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Abstract

This paper presents a simple and robust mechanism, called Change-Point Monitoring (CPM),
to detect denial of service (DoS) attacks. The core of CPM is based on the inherent network proto-
col behaviors, and is an instance of the Sequential Change Point Detection. To make the detection
mechanism insensitive to sites and traffic patterns, a non-parametric Cumulative Sum (CUSUM)
method is applied, thus making the detection mechanism robust, more generally applicable and its
deployment much easier. CPM does not require per-flow state information and only introduces a
few variables to record the protocol behaviors. The statelessness and low computation overhead of
CPM make itself immune to any flooding attacks. As a case study, the efficacy of CPM is evaluated
by detecting a SYN flooding attack — the most common DoS attack. The evaluation results show
that CPM has short detection latency and high detection accuracy.
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1 Introduction

The growing number of denial of service (DoS) attacks impose a significant threat on the availability

of network services, and the vulnerability of the Internet to DoS attacks has been witnessed by the

frequent attacks on Internet servers and their resultant disruption of services [15, 21, 37]. Due to the

readily available tools and its simple nature, flooding packets is the most common and effective DoS

attack. While flooding tools have been becoming more sophisticated, they have been getting easier to

use. An adversary without much knowledge of programming can download a flooding tool and then

launch a DoS attack. The flooding traffic of a DoS attack may originate from either a single source or

multiple sources. We call the latter case a distributed denial of service (DDoS) attack. Briefly, a DDoS

attack works as follows. An attacker sends control packets to the previously-compromised flooding

sources, instructing them to target at a given victim. The flooding sources then collectively generate

and send an excessive number of flooding packets to the victim, but with fake and randomized source

addresses, so that the victim cannot locate the flooding sources.
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1



To foil DoS attacks, researchers have designed and implemented a number of countermeasures. In

general, the countermeasures of DoS attacks can be classified into three different categories: detection,

defense (or mitigation), and IP trace-back mechanisms. Detecting DoS attacks in real time is the first

step of combating DoS attacks. An automated and fast detection is essential to the protection against

DoS attacks. Upon timely detection of a DoS attack, more sophisticated defense mechanisms will be

triggered to shield victim servers or link bandwidth from DoS traffic, and block the prorogation of

DDoS traffic at routers. At the same time, we can perform more expensive IP trace-back to single out

flooding sources. Unlike defense and trace-back mechanisms, detection itself should be an alway-on

function with little overhead, causing minimal disruption to normal operations and withstanding any

flooding attacks.

Basically, detecting DoS attacks belongs to network-based intrusion detection. A network-based

intrusion detection system (NIDS) is based on the idea that an intruder’s behavior will be noticeably

different from that of a legitimate user and that many unauthorized actions are detectable. A commonly-

used detection approach is either signature-based or anomaly-based. A signature-based NIDS inspects

the passing traffic and searches for matches against already-known malicious patterns. In practice,

several signature-based NIDSes have been developed and deployed at firewalls or proxy servers, such

as Bro [41] and Snort [45]. By contrast, an anomaly-based NIDS observes the normal network behavior

and watches for any divergence from the normal profile. Most of DoS detection systems are anomaly-

based, like MULTOPS [17] and D-WARD [36]. However, their normal traffic models are mainly based

on flow rates. Due to the diversity of user behaviors and the emergence of new network applications, it

is difficult to obtain a general and robust model for describing the normal traffic behaviors.

We have observed that the server-client or peer-to-peer model of Internet applications demonstrates

a unique request vs. reply protocol behavior, and the reliable data delivery leads to the inherent data

vs. acknowledgment (ACK) protocol behavior. Based on these distinct network protocol behaviors,

instead of traffic rates, in this paper we propose a simple and robust mechanism, called Change-point

Monitoring (CPM), to detect DoS attacks. The rationale behind CPM is that there exists a strong

positive correlation between requests (data) and the corresponding replies (ACKs) in the Internet as

the inherent protocol behaviors, and DoS attacks easily destroy this strong correlation. In particular,

we employ the non-parametric Cumulative Sum (CUSUM) method [6] to detect the cumulative effect

of the deviation from normal protocol behaviors caused by a DoS attack. The key features of CPM

include:

• CPM utilizes the inherent protocol behaviors for DoS detection. Since the protocol behaviors are
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determined by solely the protocol specifications and the service models of Internet applications,

CPM is independent of traffic flow rates or specific applications.

• CPM is insensitive to sites and traffic patterns due to its reliance on the non-parametric CUSUM

method [6], thus making CPM robust, much more generally applicable, and its deployment easier.

• CPM plays a dual role in detecting DoS attacks: the first-mile (egress) CPM and the last-mile

(ingress) CPM. Due to its close proximity to the flooding sources, the first-mile (egress) CPM

not only alarms on the ongoing DoS attacks, but also helps reveal the origins of the flooding

sources.

The simplicity (hence attractiveness) of CPM lies in its statelessness and low computation overhead —

only a few variables are introduced to record the protocol behaviors with a few CPU cycles burned.

Besides monitoring the ongoing traffic at firewalls, CPM can be installed at a leaf router that connects

a stub network1 to the Internet, or at an ISP edge router that connects a customer network to the ISP.

Moreover, CPM can work independently at either a leaf (edge) router or a firewall, and it does not need

any coordination with other routers or end-hosts. The independence of CPM determines that CPM can

be incrementally deployed and its implementation overhead is low.

As a case study, we use CPM to detect a SYN flooding attack — the most common DoS attack. The

efficacy of CPM is evaluated by extensive trace-driven simulations. Traces taken from different sites at

different times are employed to evaluate the sensitivity of CPM. First, our trace-based study validates

the coherence of TCP protocol behaviors, clearly showing their independence of sites and sampling

times. Then, we inject SYN flooding traffic with different rates and investigate the detection sensitivity

of CPM at different sites. The evaluation results show that CPM has short detection latency and high

detection accuracy.

The remainder of the paper is organized as follows. Section 2 details our statistical detection

methodology — the proposed CUSUM algorithm for detecting abnormal protocol behaviors. Sec-

tion 3 describes the CPM framework, including the placement and structure of CPM and its dual role in

detection. Section 4 presents our case study for detecting a SYN flooding attack. Section 5 evaluates the

performance of CPM using trace-driven simulations for SYN flooding detection. Section 6 discusses

related work. Finally, Section 7 states conclusions and future directions.

1A stub network only carries packets to and from local hosts.
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2 Statistical Attack Detection

Like most statistical anomaly-detection systems, CPM compares the observed sequence with the pro-

file that represents the user’s normal behavior, and detects any significant deviation from the normal

behavior. The key difference of CPM from others is that CPM exploits the inherent network protocol

behaviors, instead of traffic patterns, for detecting network anomalies.

In general, for any associations among IP packets, TCP segments, or application-level messages

that are determined solely by protocol specifications, we regard them as inherent protocol behaviors.

For instance, according to the specification of TCP/IP protocol [54], in its normal operation, a FIN

(RST) is paired with a SYN at the end of data transmission. The other network behaviors, to name a

few, include TCP data segments and ACKs, ICMP requests and replies, DNS queries and replies, etc.

