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Abstract
As the most basic cloud service model, Infrastructure as a
Service (IaaS) has been widely used for serving the ever-
growing computing demand due to the prevalence of the
cloud. Using pools of hypervisors within the cloud, IaaS
can support a large number of Virtual Machines (VMs)
and scale services in a highly dynamic manner. How-
ever, it is well-known that the VMs in IaaS are vulnerable
to co-residence threat, which can be easily exploited to
launch different malicious attacks. In this measurement
study, we investigate how IaaS evolves in VM placement,
network management, and Virtual Private Cloud (VPC),
as well as the impact upon co-residence. Specifically,
through intensive measurement probing, we first profile
the dynamic environment of cloud instances inside the
cloud. Then using real experiments, we quantify the im-
pacts of VM placement and network management upon
co-residence. Moreover, we explore VPC, which is a de-
fensive network-based service of Amazon EC2 for se-
curity enhancement, from the routing perspective. On
one hand, our measurement shows that VPC is widely
used and can indeed suppress co-residence threat. On the
other hand, we demonstrate a new approach to achieving
co-residence in VPC, indicating that co-residence threat
still exists in the cloud.

1 Introduction

Entering the era of cloud computing, Infrastructure as
a Service(IaaS) has become prevalent in providing In-
formation Technology (IT) support. IT giants such as
Amazon [1], Microsoft [4], and Google [2] have de-
ployed large-scale IaaS services for public usage. Em-
ploying IaaS, individual IT service providers can achieve
high reliability with low operation cost and no longer
need to maintain their own computing infrastructures.
However, IaaS groups multiple third-party services to-
gether into one physical pool, and sharing physical re-
sources with other customers could lead to unexpected

security breaches such as side-channel [25] and covert
channel [19] attacks. It is well-known that IaaS is vul-
nerable to the co-residence threat, in which two cloud in-
stances (i.e., VMs) from different organizations share the
same physical machine. Co-residence with the victim is
the prerequisite for mounting a side-channel or covert-
channel attack.

The security issues induced by co-residence threat
have been studied in previous research. However, most
previous works focus on “what an attacker can do” [14,
19, 25], “what a victim user should do” [24], and “what
a cloud vendor would do” [12, 15, 26]. In contrast, to
the best of our knowledge, this measurement work ini-
tiates one of the first attempts to understand how cloud
service vendors have potentially reacted to co-residence
threat in the past few years and explore potential new
vulnerabilities of co-residence inside the cloud. While
Amazon Elastic Compute Cloud (EC2) is the pioneer of
IaaS, it has the largest business scale among mainstream
IaaS vendors [11, 18]. Therefore, we focus our study
on Amazon EC2. More specifically, our measurement is
mainly conducted in the largest data center hosting EC2
services: the northern Virginia data center, widely known
as US-East region.

In our measurement study, we first perform a 15-
day continuous measurement on the data center using
ZMap [10] to investigate the data center’s business scale
and some basic management policies. With the basic
knowledge of the cloud, we explore how EC2 has ad-
justed VM placement along with its impact on security.
We further evaluate how much effort an attacker needs
to expend to achieve co-residence in different circum-
stances. Comparing our evaluation results with those
from 2008 [14], we demonstrate that the VM placement
adjustment made by EC2 during the past few years has
mitigated the co-residence threat.

As network management plays a critical role in cloud
performance and security, we also investigate how the
networking management in EC2 has been calibrated to



suppress co-residence threat. We conduct large scale
trace-routing from multiple sources. Based on our mea-
surements, we highlight how the current networking con-
figuration of EC2 is different from what it was and
demonstrate how such evolution impacts co-residence in-
side the cloud. In particular, we measure the change of
routing configuration made by EC2 to increase the diffi-
culty of cloud cartography. We also propose a new algo-
rithm to identify whether a rack is connected with Top of
Rack switch or End of Row switch. With this algorithm,
we are able to derive the network topology of EC2, which
is useful for achieving co-residence inside the cloud.

