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Abstract—Utilizing the popular virtualization technology (VT), users can benefit from server consolidation on high-end systems and

flexible programming interfaces on low-end systems. In these virtualization environments, the intensive memory multiplexing for I/O of

Virtual Machines (VMs) significantly degrades system performance. In this paper, we present a new technique, called Batmem, to

effectively reduce the memory multiplexing overhead of VMs and emulated devices by optimizing the operations of the conventional

emulated Memory Mapped I/O in Virtual Machine Monitor (VMM)/hypervisor. To demonstrate the feasibility of Batmem, we conduct a

detailed taxonomy of the memory optimization on selected virtual devices. We evaluate the effectiveness of Batmem in Windows and

Linux systems. Our experimental results show that 1) for high-end systems, Batmem operates as a component of the hypervisor and

significantly improves the performance of the virtual environment, and 2) for low-end systems, Batmem could be exploited as a

component of the VM-based malware/rootkit (VMBR) and cloak malicious activities from users’ awareness.

Index Terms—Memory management, virtual machine, security.
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1 INTRODUCTION

AS a platform-virtualization software solution, VMM/
hypervisor has been widely used for supporting a

diverse set of hardware devices and monitoring informa-
tion between a host machine and multiple guest operating
systems (OSes). For high-end systems, VMMs are attractive
for server consolidation due to their strong resource and
fault isolation guarantees. On a high-end server, the main
memory is shared between VMs and is monitored by a
VMM [1], [2]. The bottleneck of the system lies in VM
multiplexing, which is dependent on system capacity
features, including memory slot availability, additional
power consumption, and the memory-sharing mechanism
of VMM. Here the memory-sharing mechanism is known as
page sharing, memory compression, or memory I/O
multiplexing. Thus, the memory usage inside VMs and
the memory-sharing mechanism in VM multiplexing are
critical to a server’s performance. As a result, commodity
VMMs require an effective memory-sharing mechanism
between VMs and their host, such as optimizing frequent
paging and memory that is mapped for virtual I/O devices.

For low-end systems, such as mobile netbooks, laptops,
or client desktops, a VMM provides a high-level OS interface
for application programming via traditional real-time APIs,
and it also provides the ability to run programs on different
OS platforms. However, due to the small capacity of a low-
end system, multiple VMs cannot be installed on a single
host. Thus, in terms of performance, memory sharing is not a
critical issue for low-end systems. Nevertheless, in terms of
security, malware may exploit virtualization techniques

including memory sharing to completely control VMs on
low-end systems. SubVirt [3] and BluePill [4] are typical
examples of VMBR that attempt to append a thin VMM as a
middleware between a running OS and hardware devices.
The success of VMBR relies on two factors: compromising
devices and hiding malicious behaviors. More specifically,
VMBR requires virtual devices to intercept the I/O opera-
tions of a victim OS, and then VMBR must cloak its
malicious behaviors, which could include system modifica-
tion violation or performance degradation.

Therefore, reducing the overhead in memory multiplex-
ing of VMs will not only improve the performance of high-
end systems, but also help us understand the possibility of
cloaking malicious VMBR behaviors in low-end systems. In
this paper, we present Batmem, an effective technique to
improve the performance of the Memory Mapped I/O
(MMIO)—a conventional memory exchange mechanism—
by reducing the overhead and redundant memory regions
during the multiplexing of VMs. The key component of
Batmem is a dynamic circular buffer that coalesces memory
partitions to be written into the reserved memory areas of
virtual devices. We also employ a compression algorithm to
reduce the allocated memory regions used in such I/O
writing. For either high-end or low-end systems, Batmem is
applied on virtual devices, such as the Video Graphics Array
(VGA), Network Interface Controller (NIC), and Universal
Host Controller Interface (UHCI). In particular, for high-end
systems, we use selective micro benchmarks to evaluate
system performance at the device level. For low-end systems,
Batmem functions as a VMBR component. To validate its
effectiveness in concealing VMBR activities from users’
observations, we evaluate the performance of selected user
applications while maintaining two malicious services:
keylogger and data transmission.