After distilling the inherent protocol behaviors from raw traffic flows, we can apply the CPM to

detect an ongoing flooding attack by observing the violation of normal protocol behaviors. CPM can

achieve more accurate detection with a shorter latency: the strong positive correlation between requests

(or queries) and the corresponding replies enables CPM to detect abnormal behaviors quickly.

2.1 Change-Point Detection

The objective of Change-Point Detection is to determine if the observed time series is statistically

homogeneous, and if not, to find the point in time when the change happens. This has been studied

extensively by statisticians. See [2] and [6] for a good survey. There have been various tests for

different problems. They can be largely divided into two categories: posterior and sequential. Posterior

tests are done off-line where the entire data is collected first and then a decision of homogeneity or a

change point is made based on the analysis of all the collected data. On the other hand, sequential tests

are done on-line with the data presented sequentially and the decisions are made on-the-fly. Our attack

detection algorithm belongs to the Sequential Change Point Detection [2].

We adopt the sequential test for quicker response when an attack occurs. It also saves memory and

computation. One difficulty, however, is the modeling of requests’ arrival process. For instance, despite

the existence of a number of previous results on the modeling of TCP connection request arrivals [9,

10, 43, 49], there is no consensus on whether it should be modeled as self-similar or Poisson. For

dynamic and complex systems like the Internet, it may not be possible to model the total number of

session request2 arrivals by a simple parametric description. So, we seek robust tests which are not

2A session request could be a TCP connection request, an ICMP request, or a DNS query, etc.
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model-specific. In fact, non-parametric methods fit this requirement very well. Specifically, we use the

non-parametric CUSUM (Cumulative Sum) method [6] for the detection of DoS attacks. This method

enjoys all the virtues of sequential and non-parametric tests, and the computation load is very light.

When the time series is independent identically distributed (i.i.d.) with a parametric model, CUSUM is

asymptotically optimal for a wide range of Change Point Detection problems [2, 6].

2.2 The CUSUM Algorithm

For ease of presentation, we only show how it works in the request (QST) vs. reply (RLY) pair scheme,

which is similar to the data vs. acknowledgment (ACK) pair scheme except that the collection of QSTs

and RLYs is replaced with that of data and ACKs.

Let {∆n, n = 0, 1, · · ·} be the number of QSTs minus that of the corresponding RLYs collected

within one sampling period. To further alleviate its dependence on the time, traffic pattern and size of

the network, {∆n} is normalized by the average number, R̄, of RLYs during each sampling period. R̄

can be estimated in real time and updated periodically. An example of recursive estimation and update

of R̄ is:

R̄(n) = αR̄(n− 1) + (1− α)RLY(n), (1)

where n is the discrete time index and α is a constant, whose the default value is 0.01, lying strictly

between 0 and 1 that represents the memory in the estimation. Let Xn = ∆n/R̄, then

{Xn} is no longer dependent on the network size or time-of-day. Its dynamics are solely the conse-

quence of the protocol specification. So, we can consider {Xn} as a stationary random process. Under

the normal condition, the mean of Xn, denoted as c, is much less than 1 and close to 0.

{Xn} is assumed to satisfy the following two conditions.

C1: {Xn} is ψ-mixing, meaning that the ψ(s) parameters, defined below, approach 0 as s→∞:

ψ(s)
def
= sup

t≥1
sup
A ∈ Rt1,
B ∈ R∞t+s,

P (A)P (B) 6= 0

| P (AB)

P (A)P (B)
− 1|, (2)

where Rt
1 is the σ-algebra generated by {X1, X2, · · · , Xt} and R∞t+s is the σ-algebra generated

by {Xt+s, Xt+s+1, · · ·}. ψ(s) is affected by the dependency among the {Xn} samples: highly

dependent {Xn} has ψ(s) that decays slowly as s → 0. In addition, the sup above means

supremum — the tightest upper bound of the variable in the formula [46].
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C2: The marginal distribution of {Xn} satisfies the following regularity condition: ∃t > 0 such that

E(etXn) <∞.

The details of these conditions can be found in [6]. Note that ψ-mixing is a much looser require-

ment than independence, and Xn being ψ-mixing only indicates that Xn is not “extremely” dependent.

In practice, both conditions are mild and easily satisfiable, even for long-range dependent arrival pro-

cesses. In general, E(Xn) = c � 1. We choose a parameter a that is an upper bound of c, i.e., a > c,

and define X̃n = Xn − a so that it has a negative mean during normal operation. When a DoS attack

takes place, X̃n will suddenly increase and become a large positive number. Suppose, during an attack,

the increase in the mean of X̃n can be lower-bounded by h. Our change detection is based on the

observation of h� c.

Let

yn = (yn−1 + X̃n)+, (3)

y0 = 0,

where x+ is equal to x if x > 0 and 0 otherwise. The meaning of yn can also be understood as follows:

if we define Sk =
∑k
i=1 X̃i, with S0 = 0 at the beginning, it is straightforward to show that

yn = Sn − min
1≤k≤n

Sk, (4)

i.e., the maximum continuous increment until time n. A large {yn} is a strong indication of an attack.

Since Eq. (3) is recurrent and much easier to compute than Eq. (4), we will use it in making detection

decisions.

Let dN(.) be the decision at time n: ‘0’ for normal operation (homogeneity) and ‘1’ for attack (a

change occurs). Here N represents the flooding threshold:

dN(yn) =

{
0 if yn ≤ N,
1 if yn > N.

(5)

In other words, dN(yn) = I(Yn > N), where I(.) is the indicator function. The purpose of introducing

a is to offset the possible positive mean in {Xn} caused by network anomalies so that the test statistic

yn will be reset to zero frequently and will not accumulate with time.

Let Pm and Em be the probability measure and the expected value generated by {X̃n} with the

attack occurring at time m (change point at time m); let P∞ and E∞ be the counterparts without any
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attack (no change point). There are two fundamental performance measures for the sequential change

point detection.

False alarm time (the time without false alarm): the time duration with no false alarm reported when

there is no attack.

Detection time: the detection delay after the attack starts.

One would want the second measure to be as small as possible while keeping the first measure as

large as possible. However, they are conflicting goals and cannot be simultaneously achieved. There-

fore, the design philosophy of a statistical change point detection is to minimize the detection time

subject to a certain false alarm tolerance. In order to compare the performance of different detection

schemes, some criteria of false alarms must be specified, like average time between two consecutive

false alarms, worst-case false alarm time, and so on. An algorithm is said to be optimal with respect

to a certain criterion if it minimizes the detection time for an attack among all the detection schemes

subject to the false alarm constraint. The CUSUM rule has been shown to be asymptotically optimal

with respect to the worst-case mean false alarm time in the change-point detection problems involving

a known parametric model and independent observations [2].

Due to the lack of a complete model for {X̃n}, it is difficult to discuss optimality. The choice of

CUSUM is based on its simplicity in computation and non-parametric implementation, as well as its

generally excellent performance. It has been shown in [6] that, with the choice of a, the upper bound in

case of normal operation, and N , the flooding threshold, as N becomes large, we have

sup
n
| lnP∞(dN(n) = 1)| ∼ O(N), (6)

which is equivalent to

P∞{dN(n) = 1} ∼ c1 exp(−c2N) (7)

where c1 and c2 are constants, depending on the marginal distribution and mixing coefficients of {X̃n}.
In other words, the time between consecutive false alarms grows exponentially with N . The burstiness

of traffic is reflected by the mixing coefficients ψ(s), and thus, does impact the detection performance.