To provide tenants an isolated networking environ-
ment, EC2 has introduced the service of Virtual Private
Cloud (VPC). While VPC can isolate the instances from
the large networking pool of EC2, it does not physically
isolate the instances. After profiling the VPC usage and
the routing configurations in VPC, we propose a novel
approach to speculating the physical location of an in-
stance in VPC based on trace-routing information. Our
experiments show that even if a cloud instance is hid-
den behind VPC, an adversary can still gain co-residence
with the victim with some extra effort.

The remainder of the paper is organized as follows.
Section 2 introduces background and related work on
cloud measurement and security. Section 3 presents our
measurement results on understanding the overview of
Amazon EC2 and its basic management policies. Section
4 details our measurement on VM placement in EC2, in-
cluding co-residence quantification. Section 5 quantifies
the impact of EC2-improved network management upon
co-residence. Section 6 describes VPC, the most effec-
tive defense against co-residence threat, and reveals the
haunted co-residence threat in VPC. Section 7 proposes
potential solutions to make the cloud environment more
secure. Finally, Section 8 concludes our work.

2 Background and Related Work

To leverage physical resources efficiently and provide
high flexibility, IaaS vendors place multiple VMs owned
by different tenants on the same physical machine. Gen-
erally, a scenario where VMs from different tenants
are located on the same physical machine is called co-
residence. In this work, the definition of co-residence is
further relaxed. We define two VMs located in the same
physical rack as co-residence. Thus, two VMs located
in the same physical machine is considered as machine-
level co-residence, while two VMs located in the same
rack is defined as rack-level co-residence.

2.1 Co-residence threat
The threat of co-residence in the cloud was first identified
by Ristenpart et al. [14] in 2009. Their work demon-

strates that an attacker can place a malicious VM co-
resident with a target and then launch certain attacks such
as side channel and covert channel attacks. Following
Ristenpart’s work, Xu et al. [20] studied the bit rate of
cache-based covert channel in EC2. Wu et al. [19] con-
structed a new covert channel on a memory bus with a
much higher bit rate, resulting in more serious threats
in an IaaS cloud. Zhang et al. [25] proposed a new
framework to launch side channel attacks as well as ap-
proaches to detect and mitigate co-residence threat in the
cloud [24, 26]. Bates et al. [7] proposed a co-resident wa-
termarking scheme to detect co-residence by leveraging
active traffic analysis.

The reason we define different levels of co-residence
is that some attacks do not require VMs to be located on
the same physical machine, but rather in the same rack
or in a higher level network topology. For instance, Xu
et al. [23] proposed a new threat called power attack in
the cloud, in which an attacker can rent many VMs under
the same rack in a data center and cause a power out-
age. There are also some side channel and covert chan-
nel attacks that only require the co-residence in the same
sub-network [5].

In parallel with our work, Varadarajan et al. [16] per-
formed a systematical study on placement vulnerability
in different clouds. While their work mainly stands at
the attacker side to explore more effective launch strate-
gies for achieving co-residence in three different clouds,
our work performs an in-depth study to understand the
evolution of cloud management and the impact on co-
residence threat in Amazon EC2. The two complemen-
tary works both support the point that public clouds are
still vulnerable to co-residence threat.

2.2 Measurement in the cloud
In contrast to the measurement on private clouds from
an internal point of view[9], the measurement works on
public data centers are mostly conducted from the per-
spective of cloud customers. Wang et al. [17] demon-
strated that in a public cloud, the virtualization technique
induces a negative impact on network performance of
different instance types. The work of Xu et al. [21] mea-
sures network performance in Amazon EC2 and demon-
strates a long tail distribution of the latency. Their work
also analyzes the reason behind the long tails and pro-
poses a new VM deployment solution to address this is-
sue. Bermudez et al. [8] performed a large-scale mea-
surement on Amazon AWS traffic. Their study shows
that most web service traffic towards Amazon AWS goes
to the data center in Virginia, U.S. Some recent stud-
ies [11, 18] measure how web services are deployed
in public clouds. They found that although many top-
ranked domains deploy their subdomains into the cloud,
most subdomains are located in the same region or zone,
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Figure 1: The system used to scan EC2.

resulting in a relatively poor fault tolerance.
In contrast to those measurement efforts, our study

provides a measurement analysis from the perspective of
security to reveal the management policies of a public
cloud and their impact upon co-residence threat.