With Intel Virtualization Technology (VT) support, we
implement Batmem and conduct experiments on emulated
devices for both Windows and Linux systems. Our
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experimental results show that Batmem effectively reduces
the overhead of the I/O multiplexing in virtual devices
while eliminating the redundant memory regions used in a
memory exchange. For high-end systems, Batmem signifi-
cantly improves the performance of the virtual environ-
ment, but for low-end systems, Batmem could be exploited
by VMBR to cloak its malicious activities.

The implementation of Batmem is based on Kernel
Virtual Machine (KVM) [5], instead of other open source
hypervisors such as Xen [6] or Lguest [7]. Even though Xen
supports fault containment and performance isolation by
partitioning physical memory among multiple VMs and
allows unmodified guest OSes to run on a VT-x supported
host, its particular domain-based architecture makes it
impossible to compare with other light-weight hypervisor
architectures, such as KVM or lguest, in terms of driver
domain model and performance. In contrast, KVM inherits
lguest’s flexibility and turns a Linux kernel into an in-kernel
hypervisor, in which OSes can directly run on the hardware
and take advantage of VT-x.

The remainder of this paper is organized as follows: in
Section 2, we survey related work. In Section 3, we detail
the design and implementation of Batmem. In Section 4, we
evaluate the performance of Batmem at both low and high
system levels (i.e., device and user levels). In Section 5, we
discuss the relevant security aspects of Batmem from both
offense and defense sides. Finally, we conclude in Section 6.

2 RELATED WORK

We briefly describe the previous works that are related to
ours from four different perspectives: MMIO and memory
compression, VMBR behaviors, malicious devices and
drivers, and end-user behaviors.

2.1 MMIO and Memory Compression

Optimizing MMIO and memory compression has been
studied before. McKenney [8] discussed the possibility of
improving functionalities of MMIO in different symmetric
multiprocessing (SMP) architectures. Huggahalli et al. [9]
implemented a framework to indirectly improve MMIO by
delivering inbound I/O data directly into processor caches.
Xia et al. [10] recently proposed an intermediate technique
to improve the performance in passthrough I/O. However,
these optimizations only target regular NICs, not other PCI
devices. Considering a regular architecture of the MMIO
circular buffer, we improve its performance by dynamically
monitoring the reserved memory regions of devices.

For the memory compression, the WKdm algorithm
proposed by Wilson et al. [11] is an effective hybrid method
that utilizes both statistical and dictionary-based techni-
ques. Gupta et al. [12] recently implemented a hypervisor
extension that supports multiple in-memory compression
algorithms. Their work significantly reduces memory
consumption not only in running virtual applications, but
also across different VMs. Instead of using such algorithms,
we apply Run-Length Encoding (RLE) [13] to compress
memory partitions due to its simplicity in encoding with the
threshold run, achieving the reduced time complexity in
comparison to other algorithms.

2.2 VMBR Behaviors

The previous studies of VMBR primarily focus on how a
computer system can be infected by VMBR [3]. Recent
research targets the malicious functionalities of VMBR on
VM-based systems, such as memory shadowing [14] or
fingerprinting methods [15]. In addition, the approach to
analyzing malware behaviors through VM-based systems
has been studied, such as a tainting technique [16] and an
active monitoring library [17]. However, since these pre-
vious works are offline analyses, they cannot be deployed on
end-user systems for online detection. Instead of revisiting
the VMBR problem, our work analyzes the potential VMBR
challenges and verifies the possibilities of VMBR to hijack
computer systems by adapting its behaviors.

2.3 Malicious Devices and Drivers

With respect to devices and drivers, a few malware models
have been developed on the exploitation of particular
hardware and software components. King et al. [18]
presented a substantial design space in malicious circuitry
to build a flexible and hard-to-detect malicious processor.
To hijack a system, Embleton et al. [19] proposed a System
Management mode Based Rootkit (SMBR) that exploits an
obscure mode on Intel processors. In terms of modifying the
kernel driver model, the released KVM patches also use an
MMIO coalescent technique [20] in one KVM run session.
However, like the virtual passthrough I/O of Xia et al. [10],
these models neither use the dynamic batching method nor
cover the UHCI device. In contrast, we focus on drivers that
can be maliciously modified for malware’s purposes and
conduct experiments on the emulated E1000, instead of the
Realtek NIC.