However, the constants c1 and c2 only play a secondary role and can be ignored in practice.

In order to study the detection time, let us define

τN = inf{n : dN(.) = 1}, (8)

ρN =
(τN −m)+

N
,
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where m represents the starting time of the attack and ρN represents the normalized detection time after

the occurrence of a change, and inf means infimum, or the greatest lower bound [46]. In CUSUM, for

any m ≥ 1, if h is the actual increase in the mean of {X̃n} during an attack, we have

ρN → γ =
1

h− |c− a| , (9)

where h−|c−a| is the mean of {X̃n} when n > m (after an attack starts). However, since h is a bound

rather than a true value, the above is a conservative estimation (an upper bound) of the actual detection

time. The exact choice of parameters a, h and N will be detailed in Section 4.4 when we apply this

method for detecting SYN flooding attacks.

3 The Framework of CPM

In this section, we first briefly describe the placement of CPM, then present the structure of CPM, and

discuss the dual role of CPM.

3.1 Placement of CPM

As has been done in most NIDSes, it is possible that CPM could be placed on the link that connects a

stub (customer) network to the Internet by monitoring the bidirectional traffic on that link. However,

besides the extra specialized equipment and manpower required, during high peak (near saturation)

flow rates, almost no event of any kind would be logged by NIDSes— they either have to drop packets

at a very high rate or require a high-performance multi-CPU architecture for packet state analysis.

Therefore, unlike the traditional NIDS that passively monitors bidirectional traffic on network links,

CPM is transparently interposed at either a leaf router or an ISP edge router, and is implemented as a

loadable module of the router. In addition to its installation at leaf or ISP edge routers, CPM can also

be placed at the firewall or the proxy server of a large organization which has only a single connection

to the external world. All packets of a session must pass through the same CPM. However, we do not

recommend the CPM to be installed at core routers mainly because (1) it is close to neither flooding

sources nor the victim; (2) packets of the same flow could traverse different paths; (3) it is not always

possible to accurately classify different transport-layer packets at core routers due to the possible use

of IPSec; and (4) it cannot detect the reflected flooding attacks [42] easily, since malicious packets are

diffused before reaching the core router.
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3.2 Structure of CPM

Installed at a leaf (ISP edge) router, CPM consists of two sniffers, one at the in-bound interface and

the other at the out-bound interface of the router. We refer to the traffic from the Internet to the stub

(customer) network as in-bound, and the traffic in the other direction as out-bound. The in-bound sniffer

(out-bound sniffer) monitors the incoming (outgoing) traffic. Figure 1 illustrates the structure of CPM

placed at a leaf router.

Internet

Inbound Interface

Out-bound Sniffer 

In-bound Sniffer

Stub Network

Outbound Interface

Figure 1: The structure of CPM placed at a leaf router

Both sniffers are software-based agents. Each sniffer consists of three components: a packet clas-

sifier, a packet counter, and a CUSUM detector. The packet classifier is used to distinguish the tar-

geted packets such as TCP SYNs from the raw IP traffic. Large-scale packet classification mechanisms

[18, 30, 53] have been proposed and implemented, making it possible for routers to differentiate the

targeted packets from others at a very high speed. Therefore, the CPM’s capability to withstand any

flooding attacks depends on the ability of a leaf router in classifying and forwarding packets, typically

at the rate of a million packets per second [30]. The packet counter includes a few additional variables

that are introduced to record the number of targeted packets at each interface of a leaf router. No per-

connection state or state computation is involved in CPM. Unlike the other NIDSes that maintain state

for each TCP connection, CPM does not have the cold-start problem3 mentioned in [19]. The CUSUM

detector takes the variables of packet counter as its input, and executes the CUSUM detection algorithm

given in Section 2.2.

3.3 Dual Role of CPM

Each leaf (ISP edge) router can be either the first-mile (egress) or the last-mile (ingress) router, depend-

ing on the direction of traffic between the stub (customer) network and the Internet. The CPM at a leaf

(edge) router, therefore, plays a dual role in detecting flooding attacks:

3A “cold start” refers to the situation when a network intrusion detection system begins to run, or after it is restarted, it
doesn’t know how to deal with the incoming TCP traffic that belongs to the connections established earlier.
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• as the first-mile (egress) CPM, it detects the flooding attacks originated from its local stub (cus-

tomer) network and traces the flooding sources inside the local stub (customer) network; and

• as the last-mile (ingress) CPM, it detects flooding attacks on a server inside the local stub (cus-

tomer) network, and issues a warning signal upon detection of an attack.

The first-mile (egress) CPM plays the primary role in sniffing a flooding attack, due mainly to

its proximity to the flooding sources. Once an ongoing SYN flooding attack is detected, the first-

mile (egress) CPM’s warning signal automatically indicates the flooding sources to be inside the stub

(customer) network to which the CPM is connected. However, the detection sensitivity of the first-

mile (egress) CPM may diminish as more flooding sources participate and locate in different sites. In

a large-scale DDoS attack, the flooding sources can be orchestrated so that each flooding source may

cause only an insignificant deviation from the normal traffic pattern.

In contrast, the last-mile (ingress) CPM can quickly detect the flooding attacks as all of the flooding

traffic streams are merged at the last-mile (ingress) router. Although it cannot provide any hint about

the flooding sources, upon receipt of the last-mile (ingress) CPM’s warning signal for an attack, the

defense system like SynDefender [34] can be triggered to protect the victim. To bring down the victim

under protection, the flooding sources have to increase their flooding rates significantly, but this will

make it easier for the first-mile (egress) CPM to detect the flooding attack and locate its source(s). So,

the last-mile (ingress) CPM plays an important complementary role in detecting DoS attacks.

For ease of presentation, in the rest of the paper we only use the terms of leaf router, first-mile CPM

and last-mile CPM, and stub networks. However, they are exchangeable with ISP edge router, egress

CPM and ingress CPM, and customer networks, respectively.

4 Detecting SYN Flooding Attacks

As a case study, we evaluate the efficacy of CPM by detecting SYN flooding attacks. The recent

research results have shown that more than 90% of the DoS attacks use TCP [37], and TCP SYN

flooding dominates in the available attacking tools and the number of DoS attacks known to date [37].

TCP SYN flooding consists of a stream of spoofed TCP SYN packets directed to a listening TCP port of

the victim. Not only the Web servers but also any system connected to the Internet providing TCP-based

network services, such as FTP or mail servers, are susceptible to TCP SYN flooding attacks.
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4.1 SYN and Reflected SYN/ACK Flooding

SYN flooding attacks exploit the TCP’s three-way handshake mechanism and its limitation in main-

taining half-open connections. When a server receives a SYN packet, it returns a SYN/ACK packet

to the client. Until the SYN/ACK packet is acknowledged by the client, the connection remains in

half-open state for a period of up to the TCP connection timeout, which is typically set to 75 seconds.

