Meyerovich and
Livshits [2010] proposed ConScript, a browser-based deep advice system for security.
ConScript enables fine-grained application-specific security policies to be expressed in

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

A Measurement Study of Insecure JavaScript Practices on the Web 7:35

webpages while enforced at runtime within JavaScript engine. Curtsinger et al. [2011]
proposed ZOZZLE, a low-overhead JavaScript malware detection and prevention solu-
tion that could be deployed in Web browsers. ZOZZLE is mostly a static solution and it
mainly uses the Bayesian classification of hierarchical features of the JavaScript AST
to detect JavaScript malware. As highlighted in their paper, the AST-based technique
can capture the context information of JavaScript code and provide increased precision
in comparison to the pure text-based classification [Curtsinger et al. 2011]. In ZOZZLE,
the depth or height of AST is also considered because it presents a trade-off between
the classification accuracy and performance.

In recent advances in new browser architectures and HTML specifications, different
secure client-side frame communication techniques have been proposed [Jackson and
Wang 2007; Wang et al. 2007, 2009; Barth et al. 2008b; HTML5comm 2012; Zalewski
2012], and they can be used by Websites to address the insecure JavaScript inclu-
sion problem. Jackson and Wang [2007] proposed Subspace, which is a cross-domain
communication channel that can manipulate the document domain property to pass
JavaScript objects across the frames. Subspace provides a safer alternative to the
insecure practice of using cross-domain <script> tags. Wang et al. [2007; 2009] high-
lighted that the <script> abstraction is mainly for including open content while the
<frame> abstraction is mainly for supporting isolated content. They proposed two
abstractions <Sandbox> and <OpenSandbox> to further provide both security and
ease in creating client-side mashups [Wang et al. 2007]. In HTML 5, the postMessage
API [HTML5comm 2012] is provided to enable secure cross-domain communication.
Barth et al. [2008b] demonstrated that attackers can breach the confidentiality of the
postMessage communication channel. They extended the postMessage API to provide
confidentiality and their proposal has been adopted by the HTML 5 working group and
some popular browsers [Barth et al. 2008b]. In HTML 5, a useful sandbox attribute
is provided to flexibly restrict the behavior of the framed content with fine granu-
larity [HTML5sandbox 2012; Zalewski 2012]; for example, JavaScript in the framed
content could be completely disallowed or partially restricted by assigning different
values to the sandbox attribute. Website designers and developers should consider the
specific requirements of their Web applications and the availability of these mecha-
nisms in different Web browsers to decide which mechanisms are most appropriate for
them.

7. CONCLUSION

In this work, we presented the first measurement study on insecure practices of using
JavaScript on the Web. We focused on investigating the severity and nature of insecure
JavaScript inclusion and dynamic generation. Through an instrumented Mozilla Fire-
fox 2 Web browser, we visited the homepages of 6,805 popular websites in 15 different
categories. We found that at least 66.4% of the measured websites have the insecure
practices of including JavaScript files from external domains into the top-level doc-
uments of their homepages. Our in-depth analysis on the domain name relationship
between JavaScript file inclusion sites and hosting sites further reveals the severity and
nature of these insecure practices. Our measurement results on JavaScript dynamic
generation show that the “evil” function eval() was called on 44.4% of the measured
homepages, and the document.write() method and the innerHTML property were also
used to generate JavaScript code. Our AST-based structural analysis on various DJS
instances further uncovers their usages with respect to programming language func-
tionality. Our analysis indicates that in common cases, safe alternatives do exist for
both the insecure JavaScript inclusion and insecure JavaScript dynamic generation.
Since Web-based attacks have become more common and damaging in recent years, we

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

7:36 C. Yue and H. Wang

suggest website developers and administrators pay serious attention to these insecure
JavaScript practices and use safe alternatives to avoid them.

ACKNOWLEDGMENTS

The authors sincerely thank anonymous reviewers for their valuable suggestions and comments.

REFERENCES

BALL, T. AND LARUS, J. R. 1994. Optimally profiling and tracing programs. ACM Trans. Program. Lang. Syst.
16, 4, 1319–1360.