Regarding hardware optimized for virtualization, recent
work focuses on building efficient virtual awareness
devices and improving the hardware performance by
modifying the network subsystem [21]. However, such
improvements require the modification of the Xen’s driver
domain model. Although our prototype is developed on
KVM with supported VT-x, Batmem can be applied in other
virtual context switching models to narrow the performance
gap of the virtualization and verify the security holes of
virtual devices.

2.4 End-User Behaviors

In accordance with user-perceived performance, we classify
user behaviors into three different groups: screen-based,
net-based, and filesystem-based. Note that the performance
metrics are chosen according to their acceptable validity
and reliability in previous studies [22], [23].

Screen-based behavior is a variation of the end-user
screen interaction, which is described by an instantly
estimated frame-per-second (FPS) metric. The higher the
FPS values, the closer the matching between a real VGA and
an emulated VGA.

Net-based behavior is a variation of the end-user
network activity. We use performance metrics such as
virtual capacity and packet delay of a NIC to quantify the
variation. Here virtual capacity is defined as the maximum
data transfer rate over the virtual NIC, specifically between
the guest OS and outside networks.
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Filesystem-based behavior affects user interactions on
virtual filesystems, such as emulated USB storage. The I/O
activities of end-users will be affected by the bandwidth of
filesystems.

3 SYSTEM DESIGN AND IMPLEMENTATION

In this section, we first detail the system design of Batmem.
In particular, Batmem improves the speed of MMIO write
by using 1) a dynamic circular buffer to group write
requests, and 2) a compression to minimize written memory
partitions into the reserved memory. Then, we describe its
implementation and related malicious services on KVM.

3.1 System Design

In our design, Batmem participates in writing MMIO with
other virtual components, such as the main memory, devices,
and context switch. As shown in Fig. 1, a virtual CPU (VCPU)
takes control of reading data from the device and writing
MMIO data to memory. Batmem intercepts such an exchange
by monitoring virtual device status and I/O device
operations to control the MMIO writing on the reserved
memory area. The context switch, known as a switching
module, controls I/O requests sent from guest OS device
drivers to virtual devices . With VCPU, the switching
module conducts the MMIO writing to virtual memory . To
allow Batmem to properly participate in the MMIO writing,
we need to establish a connection between Batmem and the
switching module . This connection registers Batmem into a
contact list of the switching module, making Batmem capable
of monitoring I/O requests. These I/O requests are issued
from the guest OS device driver controller, passing through
the context switch in each MMIO session.

In each MMIO session, the issued MMIO requests are
executed by I/O instructions at the switching module and
VCPU. Such requests hold the address and size of the shared
page of memory for each MMIO writing. When the Batmem/
switching module connection is established, Batmem ex-
changes with the switching module to obtain information
about the MMIO session, including the addresses belonging
to MMIO page and reserved memory partitions. Each
partition holds information about its size, address, and status
(registered or unregistered). The registered partition intro-
duces an occupied memory area, which is allocated and used
by Batmem. The unregistered partition presents an extensible
unoccupied memory area. The unregistered partitions are
extended and used when current allocated memory parti-
tions for Batmem are overrun by numerous arrivals of
writing requests. Through Batmem, these partitions are

registered or unregistered with the switching module. Note
that such partitions are associated with another assigned
memory area known as a batched buffer. To increase the
MMIO writing speed from the reserved memory for a device
to the main memory, we create the batched buffer as a
dynamic circular buffer to store all MMIO partitions as a
batch for each writing session.

The dynamic circular buffer structure is built on an
ordinary circular buffer to prevent buffer underruns when
devices perform numerous write-backs to the main mem-
ory. As shown in Fig. 2a, the dynamic circular buffer is a list
of memory regions, where each element can be freed or
ready to be filled upon receiving a writing request. To batch
MMIO partitions, each buffer element needs to record the
physical address and size of the mapped memory. Upon
receiving notification from the switching module at session
completion, Batmem informs the dynamic circular buffer to
group all current partitions in the buffer. Instead of
sequentially writing into the reserved memory, which is
time consuming and may slow other devices’ I/Os on the
main memory, Batmem simply completes an MMIO by
copying the available buffer to the reserved memory. Since
the buffer to be copied is in a mapped memory area that lies
on the same main memory area, this copying is obviously
much less expensive than the regular sequential MMIO
writing. In order to eliminate buffer underruns when the
requests of other devices fall behind, Batmem adjusts the
size of the dynamic circular buffer by appending a number
of free elements. Note that although a circular buffer has
been widely used in sharing memory mechanisms, our
improvement goes beyond the design of data structure by
dynamically associating its functionalities with a memory
compression in each writing session.