The server has built in its system memory a backlog queue to maintain all half-open connections. Since

this backlog queue is of finite size, once the backlog queue limit is reached, all connection requests

will be dropped. If a SYN packet is spoofed, the victim server will never receive the final ACK packet

to complete the three-way handshake. Flooding spoofed SYN packets can easily exhaust the victim

server’s backlog queue, causing all the incoming SYN packets to be dropped.

While the conventional SYN flooding is an attack of “system resource consumption,” the recent

reflected SYN/ACK flooding attacks [16] virtually “disconnect” a victim server from the Internet by

hogging the link bandwidth between the victim and its ISP with an excessive number of SYN/ACK

packets (a.k.a. bandwidth consumption attack). It is a kind of Distributed Reflection DoS (DRDoS)

attacks [42]. In reflected SYN/ACK flooding attacks, a large number of innocent BGP routers (service

port 179) and well-known TCP servers are exploited as the reflectors. The attacker “sprays” the spoofed

SYN packets, whose source IP addresses are falsified as the victim’s IP address, across a large number

of reflectors. Each reflector alone only receives a moderate flux of spoofed SYN packets so that it can

easily sustain the availability of its normal service. However, these innocent reflectors involuntarily

reflect and amplify the malicious SYN packets. Their SYN/ACK responses, which are aggregated and

flooded to the victim, are excessive, exhausting the link bandwidth between the victim and its ISP.

Note that in reflected SYN/ACK flooding attacks, all malicious SYN packets from the attacker must

traverse the leaf router that connects the attacker to the Internet, in order to reach the Internet and then

get sprayed across the numerous reflectors. The CPM installed at this leaf router can detect the flow

of these malicious SYNs, since no SYN/ACKs return to the attacker and the total number of malicious

SYNs is still very large. So, the same method for detecting SYN flooding attacks can be applied to

detect reflected SYN/ACK flooding attacks. To CPM, the reflected SYN/ACK flooding attack is just a

variation of the conventional SYN flooding attack.

11



4.2 Detection Methods

Based on the inherent protocol behavior of TCP connection establishment and teardown, we utilize

two types of packet pairs — SYN vs. FIN and SYN vs. SYN/ACK pairs — to detect SYN flooding

attacks. According to the type of packet pairs used, we devise two different methods for SYN flooding

detection.

SYN_SENT

SYN_RCVD

ESTABLISHED

ESTABLISHED

Client Server

FIN_WAIT1

FIN_WAIT1

CLOSE_WAIT

LAST_ACK

TIME_WAIT

CLOSED

(active open)
LISTEN

ACK

FIN

ACK M+1

SYN

ACK K+1

J+1ACKK

JSYN

N+1

(passive open)

(active close)

(passive close)

FIN

M (active)

(passive)N

Figure 2: TCP states corresponding to normal connection establishment and teardown (from [54])

As shown in Figure 2 which is borrowed from [54], SYN and FIN packets delimit the beginning

(SYN) and end (FIN) of each TCP connection in the same direction. In contrast, SYN and SYN/ACK

packets signal the start of a TCP connection establishment in two opposing directions. Under the

normal condition, one appearance of a SYN packet results in: (1) the eventual return of a FIN packet

in the same direction; and (2) the corresponding transmission of a SYN/ACK packet in the reverse

direction within one round-trip time (RTT). Thus, the difference between the number of SYN and FIN

(or SYN/ACK) packets can be utilized to detect SYN flooding attacks.

4.2.1 SYN vs. FIN pairs

The first detection method utilizes the SYN vs. FIN pairs. Because a SYN packet and the corresponding

FIN pass through a leaf router in the same direction (i.e., the same interface as shown in Figures 1 and

2), the SYN vs. FIN pair can be monitored by the same sniffer. No coordination and communication

between these two sniffers are required. The first-mile CPM employs only the out-bound sniffer, while

the last-mile CPM uses the in-bound sniffer only. Although SYN packets can be distinguished from
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SYN/ACK packets, there is no way to discriminate active FINs from passive FINs, since each end-host

behind a leaf router may be either a client or a server. So, the SYN vs. FIN pairs refer to both (SYN,

FIN) and (SYN/ACK, FIN). In this detection method, the SYN packets are “generalized” to include the

pure SYN and SYN/ACK packets.

Under a long-running normal condition, the TCP semantics has the one-to-one correspondence

between SYNs and FINs. However, in reality there can always be a discrepancy between the number

of SYNs and FINs. Besides the small number of long-lived TCP sessions, the other major cause of this

discrepancy lies in the occurrence of RST packets. A single RST packet can terminate a TCP session

without generating any FIN packet, which violates the SYN vs. FIN pair’s protocol behavior. RSTs are

generated for two reasons: (1) passive, or the RST is transmitted upon arrival of a packet at a closed

port; and (2) active, or the RST is initiated by a client to abort a TCP connection.4 Each active RST is

associated with the SYN from the same session, and both of them can be seen by the same sniffer. In

contrast, a passive RST cannot be associated with any SYN seen by the same sniffer as the passive RST

and its corresponding SYN must go through different sniffers. Furthermore, passive RSTs may even

have nothing to do with SYNs. For instance, late arrival of a data packet at the port that has already

been closed, will trigger the transmission of an RST. We treat passive RSTs as a background noise.

In general, three types of SYN pairs are considered as the normal behavior of TCP in the first

detection method: (SYN, FIN), (SYN/ACK, FIN) and (SYN, RSTactive). Unfortunately, CPM cannot

distinguish active RSTs from passive ones. There are two simple but extreme ways to resolve this

problem: one is to treat all RSTs as active, and the other is to treat all RSTs as passive. The first

approach degrades the CPM detection sensitivity, while the second raises the CPM false alarm rate. To

make a trade-off between detection sensitivity and false alarm rate, it is necessary to set an appropriate

threshold to filter most of the background noise. Based on our observation, under the normal condition:

(1) SYNs and RSTs have a strong positive correlation; and (2) the difference between the number of

SYNs and that of FINs is close to the number of RSTs. These imply that passive RSTs constitute only

a small percentage of the entire RSTs. So, we set the threshold to 75%, i.e., three out of four RSTs are

treated as active. Moreover, for the following reason, CPM can withstand the negative impact of passive

RSTs that are incorrectly classified as active ones: at the end of each observation period, the CUSUM

algorithm resets any negative difference between the number of SYNs and that of FINs (RSTs) to zero,

so the spike of background noise is confined to one observation period only, preventing its cumulative

4Active RSTs are issued mostly by clients. In its own best interest, a server rarely sends RST packets to clients once the
TCP connection is established.
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effects.

The weakness of the SYN vs. FIN pairs scheme lies in its vulnerability to simple counter-measures.

Once the attacker is aware of the presence of such a detection mechanism, it can paralyze the mechanism

by flooding a mixture of SYNs and FINs (RSTs). Although one can argue that by doubling its flooding

traffic, the attacker increases the possibility of being traced back, one may still wonder if there is a

better way to overcome this shortcoming.

4.2.2 SYN vs. SYN/ACK pair

Fortunately, there is an alternative that is difficult for an attacker to counter. In the normal TCP three-

way handshake, an out-bound SYN induces an in-bound SYN/ACK within a round-trip time. In con-

trast, for the flooded SYNs, because their spoofed IP source addresses are randomized, most of the

corresponding SYN/ACKs will never return to the flooding sources, and hence, cannot go through the

same leaf router as those flooding SYNs as shown in Figure 3 (mis-match part).