BARTH, A., JACKSON, C., AND MITCHELL, J. C. 2008a. Robust defenses for cross-site request forgery. In Proceedings
of the ACM Conference on Computer and Communications Security (CCS). 75–88.

BARTH, A., JACKSON, C., AND MITCHELL, J. C. 2008b. Securing frame communication in browsers. In Proceedings
of the 17th USENIX Security Symposium. 17–30.

BAXTER, I. D., YAHIN, A., MOURA, L., SANTANNA, M., AND BIER, L. 1998. Clone detection using abstract syntax
trees. In Proceedings of the International Conference on Software Maintenance.

BORTZ, A., BONEH, D., AND NANDY, P. 2007. Exposing private information by timing web applications. In
Proceedings of the International Conference on World Wide Web (WWW). 621–628.

CANALI, D., COVA, M., VIGNA, G., AND KRUEGEL, C. 2011. Prophiler: A fast filter for the large-scale detection
of malicious web pages. In Proceedings of the International Conference on World Wide Web (WWW).
197–206.

CERI, S., FRATERNALI, P., BONGIO, A., BRAMBILLA, M., COMAI, S., AND MATERA, M. 2002. Designing Data-Intensive
Web Applications. Morgan Kaufmann, San Fransisco, CA.

CERT. 2000. CERT advisory ca-2000-02 malicious html tags embedded in client web requests.
http://www.cert.org/advisories/CA-2000-02.html.

CHEN, S., MESEGUER, J., SASSE, R., WANG, H. J., AND WANG, Y.-M. 2007. A systematic approach to uncover gui
logic flaws for web security. In Proceedings of the IEEE Symposium on Security and Privacy. 71–85.

COVA, M., KRUEGEL, C., AND VIGNA, G. 2010. Detection and analysis of drive-by-download attacks and malicious
javascript code. In Proceedings of the International Confeence on World Wide Web (WWW). 281–290.

CURTSINGER, C., LIVSHITS, B., ZORN, B., AND SEIFERT, C. 2011. Zozzle: Low-overhead mostly static javascript
malware detection. In Proceedings of the USENIX Security Symposium.

DHAMIJA, R., TYGAR, J. D., AND HEARST, M. 2006. Why phishing works. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. 581–590.

DOM2EVENTS. 2012. Document object model (dom) level 2 events. http://www.w3.org/TR/DOM-Level-2-
Events/events.html.

EGELE, M., WURZINGER, P., KRUEGEL, C., AND KIRDA, E. 2009. Defending browsers against drive-by downloads:
Mitigating heap-spraying code injection attacks. In Proceedings of the Annual Conference on Detection
of Intrusions and Malware and Vulnerability Assessment (DIMVA). 88–106.

EVALMDC. 2011. Eval-mdc. https://developer.mozilla.org/en/JavaScript/Reference/Global Objects/eval.
FALK, L., PRAKASH, A., AND BORDERS, K. 2008. Analyzing websites for user-visible security design flaws. In

Proceedings of the Symposium on Usable Privacy and Security (SOUPS). 117–126.
FINIFTER, M., WEINBERGER, J., AND BARTH, A. 2010. Preventing capability leaks in secure javascript subsets. In

Proceedings of the Network and Distributed System Security Symposium (NDSS).
FLANAGAN, D. 2006. JavaScript: The Definitive Guide. O’Reilly Media.
FLORENCIO, D. AND HERLEY, C. 2007. A large-scale study of web password habits. In Proceedings of the Inter-

national Conference on World Wide Web (WWW). 657–666.
FOGIE, S., GROSSMAN, J., HANSEN, R., RAGER, A., AND PETKOV, P. D. 2007. XSS Exploits: Cross Site Scripting

Attacks and Defense. Syngress.
GUARNIERI, S. AND LIVSHITS, B. 2009. Gatekeeper: Mostly static enforcement of security and reliability policies

for javascript code. In Proceedings of the USENIX Security Symposium.
HEILMANN, C. 2011. Unobtrusive javascript. http://www.onlinetools.org/articles/unobtrusivejavascript/.
HOOIMEIJER, P., LIVSHITS, B., MOLNAR, D., SAXENA, P., AND VEANES, M. 2011. Fast and precise sanitizer analysis

with bek. In Proceedings of the USENIX Security Symposium.
HTML5COMM. 2012. HTML5: Communication. http://www.w3.org/TR/html5/comms.html.
HTML5SANDBOX. 2012. HTML5 <iframe>sandbox. http://www.w3schools.com/html5/att iframe sandbox.asp.
HTMLTIMERS. 2012. HTML timers. http://www.w3.org/TR/html5/timers.html.