To reduce the memory footprint in the reserved memory,
as shown in Fig. 2b, Batmem employs RLE to compress the
batched memory regions in the dynamic circular buffer.
Because such a compression is useful only when the
compression ratio is high, we need to determine the regions
to compress. At the beginning, instead of compressing an
entire region, we just compress the first half of a region.
Batmem defines a threshold to compare with the compres-
sion ratio of the first half region’s. If the measured
compression ratio is higher than the given threshold, the
compression is effective. The rest of the region is com-
pressed and then is written into the reserved memory.
Otherwise, the entire uncompressed batched region is
committed to writing into the reserved memory as usual.

In the reserved memory, Batmem marks the compressed
regions to differentiate them from others. When a read
request from the VM accesses a compressed region,
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Fig. 1. Virtual environment overview with Batmem.

Fig. 2. (a) Regular MMIO partitions written into reserved memory.

(b) Batmem enhances writing speed by using dynamic circular buffer
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Batmem automatically decompresses and returns the
region. Note that a compressed region and its mark remain
intact until it is discarded or overwritten by new regions.

Batmem groups and compresses MMIO partitions with-
out affecting the MMIO session. After the partitions to be
grouped are successfully registered, the switching module
notifies both Batmem and the devices to activate the MMIO
batching. Using the device status provided by the switching
module, Batmem can differentiate the device and its
registered memory partitions from other devices that are
not actively executed. Note that when VMM is initialized, to
monitor the virtualized main memory, VCPU needs to map
all first pages of device memory structures to the main
memory. Since the regular size of the mapped memory is
given and specified by VMM, Batmem maps the offset of
this dynamic circular buffer to the first page of the main
memory to easily locate the buffer in each MMIO session.

3.2 Implementation

We implement Batmem on KVM, an open-source-based
VMM/hypervisor, which operates as a subsystem lever-
aging the virtualization extension. The recent KVM version
works as a Linux kernel module running under a VT-x
supported host. As a benefit of the Linux kernel architec-
ture, KVM can perform or schedule the OS as a Linux
process. For high-end systems, Batmem is added into KVM
as a module that maintains a capability to monitor multiple
running VMs. For low-end systems, Batmem is implemen-
ted as a VMBR component that attempts to conceal the
presence of running malicious services from the end-user.
The implementation on KVM includes two main parts:
Batmem and malicious services.

3.2.1 Batmem

Batmem takes advantage of the standard ioctl() functions
under the Linux kernel to allocate, register, and unregister
memory partitions. Such functions are immediately initi-
alized with the KVM core module when the host is started. To
protect allocated partitions from other processes that do not
involve the MMIO writing session, the KVM core must be
secure before and after each use. To secure the KVM core and
schedule legitimate processes, we use a semaphore. We
monitor a memory partition by using flag and side values that
represent the results and side effects of the current batching
process. The results consist of the registered partition
information, including device identifications, the reserved
memory size, and the circular dynamic buffer address. The
side effects are considered to be either memory allocation
latencies or buffer overrun circumstances. For the dynamic
circular buffer, we start with a default size of 100 elements. If
the number of partitions being used reaches the current
buffer size, the buffer size is incremented by 10 elements. We
choose these numbers to strike a balance between system
memory usage and buffer overrun circumstances.

We need to minimize the overhead produced by
compression/decompression operations. The overhead is
measured in terms of the execution times of various
functions involved in MMIO/Batmem, where we enable
each function in isolation and evaluate its execution time.
Fig. 3 shows the average of total overhead imposed by
major Batmem/MMIO operations, corresponding to the

different compression ratio thresholds. As expected, the
overhead grows with the increase of the compression
threshold value. The overhead growth is primarily due to
the increased number of batched regions that are available
for compression. More specifically, we conduct multiple
experiments using different compression ratio values as
integers in a given range with an estimated error of the
standard deviation. In each experiment, we maintain
consistent batched memory regions as input for the
compression. As a result, the ratio threshold of 5 percent
is selected as the default value, with which the compres-
sion/decompression module only adds 1-1.5 percent over-
head to the entire system.