The second detection method makes use of SYN vs. SYN/ACK pairs to sniff flooding attacks. Since

SYN/ACK packets are generated by the victim server, it is much more difficult for the flooding sources

to evade the CPM. Moreover, as compared to the SYN vs. FIN pair scheme, the interval between SYN

and SYN/ACK is bounded by one RTT, not by the duration of a TCP session that has much larger

variations.

Leaf Router

V

SYN/ACKs

SYN/ACKs

SYN/ACKs

V
Stub Network

Outgoing SYN/ACKs

Incom
ing

SYN Floods

SYN Floods

Outgoing

Figure 3: Match and mis-match between SYN vs. SYN/ACK pair at a leaf router

14



On the other hand, there are two disadvantages of the second detection method. First, unlike the

first detection method, the out-bound sniffer and the in-bound sniffer must be coordinated. The out-

bound sniffer maintains the count of outgoing SYNs and the in-bound sniffer keeps track of incoming

SYN/ACK packets. At the end of each observation period, the count information must be exchanged

between the two sniffers. Second, the SYN vs. SYN/ACK pair scheme is restricted to be used by

the first-mile CPM only, which sniffs the flooding sources inside the local stub network. It lacks the

capability to issue a timely last-mile flooding warning to the network administrator of the local stub

network that is under attack. The reason for this is that: (1) each victim server generates a SYN/ACK

in response to each SYN it received, regardless whether it is spoofed or not; and (2) the incoming

SYN flood and the outgoing SYN/ACKs pass through the same local leaf router. This phenomenon

is illustrated in Figure 3 (match part). So, there is no noticeable difference between the number of

incoming SYN packets and that of the outgoing SYN/ACKs generated by the victim servers until the

victim servers are totally shut down and no more SYN/ACKs are generated. Therefore, the last-mile

CPM will still rely on SYN vs. FIN pairs for timely detection of an incoming SYN flooding attack.

4.2.3 CPM in Detecting SYN Flooding

As mentioned earlier, CPM plays a dual role: one as the first-mile CPM for sniffing flooding sources,

and the other as the last-mile CPM for issuing attack warnings. To make CPM robust and powerful

in SYN flooding detection, both SYN flooding detection methods are included in the CPM. The SYN

vs. SYN/ACK pair method is employed by the first-mile CPM to sniff flooding sources inside the local

stub network, while the SYN vs. FIN pairs method is used by the last-mile CPM to detect incipient

flooding attacks, and issue a warning to the local network administrator.

4.3 Robustness against Network Anomalies

While there is no strict one-to-one match, under the normal condition, a very strong positive correlation

between the numbers of SYNs and FINs (RSTs) or SYN/ACKs does exist as shown in Section 5.2.

The discrepancy between the numbers of SYN and FIN (RST) or SYN/ACK packets is due to SYN

losses and subsequent retransmissions. The SYN losses are caused by various network anomalies,

including network congestion, routing loops and link failures. Clearly, these network anomalies reduce

the detection sensitivity of CPM.

Fortunately, these network anomalies are triggered by unrelated events; and to date, there exists little

evidence indicating that these different network anomalies are closely correlated. The recent Internet
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measurement studies have shown that: (1) there is little congestion inside the core of the Internet, where

the bandwidth over-provisioning has been widely used and the link utilization varies from 3 to 60% [5];

(2) the majority of routing loops last shorter than 10 seconds [22]; and (3) link failures are fairly well

spread even in the time scale of minutes [20]. Therefore, these randomly-occurring network anomalies

can be treated as white noise. To offset the effect of white noise, a safety margin can be added when

the normal upper bound, a, is set, without jeopardizing the detection sensitivity. Only a severe network

congestion, long lasting routing loops, and bursty occurrence of link failures — which rarely happen

— can confuse the CPM to issue false alarms.

4.4 Parameter Specification

To use the CUSUM algorithm for SYN flooding detection, we only need to specify three tunable pa-

rameters: a, the upper bound of c, which is the mean of {Xn} in normal operation; h, the lower bound

of the increase in {X̃n} = {Xn − a} during an attack; and, N , the flooding threshold.

The CUSUM algorithm requires E(X̃n) < 0 before the change point, and E(X̃n) > 0 after it, i.e.,

a > c and h > a. Based on the discussion in Section 2.2, to ensure a long false alarm time and make it

independent of network size and traffic pattern, we set h = 2a in our design. As the last-mile CPM that

utilizes SYN vs. FIN pairs for flooding detection monitors the incoming traffic, all the SYN flooding

packets converge, and therefore, a large difference between the numbers of SYN and FIN (RST) packets

is easily observable with h � c. In this case, the detection is not sensitive to the choice of a. With a

large safe margin, we can simply choose a = 1 and h = 2.

In contrast, as the first-mile CPM that employs SYN vs. SYN/ACK pairs for flooding detection

monitors the outgoing SYN and incoming SYN/ACK traffic, only part of the flooding SYN packets

can be seen by each detector because an attack may be initiated from many sites simultaneously. Thus,

a proper choice of a is more important. To balance the detection sensitivity and false alarm rate, we

set a = 0.35 and h = 0.7. Note that the choices of a and h are insensitive to network size and

traffic pattern. In doing so, a universal false alarm rate can be realized for easy implementability of

our detection mechanism. On the other hand, in practice, the network administrator of the involved

edge router can incorporate site-specific information so that the algorithm can achieve higher detection

sensitivity.

Based on a and h, the flooding thresholdN can be specified as follows: (1) assume c = 0, and γ can

thus be obtained from Eq. (9); and (2) specify a target detection time (i.e., the product of γ and N ) such

that the flooding threshold N is determined by Eq. (8). We choose t0 as the designed detection time
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for the last-mile CPM, hence γ = 1 and N = 1. In contrast, we choose 3t0 as the counterpart for the

first-mile CPM, hence γ = 2.86 and N = 1.05.5 Compared to the last-mile CPM, the short detection

time of the first-mile CPM is not so crucial to the victim: the revelation of the flooding sources is more

valuable, although it may take longer time. Note that the value of N is partially determined by the

designed detection time, so it may not be larger than the value of h.

It is worth noting that our algorithm is to check the cumulative effect of an attack. So, it can detect

attacks with the SYN flooding rate less than h at the expense of a longer response time. The actual

lower bound of detection sensitivity in terms of SYN flooding rate, fmin, can be given as

fmin = (a− c) · R̄
t0
. (10)

Furthermore, the detection capability is not sensitive to the flooding pattern: it can detect the attacks

with both constant and bursty flooding rates. The effectiveness of CPM is evaluated by trace-driven

simulations.

5 Performance Evaluation

To evaluate and validate the CPM, we have conducted trace-driven simulation experiments. The trace

data we used are collected from four different sites at different times. The first trace was gathered

at DEC’s (now HP) primary Internet access point, which is an Ethernet DMZ network. It contains an

hour’s worth of all wide-area traffic between DEC Western Research Lab and the Internet on March 9th,

1995. The second trace was taken on March 13th, 1997 on a 10 Mbps Ethernet connecting Harvard’s

main campus to the Internet, which is a half-hour trace. The third set was obtained by placing network

monitors on the high-speed link (OC-12, 622 Mpbs) that connects the University of North Carolina at

Chapel Hill (UNC) campus network to the rest of the world. The trace was collected on September

27th, 2000. The fourth set was collected at the Internet access link that connects the University of

Auckland at New Zealand to the rest of the world. The tracing ran from 14:36 to 17:47 on Thursday,

December 5th, 2000.