3 An Overview of EC2 Management
As the pioneer of IaaS, Amazon EC2 deploys its data
centers all around the world, hosting the largest scale of
IaaS business. In this section, we introduce some ter-
minology in EC2 and provide an overview of the EC2
environment.

3.1 Instance type
An instance represents a virtual machine (VM) in the
cloud, so we use the term “instance” and “VM” inter-
changeably throughout the rest of the paper. EC2 pro-
vides a list of instance types for clients to select while
launching a new instance. The type of an instance in-
dicates the configuration of the VM, determining the
amount of resources the VM can use. The instance type is
defined in the format XX.XXX such as m1.small. The first
part of the instance type reveals the model of the physi-
cal server that will host this type of instance. The second
part indicates the “size” of the VM, i.e., the amount of
resources allocated to the instance. The detailed config-
uration of different instance types can be found at [3].

3.2 Regions and zones
Amazon EC2 has the concept of “region,” which repre-
sents the physical area where the booted instance will
be placed. Amazon has 9 locations around the world
hosting EC2 services. Therefore, the instances in EC2
can be located in 9 regions: US east (northern Virginia),
US west (Oregon), US west (northern California), South
America (Sao Paulo), Asia Pacific southeast (Singapore),
Asia Pacific southeast (Sydney), Asia Pacific northeast
(Tokyo), EU west (Ireland), and EU central (Frankfurt).
As pointed out in previous work [11], the majority of
IaaS business is hosted in the US east region, e.g., in the
data center located in northern Virginia. Most existing
research on cloud measurement was conducted on this
region [8, 13, 14]. Therefore, we also focus our study
on the US east region. For the rest of the paper, we use

the term “cloud” to mean the EC2 US east region and the
term “data center” to mean the Amazon EC2 data center
in northern Virginia, US.

In addition to regions, Amazon EC2 also allows clients
to assign an instance to a certain “zone.” A zone is a
logical partition of the space within a region. Previous
work shows that the instances in the same zone share
common characters in private IP addresses, and likely in-
stances within the same zone are physically close to each
other [14, 19]. There are four availability zones in the
US east region: us-east-1a, us-east-1b, us-east-1c, and
us-east-1d.

3.3 Naming
The naming service is essential to cloud management.
On one hand, the naming service can help customers to
easily access their instances and simplify resource man-
agement. On the other hand, the naming service should
help the cloud vendor to manage the cloud efficiently
with high network performance.

In EC2, an instance is automatically assigned two do-
main names: one public and one private. The public
domain name is constructed based on the public IP ad-
dress of the instance, while the private domain name is
constructed based on either the private IP address or the
MAC address. Performing a DNS lookup outside EC2
returns the public IP of the instance, while performing
a DNS lookup inside EC2 returns the private IP of the
instance.

3.4 Scanning EC2 inside and outside
To better understand the environment and business scale
of EC2, we performed a 15-day continuous measurement
on the EC2 US east region.

Figure 1 illustrates our system to scan EC2. First we
deployed a scanner outside EC2 to scan the cloud through
a public IP address. Since EC2 publishes the IP range for
its IaaS instances, our scanner uses ZMap [10] to scan the
specified ranges of IP addresses. The ports we scanned
include: ports 20 and 21 used for FTP, port 22 used for
SSH, port 23 for telnet, ports 25 and 587 for SMTP, port
43 for WHOIS, port 53 for DNS, port 68 for DHCP, port
79 for Finger protocol, port 80 for HTTP, port 118 for
SQL, port 443 for HTTPS, and port 3306 for MySQL.
We also performed an ICMP echo scan. After scanning,
our outside scanner obtained a list of live hosts in EC2
with the corresponding public IP addresses. In the next
step, we performed automatic domain name generation.
As mentioned above, the public domain name of an in-
stance in EC2 can be derived using its public IP. This step
produces a list of public domain names of live hosts. The
generated public domain names were then sent to our in-
side scanner deployed inside EC2. Our inside scanner
then performed DNS lookups for these domain names.
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Due to the DNS lookup mechanism of EC2, the DNS
server in EC2 answered the queries with the private IP
addresses of the hosts. Reaching this point, our mea-
surement system can detect live hosts in EC2 with their
domain names, IP addresses, as well as the mapping be-
tween the public IP address and private IP address.