For VGA and Rtl8193 NIC, we intercept their original
registration functions to monitor both device information
and writing processes. The interception directly points
original registrations to our new registration routines.
Therefore, we can perform batching on the mapped
memory partitions of these devices upon receipt of their
statuses. Since Batmem conducts the batching, this inter-
ception makes our new routines transparent to the guest OS
device drivers.

For UHCI, we modify its registration and create its
reserved memory for MMIO. To have the KVM UHCI
function as a regular PCI device, we modify UHCI
registration based on the core registration of a standard
PCI device. However, on the KVM, UHCI is emulated
without a reserved memory area. We create a reserved
memory for UHCI on the main memory and add it to the
contact list of the switching module. To allow UHCI to
operate MMIO, we modify the UHCI initialization by
directly assigning the destinations of its I/O operations to
the new reserved memory. Note that such modifications do
not affect the fundamental UHCI architecture.

3.2.2 Malicious Services

We implement two malicious services as parts of VMBR:
keylogger and data transmission between malware.

First, using the kernel keylogger concept [24], we
implement the keylogger to compromise both the data
buffers and I/O functions of the emulated keyboard
controller. Since the emulated keyboard controller is
operated as a kernel module within KVM, we need to
recompile KVM with the keylogger to activate the service.
To hijack a keystroke data buffer, the keylogger first checks
the buffer availability, then performs its own read/write
functions to copy the keystroke data to its buffer. The
checking is executed via generated interrupts at an
emulated serial port of KVM. We implement a small
module to store the copied keystroke data as readable log
files under the host. Although the keylogger is not fully
functional, such as encrypting keystroke data or sending it
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out to networks, we believe that its interception precisely
represents a regular VMBR’s keylogger service.

Second, to illustrate a data exchange between two pieces
of malware, we implement a data transmission service for
exchanging data between the user level of the guest OS and
the kernel level of the host. The exchanged data are guest OS
sensitive information, such as a Windows registry structure
or a Linux filesystem map. An inside-the-guest malware
functions at the user level of the guest OS. Another out-of-
the-box malware operates at the kernel level of the host,
more specifically, inside KVM. These two pieces of malware
attempt to periodically send and receive data to each other
by using implicit communication methods, such as inter-
rupts, ports, or devices. The inside-the-guest malware
cannot modify device drivers, and using interrupt-based
or port-based communications is more challenging than a
device-based method. We implement a simple protocol
based on TCP/IP that allows both malware to send and
receive data packets via an emulated NIC. The emulated
NIC is initialized when the system is started with activated
network services. VMBR can immediately perform this data
transmission service afterwards.

4 EXPERIMENTATION

We use benchmarks and sample payloads to evaluate the
effectiveness of Batmem. First, for high-end systems, we
conduct experiments with KVM/Batmem for three types of
guest OSes: Windows XP, Ubuntu 7.10 Linux Kernel (LK)
2.6.21, and Fedora 8 LK 2.6.22. Each type has two guest
OSes, for a total of six guest OSes. We run these guest OSes
on a Tank GT20 server that includes a quad-core 2.0 GHz
Intel Xeon processor and 4 GB RAM. Each guest OS uses
512 MB shared memory. We use benchmarks to examine the
operations of intercepted devices. Second, for low-end
systems, our evaluation includes two parts: analyzing the
modules of Batmem based on their sizes and complexities,
and measuring the varied runtime application behaviors
when malicious services are activated. The running host
consists of Intel 2.0 GHz and 1 GB memory, in which a
shared 512 MB is for a guest OS.

4.1 High-End Systems

We use selected device level benchmarks to verify the
effectiveness of Batmem on NIC, VGA, and UHCI. Our
experiments are conducted in two scenarios: with and

without Batmem. Each experimental result is an average of
eight independent measurements along with an error
estimate specified by the sample standard deviation. Due
to the different running services involved and differences
between UDP and TCP in terms of reliability and weight,
we use IPerf [25] to measure the two parameters of virtual
NIC, i.e., virtual capacity and UDP packet delay, which
correspond to the net-based behaviors. The measurements
are conducted under different benchmark configurations.
We cluster the performance results into different groups
based on the running OS.