The traces used in our experiments are summarized in Table 1. Note that the DEC and Harvard

traces are mixed traffic collections in both directions, but the UNC and Auckland traces are uni-

directional: UNC-in and Auckland-in collected the traffic data from the Internet to the UNC and Auck-

land campus networks, respectively, while UNC-out and Auckland-out collected the traffic data from
5N may not seem to be large on the absolute term, but it is large relative to normal fluctuations.
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Table 1: A summary of the trace features

Trace Starting time Traffic type
DEC 2:00, Thu Mar 9, 1995 Bi-directional
Harvard 12:39, Thu Mar 13, 1997 Bi-directional
UNC-in 19:30, Wed Sept 27, 2000 Uni-directional
UNC-out 19:30, Wed Sept 27, 2000 Uni-directional
Auckland-in 14:36, Thur, Dec 5, 2000 Uni-directional
Auckland-out 14:36, Thur Dec 5, 2000 Uni-directional

the UNC and Auckland campus networks to the Internet, respectively.

5.1 Data Sampling

We collect the numbers of SYN, SYN/ACK, and FIN (RST) packets during every observation period

t0, which determines the detection resolution. In order to relate the SYN and FIN (RST) packets of

the same connection, the sampling time of FIN (RST) is delayed by td after SYN is sampled, where

td is so chosen that a significant portion of connections requested during the SYN sampling period

terminate in the corresponding FIN (RST) sampling period. Internet traffic measurements [56] have

shown that most of TCP connections last 12–19 seconds, so we set the sampling delay td to 10 seconds.

In contrast, since most RTTs are less than 0.5 second, we start the collection of SYNs at the out-bound

sniffer and SYN/ACKs at the in-bound sniffer simultaneously. To balance the detection resolution and

the algorithm’s stability and accuracy, we set t0 to 10 seconds. Note, however, that both parameters are

tunable and our algorithm is not very sensitive to this choice.

5.2 Normal Protocol Behavior

The three sets of traces represent the normal protocol behaviors at the exchange points between dif-

ferent stub networks and the Internet at different times. We parse the traces and extract the TCP SYN,

SYN/ACK, FIN and RST packets from the TCP traffic.

5.2.1 SYN vs. FIN Pairs

The dynamics of “generalized” SYNs that include SYNs and SYN/ACKs, FIN and RST packets at

the DEC site are illustrated in Figure 4 (a), and the corresponding result from the Harvard trace is

illustrated in Figure 4 (b). Those from UNC-in and UNC-out are plotted in Figures 4 (c) and 5 (a), and

Auckland-in and Auckland-out are shown in Figures 5 (b) and (c), respectively. They clearly show the
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Figure 4: The dynamics of SYN and FIN (RST) packets (part I)
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Figure 5: The dynamics of SYN and FIN (RST) packets (part II)
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Figure 6: CUSUM test statistics under normal operation
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Figure 7: The dynamics of SYN and SYN/ACK packets at DEC and Harvard
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Figure 8: The dynamics of SYN and SYN/ACK packets at UNC and Auckland

consistent synchronization between SYN and FIN (RST) packets. The consistency indicates that the

synchronization is an inherent protocol behavior and independent of time and sites.

We have applied the CUSUM algorithm on all the available traces without injecting flooding traffic.

The test statistics, {yn}, for all traces are plotted in Figure 6. For the Harvard and UNC traces, yn’s are

constantly zeros. For the Auckland traces, more than 99% yn’s stay at zero. The isolated bursts in yn

are always much smaller than the threshold N = 1.05: the maximal spikes of yn in Auckland-in and

Auckland-out are 0.32 and 0.27, respectively. So, no false alarms are reported.

5.2.2 SYN—SYN/ACK pair

The dynamics of SYN and SYN/ACK packets at the DEC and Harvard sites are illustrated in Figures 7

(a) and (b), respectively. The outgoing SYNs and incoming SYN/ACKs from the UNC and Auckland
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Figure 9: CUSUM test statistics under normal operation at: Harvard, UNC and Auckland

traces are shown in Figures 8 (a) and (b), respectively. As with SYN vs. FIN pairs, these figures clearly

demonstrate a consistent positive correlation between SYN and SYN/ACK packets. The consistency

indicates that the strong positive correlation is also a distinct protocol behavior and independent of time

and sites. Note that in the figures of the DEC and Harvard traces, SYNs and SYN/ACKs are collected

from both directions, instead of “Outgoing SYN” and “Incoming SYN/ACK” as shown in the UNC and

Auckland traces.

Also, we have applied the CUSUM algorithm on the Harvard, UNC and Auckland traces without

adding flooding attacks. The test statistics, {yn}, for the Harvard and UNC traces are plotted in Fig-

ures 9 (a) and (b); that for the Auckland trace is plotted in Figure 9 (c). As expected, for all the traces

tested, yn’s are mostly zeros. Among the isolated spikes of yn in the Harvard trace, the maximum is

about 0.05; the maximal spike of yn in the Auckland trace is about 0.26. Both are much smaller than

the flooding threshold N = 1.05. So, no false alarms are reported.

In summary, under the normal condition, the difference between the collected number of SYNs and

FINs (RSTs) or SYN/ACKs is very small, as compared to the total number of TCP connection requests.

This observation holds in spite of the fact that the total number of TCP connection requests may be

bursty on a small time scale, and slowly-varying on a large time scale. In other words, the correlation

between the numbers of SYNs and FINs (RSTs) or SYN/ACKs is not sensitive to the request arrival

process. The consistent synchronization between SYNs and FINs (RSTs) or SYN/ACKs is independent

of the sites and time-of-day.
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5.3 SYN Flooding Detection

With the appearance of Trinoo, which only implements UDP packet flooding, many tools have been de-

veloped to create DDoS attacks. Most of them, such as Tribe Flood Network (TFN), TFN2K, Stachel-

draht, Trinity, Plague and Shaft, generate TCP SYN flooding attacks and randomize all 32 bits of the

source IP address [12, 13]. Although these DDoS attack tools employ different ways to coordinate

attacks with the goal of achieving robust and covert DDoS attacks, their flooding behaviors are similar

in that the SYN packets are continuously bombarded to the victim.

Under SYN flooding attacks, the flooding SYN traffic has significant regularity and semantics that

can be filtered out. The experiments with SYN attacks on commercial platforms [39] have shown that

the minimum flooding rate to overwhelm an unprotected server is 500 SYN packets per second. How-

ever, with a specialized firewall designed to resist against SYN flooding, a server can withstand an

attack whose flooding rate is up to 22,000 SYN packets per second [39]. To bring down the victim

server for 10 minutes, for example, attackers must collectively inject at least 300,000 SYN packets.