The scan interval is set to 20 minutes, which is a trade-
off between cost and accuracy. Scanning the entire EC2
US east region per port takes about 40 seconds, and we
have 14 ports to scan. This means that scanning all the
ports will take around 10 minutes. Note that our mea-
surement also includes DNS lookups for all the detected
live hosts. Performing these DNS lookups takes around
20 minutes, which is approximately the time for two
rounds of scanning.

Our scanning measurement provides us an overview
of the large business scale of EC2, the diversity of ser-
vices, and the dynamic running environment. This scan-
ning measurement also gives us the knowledge base to
understand co-residence threat. The detailed results and
analysis of our scanning measurement can be found in
the Appendix A and B.

4 The Impact of VM Placement upon Co-
residence

The VM placement policy of the cloud determines how
easy or hard it is for an attacker to achieve co-residence.
In this section, we present our measurement on VM
placement and quantification of achieving co-residence.
By comparing our measurement results with previous
work, we demonstrate how the VM placement policy has
been evolving in EC2 and its impact on mitigating co-
residence threats.

4.1 Basic understanding of VM placement
We first launched a sufficiently large number of in-
stances with different types in EC2. Then, we had two
tasks to fulfill: (1) collecting networking (i.e., loca-
tion) information of launched instances and (2) quan-
tifying co-residence threat, i.e., given the current VM
placement policy of EC2, how much effort an attacker
needs to make to achieve co-residence. Since the pro-
cess of achieving co-residence requires the knowledge
of instance location, we can complete the two tasks to-
gether. For every instance we launched while seeking
co-residence, we recorded its private IP address and pub-
lic IP address. We also performed an automatic trace-
route from the instance to its “neighbors” that share the
/24 prefix with it. This information can provide us the
basic knowledge of where the instances are placed.

During our measurement, we recorded the detailed
information of 2,200 instances of type t1.micro, 1,800
instances of type m1.small, 1,000 instances of type
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Figure 2: CDF of IP address distances between co-resident VMs.

m1.medium, 1,000 instances of type m3.medium, 80 in-
stances of m3.large, and 40 instances of m3.xlarge. We
selected some random samples from the instances we
recorded to study the internal IP distribution. We investi-
gated how private IP addresses are associated by the in-
stance type and availability zones, i.e., whether the VM
placement has type and zone locality. Our results demon-
strate that currently EC2 still exhibits certain type and
zone locality, i.e., instances with the same type in the
same zone are more likely to be placed close to one an-
other. However, compared with corresponding results in
2008 [14], such locality has been significantly weakened.
More details of locality comparison can be found in Ap-
pendix C.

After understanding the current VM placement in
EC2, we further investigate co-residence threats in EC2.

4.2 Quantifying machine level co-residence
To understand how VM placement will affect co-
residence, we assess the effort one needs to make to
achieve machine level co-residence in two scenarios. The
first scenario is to have a random pair of instances located
on the same physical machine, and the second scenario is
to have an instance co-reside with a targeted victim.

4.2.1 Random co-residence

To make our random co-residence quantification more
comprehensive, we perform our measurement with dif-
ferent instance types and in different availability zones.
Since zone us-east-1c is no longer hosting t1, m1, c1,
and m3 instances, our measurement is performed in zone
us-east-1a, us-east-1b, and us-east-1d. We achieve co-
residence pairs with t1.micro, m1.small, m1.medium,
and m3.medium. We did not achieve co-residence with
large, xlarge or 2xlarge instances, because there are only
1 to 4 such large instances on one physical machine and
it will be very difficult and costly to achieve co-residence
with these types. Overall, we conduct 12 sets of experi-
ments, with each set targeting a specific type of instances
in a specific availability zone.