Fig. 4a shows that Batmem works more effectively in Linux
than in Windows. The results show that Batmem increases the
virtual capacity of Windows by only 0.05 percent. However,
these virtual capacity values are varied in Linux. In the LK
2.6.22, the virtual capacity is significantly improved by
490 percent, but only by 16.5 percent in the LK 2.6.21. These
improvements are due to MMIO partitions, which belong to
MMIO requests of the virtual NIC and are completely
grouped by Batmem. Such grouping increases the data
written into the main memory, and thus increases the virtual
capacity. Note that without Batmem, the virtual capacity of
the vanilla LK 2.6.22 is even less than that of the LK 2.6.21. The
reason is that the vanilla LK 2.6.22 system applies some
modifications on the TCP congestion control of the LK 2.6.21.
On one hand, the beneficial modifications consist of merging
sampling RTT, recomputing RTT updates, and resizing
option fields with flag bits. In particular, the TCP socket
buffer is required to consider invalid zero timestamps in
communication with the RTT sampler upon the ACKed TCP
retransmission request, and hence slightly affects its data
transfer rate. On the other hand, these modifications increase
the number of MMIO requests and reduce the amount of data
written into the main memory for each request. The reduced
amount of written data lowers the virtual capacity. Therefore,
we believe that these modifications of the TCP congestion
control significantly improve the virtual capacity in the LK
2.6.22 when Batmem is active.

Fig. 4b shows the effectiveness of Batmem in reducing
UDP packet delays. The UDP packets are transmitted
between the guest OS and the host through the virtual
NIC. We conduct the experiments with different amounts of
transferred data. Our experimental results demonstrate that
Batmem helps Windows reduce the UDP packet delay up to
83 percent. In Linux systems, we observe that Batmem also
reduces the UDP packet delay in the LK 2.6.21 by 45 percent,
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but by just 13 percent in the LK 2.6.22. As expected, in all the
systems, Batmem works less effectively with the increase of
transferred data because the NIC device driver progres-
sively issues MMIO requests under such an increase. More
specifically, the more MMIO requests are issued, the more
partitions are reallocated. Consequently, Batmem induces
more overhead to group the partitions.

We use 3DBench [26] to measure the VGA memory
bandwidth in Windows, which corresponds to the screen-
based behavior. The benchmark intensively executes 3D
routines that require aggressive I/O data exchanges on the
VGA card. These data exchanges depend on three major
factors, including processor speed, VGA bus size, and
memory cache. Since the processor speed and the VGA bus
size cannot be changed, to observe the variations of the
VGA bandwidth, we conduct experiments in two cases,
with and without memory cache. As shown in Table 1, for
60-100 seconds, Batmem helps the Windows system
increase the actual VGA bandwidth, represented by FPS,
in both cases by 20-33 percent.

We use the SiSoftware [27] in Windows and Bonnie++ [28]
in Linux to measure the UHCI I/O performance, which
corresponds to the filesystem-based behavior. To avoid a
sensitivity of the filesystem workload that may affect the
overall performance of I/O, we consistently maintain a data
file for such measurements. Table 2 shows the improvement
of read/write in Windows when Batmem is active. In
particular, Batmem increases the I/O speed up to 220 percent
in the sequential mode and 170 percent in the random mode.
In Linux, to measure the operations of read, seek, and delete,
we create a 128 MB file, clear the cache, and assign a 4 KB
chunk for each operation. For writes, we create an empty file
and keep writing 4 KB data chunks to the file until the file size
reaches 128 MB. As shown in Table 3, Batmem takes
advantage of the asynchronous write in the ext3 filesystem
when the number of MMIO sessions is increased, and thus
increases the amount of exchanged data for a period of time.

Moreover, Batmem increases the I/O speeds from 7 to
15 percent in the LK 2.6.21 and from 95 to 164 percent in the
LK 2.6.22, respectively. The accelerations for the LK 2.6.22 are
significant when Batmem is active. This is because patches
are applied on the LK 2.6.22 to optimize inode read/write
functions of the ext3 filesystem, thereby increasing the speed
of I/O requests. In fact, the improvement of the I/O request
speed enhances the host/virtual I/O context switch. Conse-
quently, Batmem can accelerate the MMIO writing and
increase the UHCI I/O bandwidth.

We also conduct experiments to evaluate memory saving
on the system. Our results show that the compression
component can save up to 5 percent of memory. Since the
saving is not significant, we plan to employ more effective
compression algorithms for greater improvement in the
future.