During the same time period, however, the numbers of counted FINs (RSTs) and SYN/ACKs remain

largely unchanged. Therefore, there will be much more SYNs than FINs (RSTs) or SYN/ACKs col-

lected during the flooding period. The difference between the numbers of SYNs and FINs (RSTs)

or SYN/ACKs will increase dramatically, and remain large during the whole flooding period, which

typically lasts for several minutes [37].

Normal traffic Flooding traffic

Normal traffic Flooding traffic

Leaf Router

Stub Network

Out-bound Sniffer
In-bound Sniffer

Figure 10: The trace-simulation flooding attack experiment

In the SYN flooding detection experiments, the UNC and Auckland 2000 traces are used as the

normal background traffic. Among them, UNC-in or Auckland-in is used for incoming background

traffic, and UNC-out or Auckland-out is for outgoing background traffic. The flooding traffic is mixed

with the normal traffic, and the CPM at the leaf router is simulated, as shown in Figure 10. Because the

non-parametric CUSUM method is used for detection of flooding attacks, the flooding traffic pattern

or its transient behavior (bursty or not) does not affect the detection sensitivity. Rather, the detection
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Figure 11: SYN flooding detection sensitivity at the last-mile CPM

sensitivity depends only on the total volume of flooding traffic. So, without loss of generality, we

assume that the flooding rate is constant.

In DDoS attacks, the flooding traffic seen by the first-mile and the last-mile CPMs is quite different.

The flooding traffic passing through the last-mile CPM is the aggregation of the flooding traffic from

all distributed flooding sources, allowing for much easier detection of an attack. However, the flooding

detection at the first-mile CPM is much more difficult. In a large-scale DDoS attack, the flooding

sources can be so coordinated that the traffic from each flooding source may not be noticeable at all.

Suppose the minimum SYN flooding traffic to bring down a TCP server is V packets per second. Then,

the flooding rate at the last-mile CPM is V , but the flooding rate seen by the first-mile CPM may be

much smaller than this.

We assume that the flooding traffic is evenly distributed among different flooding sources and there

is only one flooding source inside each stub network. The flooding rate seen by the first-mile CPM,

fi, equals the individual flooding rate inside the same stub network. Therefore, fi is determined by
V
As

, where As is the total number of the stub networks that contain flooding sources. This setting is

intended to “hide” the attack from the first-mile CPM. That is, the less the flooding sources inside the

stub network, the less flooding traffic seen by the first-mile CPM and the harder to detect the flooding

attack. The flooding duration in all experiments is set to 10 minutes, a typical attack duration observed

in the Internet [37]. The starting time of flooding attacks in the UNC traces is randomly chosen between

1 and 9 minutes, but the starting time in the Auckland traces lies between 3 and 166 minutes.

We first examine the detection sensitivity at the last-mile CPM, which employs SYN vs. FIN pairs

as its detection method. To demonstrate the high sensitivity of last-mile CPM to SYN flooding, the
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flooding rate V is set to its minimum, 500 SYNs per second. The simulation results are plotted in

Figures 11 (a) and (b), showing that the cumulative sum yn exceeds the flooding threshold “1” in one

observation period, i.e., the fastest response can be achieved, in the Auckland and UNC trace cases,

respectively. So, the last-mile CPM of the Auckland case can detect the SYN flooding attack less than

10 seconds, and so does the last-mile of the UNC case. Once the flooding attack is detected, a defense

system like SynDefender can be triggered to protect the victim from the flooding attack. To paralyze

the defense system at the victim, attackers have to increase their flooding rate, and the first-mile CPM

will then be more likely to detect and locate the flooding sources inside the stub network.

To examine the detection sensitivity of the first-mile CPM, which employs SYN vs. SYN/ACK pairs

to detect attacks, we vary the flooding rate fi seen by the first-mile CPM, i.e., the individual flooding

rate inside the stub network. As the last-mile detection is much easier than the first-mile detection, we

only study the detection probability and detection time for the latter. We conduct the SYN flooding

detection experiments on the UNC and Auckland traces.

5.3.1 The UNC Case

Using the UNC traces as the background traffic, we observe the dynamics of yn. Figures 12 (a), (b)

and (c) plot the dynamic behaviors of yn when fi is set to 35, 60 and 80 SYNs per second, respectively.

The accumulative effects of SYN flooding are clearly shown in these figures. In the cases of 60 and

80 SYNs per second, the first-mile CPM can detect the SYN flooding attack in 4 and 2 observation

periods, respectively. However, in the case of 35 SYNs per second, the first-mile takes a much longer

time (about 24 observation periods, i.e., 4 minutes) to exceed the flooding threshold of 1.05. The

detection performance of the first-mile CPM in the context of the UNC traces is summarized in Table 2,

which lists the detection probabilities and detection times for different fi values. Note that the units of

detection time are measured in number of the observation period t0, which is set to 10 seconds.

Clearly, larger flooding rates lead to faster and easier detection of attacks. According to Eq. (10),

the lower detection bound is about 37 SYNs per second in this simulation scenario. If we implement the

same CPM at a smaller subnet, R̄ — the average number of incoming SYN/ACKs — will be smaller,

so we can achieve higher detection sensitivity. This is confirmed by the study of the Auckland traces,

which is presented in the next section.
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Figure 12: SYN flooding detection sensitivity of the CPM at UNC

Table 2: Detection Performance of the first-mile CPM at UNC

fi Detection Prob. Detection Time
35 0.8 24.43
37 1.0 18.75
40 1.0 12.25
50 1.0 5.95
60 1.0 4.05
70 1.0 2.80
80 1.0 2.05

100 1.0 1.45
120 1.0 1.0

5.3.2 The Auckland Case

In the case of Auckland traces, the dynamic behaviors of yn are illustrated in Figure 13 when fi is set

to 1.5, 3 and 4 SYNs per second, respectively. In the case of 1.5 SYNs per second, the first-mile CPM

can detect the SYN flooding attack in about 27 observation periods. In contrast, at the flooding rate

of 3 or 4 SYNs per second, the first-mile CPM takes a much shorter time (3 or 2 observation periods,

respectively) to detect the ongoing flooding. The detection performance of the first-mile CPM for the

context of Auckland traces is summarized in Table 3. Since R̄ of the Auckland trace is much smaller

than that of the UNC trace, the lower detection bound is reduced significantly from 35 to 1.5 SYNs per

second.
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Figure 13: SYN flooding detection sensitivity of the first-mile CPM at Auckland

Table 3: Detection Performance of the first-mile CPM at Auckland

fi Detection Prob. Detection Time
1.5 0.65 27.1

1.75 1.0 13.8
2 1.0 8.0

2.5 1.0 4.1
3 1.0 2.5
4 1.0 1.5
5 1.0 1.0

5.3.3 Discussion

From the detectable flooding rate, we can determine the efficacy of CPM in detecting distributed flood-

ing attacks. To bring a protected server down, the aggregate flooding rate V should be larger than

22,000 requests per second [39]. In the UNC case, the lower detection bound is 35, and As can be as

large as 628 stub networks like the UNC case. Considering the fact that the UNC stub network con-

sists of over 35,000 users [49], it clearly demonstrates the utility and power of CPM. In the Auckland

case, the lower detection bound is 1.5, and hence, As has to be as large as 14,666 medium-size stub

networks like the Auckland case. Source address spoofing requires that the attacking software open

a raw network socket, so the attacker must have root access on end hosts. Although the attacker can

simultaneously initiate the flooding attacks from (possibly many) machines in several ISPs, it is much

harder to launch attacks from hundreds or even tens of thousands of stub networks due to access limit.