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

A Measurement Study of Insecure JavaScript Practices on the Web 7:37

HUANG, Y.-W., YU, F., HANG, C., TSAI, C.-H., LEE, D.-T., AND KUO, S.-Y. 2004. Securing web application code by
static analysis and runtime protection. In Proceedings of the International Conference on World Wide
Web (WWW). 40–52.

JACKSON, C., BORTZ, A., BONEH, D., AND MITCHELL, J. C. 2006. Protecting browser state from web privacy attacks.
In Proceedings of the International Conference on World Wide Web (WWW). 737–744.

JACKSON, C. AND WANG, H. J. 2007. Subspace: Secure cross-domain communication for web mashups. In
Proceedings of the International Conference on World Wide Web (WWW). 611–620.

JAKOBSSON, M. AND MYERS, S. 2006. Phishing and Countermeasures: Understanding the Increasing Problem
of Electronic Identity Theft. Wiley-Interscience.

JIM, T., SWAMY, N., AND HICKS, M. 2007. Defeating script injection attacks with browser enforced embedded
policies. In Proceedings of the International World Wide Web Conference (WWW). 601–610.

JSAPI. 2011. JSAPI reference-MDC. https://developer.mozilla.org/en/JSAPI Reference.
JSON. 2011. JSON in javascript. http://www.json.org/js.html.
JSPRINCIPALS. 2011. JSprincipals-MDC. http://developer.mozilla.org/en/JSPrincipals.
KALS, S., KIRDA, E., KRUEGEL, C., AND JOVANOVIC, N. 2006. SecuBat: A web vulnerability scanner. In Proceedings

of the International Conference on World Wide Web (WWW). 247–256.
KAPPEL, G., PROLL, B., REICH, S., AND RETSCHITZEGGER, W. 2006. Web Engineering: The Discipline of Systematic

Development of Web Applications. John Wiley and Sons.
KICIMAN, E. AND LIVSHITS, V. B. 2010. AjaxScope: A platform for remotely monitoring the client-side behavior

of web 2.0 applications. ACM Trans. Web 4, 4, 13:1–13:52.
KIRDA, E., JOVANOVIC, N., KRUEGEL, C., AND VIGNA G. 2009. Client-side cross-site scripting protection. Comput.

Secur. 28, 7, 592–604.
KOMANDURI, S., SHAY, R., KELLEY, P. G., MAZUREK, M. L., BAUER, L., CHRISTIN, N., CRANOR, L. F., AND EGELMAN, S.

2011. Of passwords and people: Measuring the effect of password-composition policies. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. 2595–2604.

KRISHNAMURTHY, B. AND WILLS, C. E. 2006. Cat and mouse: Content delivery tradeoffs in web access. In
Proceedings of the International Conference on World Wide Web (WWW). 337–346.

LAM, V. T., ANTONATOS, S., AKRITIDIS, P., AND ANAGNOSTAKIS, K. G. 2006. Puppetnets: Misusing web browsers as
a distributed attack infrastructure. In Proceedings of the ACM Conference on Computer and Communi-
cations Security (CCS). 221–234.

LIVSHITS, B. AND CUI, W. 2008. Spectator: Detection and containment of javascript worms. In Proceedings of
the USENIX Annual Technical Conference.

MENDES, E. AND MOSLEY, N. 2005. Web Engineering. Springer.
MEYEROVICH, L. AND LIVSHITS, B. 2010. ConScript: Specifying and enforcing fine-grained security policies for

javascript in the browser. In Proceedings of the IEEE Symposium on Security and Privacy.
MOSHCHUK, A., BRAGIN, T., GRIBBLE, S. D., AND LEVY, H. M. 2006. A crawler-based study of spyware in the web.