4.2 Low-End Systems

4.2.1 Module Examinations

We examine our implemented modules on VMBR, includ-
ing Batmem, malicious services, and the VMBR installation
procedure, in terms of their size and complexity features.
These modules must limit their sizes and complexities to
hide themselves on systems. Since our VMBR is built on
KVM, whose original size is given, our focus is on these
new modules.

First, the Batmem module includes 1) vector structures,
which form the dynamic circular buffer, 2) shared libraries,
which consist of memory interactions with devices, and 3) a
compression buffer, which supports memory compression.
Even without applying source code optimization methods,
as shown in Table 4, we observe that the module size of
Batmem remains almost the same after the compilation
(12 KB of source code and 13 KB of binary code). The slight
difference between the two numbers is due to the use of the
KVM shared memory library.

Second, of the malicious services, the keylogger imple-
mentation is more complex than the data transmission
service. As a Linux kernel module, the keylogger uses low
level kernel I/O functions to lock, read, and write the
keyboard data. For data transmission, the inside-the-guest
module benefits from high level functions to maintain its
communication, while the out-of-the-box module uses
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primitive kernel read/write functions. Therefore, the binary
size of the data transmission module is significantly
expanded compared to the keylogger module. This com-
parison clearly shows the advantage of using low level
library functions for malicious module implementations.

Third, we consider the VMBR installation as a procedure,
instead of a part of the malicious module. This procedure
functions as a script, which includes essential initializations
on KVM and devices, to instantly invoke KVM when the
host is started. More specifically, since we only insert and
activate this procedure script at the end of the boot
sequence, the fundamental structure of the host boot
sequence is not changed. In some cases, users may
recognize a variation of the guest OS screen resolution
because the emulated VGA is not automatically detected.
However, this gap can be resolved if attackers retrieve
accurate hardware VGA device information to properly
configure the guest OS resolution.

4.2.2 User-Level Experimentation

We run the selected user-level applications on guest OSes
under two different conditions: with and without malicious
services. The performance metric we used is application
response time. As one of the most popular Internet
applications, web browsers are sensitive to response time.
Our selected applications include Internet Explorer in
Windows and Firefox in Linux. We differentiate the
response times in two cases, with and without Batmem, on
compromised systems running malicious services. Note that
we do not change the configuration of the web browsers
during the experiments, and all web browser caches are
cleared before each test to avoid possible side effects.

In our experiments with malicious services, malware is
executed either separately as a single service or simulta-
neously as a dual one (Dual). For the keylogger (KL), we use
AutoHotkey [29] and Autokey [30] to generate keystroke
patterns. For data transmission (DT), a connection is
automatically established to exchange files between two
malicious components. We conduct these experiments in
two scenarios, without and with Batmem. Each experimen-
tal result is compared with the response time of a vanilla
system (i.e., the base value T ). The lowest T is 18.44 seconds
in LK 2.6.21 and the largest T is 23.62 seconds in Windows.

Without Batmem, through web browsers, we access a local
website, download, and store a given data file into a USB
drive. As shown in Fig. 4c, running malicious services
significantly increases the user-perceived response times. For
example, with a dual service, compared to the corresponding
T , the response time is increased by 38.47 percent in
Windows and 35.76 percent in Linux.

With Batmem, we repeat the previous tests. As expected,
Batmem effectively reduces VMBR overhead in both
Windows and Linux. Thus, the user-perceived response
times of the web browsers are greatly decreased, which is
evidently shown in Fig. 4c. For Windows systems, the
reduction is around 60 percent, while for Linux systems, the
reduction is up to 80 percent.

Overall, our results clearly demonstrate the capability of
Batmem in concealing VMBR’s activities from user aware-
ness. The overhead reduction by Batmem in Windows is not
as much as that in Linux systems. We believe that this is

due to mainly non-optimization of device context switches
and I/O system calls in Windows systems.

5 DISCUSSION

In this section, we discuss the reliability and security issues
related to Batmem in the virtual environment.

5.1 Reliability

The dynamic circular buffer and memory compression
techniques of Batmem can be applied to other hypervisors
because they do not depend on a particular hypervisor
architecture. Batmem only attempts to improve the speed of
MMIO write by monitoring I/O functions on selected
devices. More specifically, while the context switch and
reserved memory areas are two primary components of the
hypervisor, Batmem only optimizes their memory I/O
exchanges and does not modify their fundamental opera-
tions. Therefore, the operations of these original compo-
nents are not affected by Batmem.