We set the parameters independently of network size and traffic pattern, but the network administra-

tor of the involved leaf router can incorporate site-specific information so that the CPM algorithm can

achieve a higher detection sensitivity. For instance, in the UNC case, we can reduce a, the upper bound
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Figure 14: Improvement of flooding detection sensitivity

in case of normal operation, from 0.35 to 0.2 and N , the flooding threshold, from 1.05 to 0.6 without

incurring additional false alarms. Then, the lower detection bound fmin decreases from 35 to 15 SYNs

per second, and the detection sensitivity is greatly improved. The dynamics of yn for the case fi = 15

is shown in Figure 14.

In summary, CPM not only achieves fast detection and high detection accuracy, but is also easily

implementable and broadly applicable.

6 Related Work

Over the past several years, a number of countermeasures have been proposed and implemented to de-

tect, defense and trace-back DoS attacks. Defense mechanisms are deployed either at routers to block

the prorogation of DoS traffic, or at victim servers to mitigate flooding attacks. The router-based mitiga-

tion systems include Distributed Packet Filtering (DPF) [40], Ingress Filtering [14], Pushback [25, 35],

Rate Throttling [61] and SAVE [33]. There are commercial products such as Mazu’s Enforcer [38] and

Arbor Network’s Peakflow [23] to block the DoS traffic at either the enterprise-network perimeter or

the ISP edge routers. In parallel with these, many defense mechanisms have been installed at victim

servers or their proximate firewalls to withstand DoS attacks, such as Client Puzzle [27, 59], Defen-

sive Programming [44], Escort [52], Hop-count Filtering (HCF) [26], Path identifier (Pi) [60], Syn

cache [32], Syn cookies [4] and Synkill [48]. Also, there are commercial products available to defend

Internet servers against the flooding attacks, such as CheckPoint’s SynDefender [34] and Netscreen’s

Syn proxying [24].

Since the source addresses of flooding packets are spoofed, it is very difficult to uncover the origin

of a flooding source. To identify the compromised end-hosts that directly generate flooding packets and
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the network path that these packets take, various traceback techniques [3, 7, 11, 47, 50, 51] have been

proposed. By marking packets at intermediate routers, IP traceback [47, 51] and ICMP traceback [3]

reconstruct the path to the flooding source. The controlled flooding technique developed by Burch and

Cheswick [8] infers the attacking path by observing the impact of selectively exhausting some network

links upon the victim. Using noisy polynomial reconstruction, Dean et. al [11] proposed an algebraic

approach to performing IP traceback. A hash-based IP traceback technique [50] can identify the origin

of individual packets with reasonable overhead through the use of Bloom filters. Moreover, an overlay

network with selective rerouting has been used to track and prevent DoS traffic [28, 55].

As the first step to thwart DoS attacks, an accurate, fast and lightweight detection mechanism is

essential for the defense and traceback systems. Based on traffic behaviors, several DoS detection

mechanisms have been developed, including MULTOPS [17] and D-WARD [36]. Being deployed at

source-end networks, D-WARD [36] monitors two-way traffic between the network and the rest of

the Internet. By comparing the monitored traffic with normal traffic models, D-WARD detects and

throttles the ongoing flooding attacks. Its normal traffic models are simply based on flow rates. In the

design of MULTOPS [17], a tree of nodes are built to keep packet-rate statistics for subnets at different

aggregation levels. Based on the observation of a significant disproportional difference between the

traffic flowing in and out of the victim, routers use MULTOPS to detect ongoing bandwidth attacks.

However, the burstiness of Internet traffic [31, 43] makes this detection of attacks much harder, since

there is no natural length of burst for self-similar traffic. Furthermore, the normal Internet traffic pattern

is site- and time-dependent. With the diversity of user behaviors and the emergence of new network

applications, it is very difficult to build a robust and general model for describing the normal traffic flow

rates.

Within the scope of more general intrusion detection, many different approaches have been pro-

posed to detect anomalies, such as machine learning, neural networks, state machine model and Markov-

chain model. In this paper, we detect the occurrence of a DoS attack as an instance of sequential

change-point, and apply non-parametric CUSUM for detecting the change-point. Other change detec-

tion methods, which directly apply to raw IP traffic without deriving protocol behaviors for detecting

network anomalies, have also been introduced, e.g., wavelet-based [1], spectrum-based [21], sketch-

based [29] and signal processing approaches [57].

Unlike the above-mentioned schemes and commercial products, CPM extracts the inherent protocol

behaviors from the raw IP traffic and detects DoS attacks based on the protocol behaviors. Since the

protocol behaviors are much more stable than those of Internet traffic, CPM is much less sensitive to
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site and traffic patterns than the other schemes. Moreover, no per-flow state is required by the CPM.

It only keeps track of a few packet counts. By applying the non-parametric CUSUM method, CPM

can detect the flooding attacks in a timely manner with low computational overhead as shown in our

trace-driven simulations. Overall, the robustness of CPM results from its simplicity and reliance on the

protocol behaviors.

Note that all of the other detection, defense and traceback mechanisms deployed at routers or fire-

walls were used solely for countering DoS attacks, and do not improve (some may even degrade) the

end-to-end performance of clients behind routers, thus giving little incentive for wide deployment. In

contrast, CPM is, in some sense, a by-product of the router infrastructure that can provide fine-grain

packet classification and service differentiation [58]. As CPM differentiates control packets (such as

TCP SYNs) from data packets, end-to-end performance can be improved significantly as shown in [58].

Therefore, CPM benefits not only victim servers but also the clients inside the stub network, making it

attractive for wide deployment.

7 Conclusion and Future Work

We developed and evaluated a simple and robust mechanism, CPM, to detect DoS flooding attacks.

CPM utilizes the inherent network protocol behaviors that are invariant under various arrival models

and independent of sites and time-of-day. The distinct features of CPM include: (1) it is stateless

and requires low computation overhead, making itself immune to any flooding attacks; (2) the non-

parametric CUSUM method is employed, making the detection robust; and (3) it is insensitive to sites

and traffic patterns. CPM can be installed at either firewalls or leaf (ISP edge) routers.

As a case study, the efficacy of CPM is evaluated and validated by detecting SYN flooding attacks.

Traces from different sites and collected at different times have clearly demonstrated the SYN pairs’

behaviors. Then, we conducted trace-driven simulations. The experimental results show that the CPM

achieves high detection accuracy and short detection time. Moreover, once the first-mile CPM detects

the ongoing flooding traffic, this information can help reveal the origin of flooding sources.

Recently, multi-homed ASs become attractive to improve availability, reliability and load-balancing.

In such a case, a customer network is connected to the Internet by multiple ISPs. As long as the packets

that belong to the same session go through the same leaf (ISP edge) router, CPM still works. However,

if the packets of the same session go through different leaf routers, we need a loose synchronization

mechanism between the CPMs in these leaf (ISP edge) routers, which is the subject of our future work.
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