In Proceedings of the Network and Distributed System Security Symposium (NDSS).
MSDN. 2011. MSDN: InnerHTML property. http://msdn.microsoft.com/en-us/library/ms533897(VS.85).aspx.
MURUGESAN, S. AND DESHPANDE, Y. 2001. Web Engineering: Managing Diversity and Complexity of Web Appli-

cation Development. Springer.
MXR. 2012. Mozilla cross-reference: Firefox 2 source code. http://mxr.mozilla.org/firefox2/.
NIKIFORAKIS, N., INVERNIZZI, L., KAPRAVELOS, A., VAN ACKER, S., JOOSEN, W., KRUEGEL, C., PIESSENS, F., AND VIGNA,

G. 2012. You are what you include: Large-scale evaluation of remote javascript inclusions. In Proceedings
of the ACM Conference on Computer and Communications Security (CCS). 736–747.

ODA, T., WURSTER, G., VAN OORSCHOT, P., AND SOMAYAJI, A. 2008. SOMA: Mutual approval for included content
in web pages. In Proceedings of the ACM Conference on Computer and Communications Security (CCS).
89–98.

POWELL, T. A., JONES, D. L., AND CUTTS, D. C. 1998. Web Site Engineering: Beyond Web Page Design. Prentice
Hall.

PROVOS, N., MAVROMMATIS, P., RAJAB, M. B., AND MONROSE, F. 2008. All your iframes point to us. In Proceedings
of the USENIX Security Symposium. 1–15.

RATANAWORABHAN, P., LIVSHITS, B., AND ZORN, B. G. 2010. JSMeter: Comparing the behavior of javascript
benchmarks with real web applications. In Proceedings of the USENIX Conference on Web Application
Development (WebApps).

REIS, C., DUNAGAN, J., WANG, H. J., DUBROVSKY, O., AND ESMEIR, S. 2006. BrowserShield: Vulnerability-driven
filtering of dynamic html. In Proceedings of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 61–74.

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

7:38 C. Yue and H. Wang

REIS, D. C., GOLGHER, P. B., SILVA, A. S., AND LAENDER, A. F. 2004. Automatic web news extraction using tree
edit distance. In Proceedings of the International Conference on World Wide Web (WWW). 502–511.

RICHARDS, G., GAL, A., EICH, B., AND VITEK, J. 2011a. Automated construction of javascript benchmarks. In
Proceedings of the ACMSIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA). 677–694.

RICHARDS, G., HAMMER, C., BURG, B., AND VITEK, J. 2011b. The eval that men do - a large-scale study of the
use of eval in javascript applications. In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP). 52–78.

RICHARDS, G., LEBRESNE, S., BURG, B., AND VITEK, J. 2010. An analysis of the dynamic behavior of javascript
programs. In Proceedings of the ACM Conference on Programming Language Design and Implementation
(PLDI).

ROSSI, G., PASTOR, O., SCHWABE, D., AND OLSINA, L. 2007. Web Engineering: Modelling and Implementing Web
Applications. Springer.

SANS. 2007. SANS top-20 2007 security risks (2007 annual update). http://www.sans.org/top20/2007/.
SILICONFORKS. 2012. Parsing javascript with spidermonkey. http://siliconforks.com/doc/parsing-javascript-

with-spidermonkey/.
SINGH, K., MOSHCHUK, A., WANG, H. J., AND LEE, W. 2010. On the incoherencies in web browser access control

policies. In Proceedings of the IEEE Symposium on Security and Privacy.
SPIDERMONKEY. 2012. Spidermonkey (javascript-c) engine. http://www.mozilla.org/js/spidermonkey/.
STONE-GROSS, B., COVA, M., CAVALLARO, L., GILBERT, B., SZYDLOWSKI, M., KEMMERER, R. A., KRUEGEL, C., AND VIGNA,

G. 2009. Your botnet is my botnet: Analysis of a botnet takeover. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS). 635–647.