For memory compression, the actual benefit is determined
by a trade-off between its overhead and compression ratio.
While the chosen compression ratio threshold of 5 percent is
not reasonably high, we believe that it is appropriate because
the total system overhead is only increased by 1-1.5 percent.
As expected, the compression behavior highly depends on
the chosen algorithm. Although the applied RLE is less
effective than WKdm and/or Lempel-Ziv in terms of
compression ratio [11], we also believe that the prototype
of Batmem shows the potential of using such a simple
technique to reduce memory redundancy in a virtual
support system.

5.2 Security

In high-end systems, Batmem is embedded into the
hypervisor without violating the security design of the
hypervisor. System administrators can protect Batmem from
other malicious accesses inside VMs by placing Batmem as a
read-only component within a protected memory area of the
host. Such a technique follows the similar approach of
memory shadowing proposed by Riley et al. [14]. As a result,
Batmem is protected in high-end systems.

For low-end systems, we discuss the challenges to
protect a low-end system from an installation of VMBR,
as well as to detect its presence, in the rest of this section.

5.2.1 Preventing VMBR Installation

To protect the host boot sequence from malicious modifica-
tions of VMBR, we can employ software or hardware
solutions. Software solutions secure BIOS or boot processes
by using encryption or out-of-the-box verification. Attack-
ers need to retrieve the BIOS information to properly
configure virtual devices when the host is started. Encryp-
tion methods prevent this retrieval by encrypting/decrypt-
ing the BIOS information upon its exchange among
legitimate system components. Out-of-the-box methods
use the checkpoint verification technique, which compares
system snapshots between suspicious and legitimate boot
sequences to discover the malicious modifications. In
general, hardware solutions can be built on a tainting
technique that monitors exchanged data among legitimate
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system components. Those suspicious uses of tainted data
will be considered as illegitimate. However, for a low-end
system, both software and hardware solutions are difficult
to apply because they either need to reboot the system for
the snapshot comparison or degrade the system perfor-
mance by their aggressive verifications of primitive data.

5.2.2 Detecting VMBR/Batmem

Since Batmem is operated as an embedded component
within VMBR, detecting its presence is challenging. How-
ever, as we mentioned in Section 3, to easily locate the
buffer of each MMIO session, Batmem maps the offset of
the dynamic circular buffer to the first page of the main
memory. This design may motivate defenders to scan and
compare the content of the device memory and the first
page of main memory to determine grouped regions, and
hence, detect the presence of Batmem. Unfortunately,
aggressively checking memory partitions is very expensive,
leading to significant performance degradation.

As an alternative, we can check the local time source to
detect VMBR [31]. However, this method is not very robust
since attackers can evade detection by using other similar
approaches as Batmem to cloak their malicious activities on
virtual components. In contrast, Garfinkel et al. [32] show a
possibility of detecting VMBR without using time-based
techniques. Nevertheless, they target highly resource con-
strained VMBRs [3], and the flexible and small ones like
Bluepill [4] are not considered.

We can also exploit a vulnerability of KVM by checking
shutdown conditions of the VCPU triple faults at the user
level [33]. The effectiveness of this technique highly
depends on possibilities to conceal such shutdown condi-
tions of attackers.

6 CONCLUSION

We have presented the design and implementation of
Batmem, a technique that significantly reduces the overhead
of the conventional memory exchange mechanism MMIO.
To demonstrate its feasibility, we build Batmem in KVM and
conduct experimentation in both high-end and low-end
systems. For the high-end systems, we evaluate the
performance improvement of virtual devices. For the low-
end systems, Batmem functions as a VMBR component. Our
experimental results on Windows and Linux show signifi-
cant performance improvements with the use of Batmem in
device-level benchmarks and user-level applications.

We believe that Batmem will help researchers to better
understand the critical issues of memory sharing and
VMBR in both high-end and low-end virtual support
systems. We hope that our work will also motivate system
designers to carefully evaluate security gaps at the real/
virtual boundary in designing devices for virtual environ-
ments and to pay more attention to the threats posed by the
adaptive behaviors of VMBR.
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