SUH, W. 2005. Web Engineering: Principles and Techniques. IGI Publishing.
SYMANTEC. 2008. Symantec internet security threat report volume XIII: April, 2008. http://www.symantec.

com/business/theme.jsp?themeid=threatreport.
VOGT, P., NENTWICH, F., JOVANOVIC, N., KIRDA, E., KRUEGEL, C., AND VIGNA, G. 2007. Cross site scripting prevention

with dynamic data tainting and static analysis. In Proceedings of the Network and Distributed System
Security Symposium (NDSS).

W3CDOM. 2011. W3C document object model. http://www.w3.org/DOM.
WANG, H. J., FAN, X., HOWELL, J., AND JACKSON, C. 2007. Protection and communication abstractions for web

browsers in mashupos. In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP).
1–16.

WANG, H. J., GRIER, C., MOSHCHUK, A., KING, S. T., CHOUDHURY, P., AND VENTER, H. 2009. The multi-principal os
construction of the gazelle web browser. In Proceedings of the USENIX Security Symposium. 417–432.

WANG, Y.-M., BECK, D., JIANG, X., ROUSSEV, R., VERBOWSKI, C., CHEN, S., AND KING, S. T. 2006. Automated web
patrol with strider honeymonkeys: Finding web sites that exploit browser vulnerabilities. In Proceedings
of the Network and Distributed System Security Symposium (NDSS).

WASSERMANN, G. AND SU, Z. 2008. Static detection of cross-site scripting vulnerabilities. In Proceedings of the
International Conference on Software Engineering (ICSE). 171–180.

WELTY, C. A. 1997. Augmenting abstract syntax trees for program understanding. In Proceedings of the
International Conference on Automated Software Engineering.

WIKIJS. 2011. Javascript. http://en.wikipedia.org/wiki/JavaScript.
WIKISOP. 2011. Same origin policy. http://en.wikipedia.org/wiki/Same origin policy.
WIKIXSS. 2011. Cross-site scripting. http://en.wikipedia.org/wiki/Cross-site scripting.
WILLISON, S. 2005. 24 ways: Don’t be eval(). http://24ways.org/2005/dont-be-eval.
WOT. 2012. Safe browsing tool—WOT (web of trust). http://www.mywot.com/.
XHR. 2011. XMLHttpRequest. http://www.w3.org/TR/XMLHttpRequest/.
YANG, W. 1991. Identifying syntactic differences between two programs. Softw. Pract. Exper. 21, 7(1999),

739–755.
YU, D., CHANDER, A., ISLAM, N., AND SERIKOV, I. 2007. Javascript instrumentation for browser security. In

Proceedings of the ACM Symposium on Principles of Programming Languages (POPL). 237–249.
YUE, C. 2012. Preventing the revealing of online passwords to inappropriate websites with login inspector.

In Proceedings of the USENIX Large Installation System Administration Conference (LISA). 67–81.
YUE, C. AND WANG, H. 2009. Characterizing insecure javascript practices on the web. In Proceedings of the

International Conference on World Wide Web (WWW). 961–970.
YUE, C. AND WANG, H. 2010. BogusBiter: A transparent protection against phishing attacks. ACM Trans.

Internet Technol. 10, 2, 1–31.

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

A Measurement Study of Insecure JavaScript Practices on the Web 7:39

YUE, C., XIE, M., AND WANG, H. 2010. An automatic http cookie management system. J. Comput. Netw. 54, 13,
2182–2198.

ZALEWSKI, M. 2012. Browser security handbook. http://code.google.com/p/browsersec/wiki/Main.
ZHAI, Y. AND LIU, B. 2005. Web data extraction based on partial tree alignment. In Proceedings of the Inter-

national Conference on World Wide Web (WWW). 76–85.
ZHAO, R. AND YUE, C. 2013. All your browser-saved passwords could belong to us: A security analysis and a

cloud-based new design. In Proceedings of the ACM Conference on Data and Application Security and
Privacy (CODASPY).

Received February 2011; revised November 2012; accepted February 2013

ACM Transactions on the Web, Vol. 7, No. 2, Article 7, Publication date: May 2013.