In each set of experiments, we perform rounds of
co-residence probing until we find a co-residence pair.
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Figure 3: The service hour spent, i.e., the
number of instances booted to achieve co-
residence.
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Figure 4: The financial cost (in US dollar) to
achieve co-residence.
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Figure 5: The time spent to achieve co-
residence.

For the sake of robustness, EC2 has never placed in-
stances from the same user on the same physical ma-
chine [14]. Therefore, we set up two accounts to launch
instances simultaneously. Within one round, each ac-
count launches 20 instances, which will produce 400
pairs of co-residence candidates. Once a co-residence
pair is verified, this set of experiments are terminated
and the corresponding cost is recorded. If there is no co-
residence pair found in this round, we move on to the next
round by terminating all running instances and launching
another 20 instances in each account, and then repeat the
same procedure.

Given a pair of instances, verifying whether they are
located on the same physical machine involves two steps:
(1) pre-filtering unlikely pairs and (2) using a covert
channel to justify co-residence.

For the first step, we need to screen out those pairs that
are not likely to be co-resident to reduce probing space.
Since the private IP address of an instance can indicate
its physical location to some extent, and if the private
IP addresses of two instances are not close enough, the
two instances will have little chance to be co-resident.
Based on this heuristic, we use the share of /24 prefix
as the prerequisite of co-residence, i.e., if two instances
do not share the /24 prefix, we consider them as not be-
ing co-resident and bypass the highly costly step 2. The
rationale of setting the /24 prefix sharing as pre-filter is
twofold:

1. First, the prerequisite of the /24 prefix sharing will
not likely rule out any co-residence instance pairs.
The number of instances that are hosted on the same
physical machine is limited. Even for micro in-
stances, there are no more than 32 instances run-
ning on a physical machine. For the instance type
with larger size, there are even fewer instances run-
ning on a physical machine. In contrast, a /24
address space can contain 256 instances. There-
fore, two co-resident instances are unlikely to be
in different /24 subnets. Moreover, we obtained
some co-residence pairs without any pre-filtering
and recorded the private IP address distance be-
tween a pair of co-residence instances. Figure 2
illustrates the CDF of IP address distance between

two co-residence instances. The distance is calcu-
lated as the difference between the two 32-bit inte-
gers of the two IP addresses. From the results we
can figure out that most of these co-residence in-
stances share the /27 prefix, which further confirms
that the /24 prefix filtering will introduce very few,
if any, false negatives.

2. Second, the prerequisite of sharing the /24 prefix
can effectively narrow down the candidate space.
Each time we use one account to launch 20 instances
and use another account to launch another 20 in-
stances, we will have 400 candidate pairs. Dur-
ing our measurement, we generated more than 40
rounds of such 400-pair batches. The average num-
ber of instance pairs that share the /24 prefix among
400 candidates is only 4. This means the /24 prefix
sharing prerequisite can help us to screen out 99% of
the candidates, which significantly accelerates the
process of co-residence verification. During the 40
rounds of measurement, five co-residence pairs are
observed.

The second step is to use a covert channel to ver-
ify whether two instances are actually located on the
same physical machine. We use the technique intro-
duced by Wu et al. [19] to construct a memory-bus-based
covert channel between two instances. If the two in-
stances can communicate with each other via the covert
channel, then they are located on the same physical ma-
chine. This covert-channel-based verification can guar-
antee zero false positives.

The cost of achieving co-residence includes financial
cost and time. According to the pay-as-you-go billing
system, the financial cost is mainly determined by the
service hours consumed during the co-residence prob-
ing. Every time an instance is launched, one billing
hour is charged. Thus, the more probing instances an
attacker needs to launch, the higher financial cost it will
cause. In our experiments, we use only two accounts.
In a real world attack, an attacker could use more ac-
counts to launch the attack in parallel, which will result in
less time required to achieve co-residence. However, un-
der the same condition, regardless of attack process op-
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ber of instances booted to achieve co-residence
with a target.
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achieve co-residence with a target.

t1.micro m1.small m1.medium m3.medium
0

50

100

150

Instance Type

T
im

e
 T

a
k
e

n
(m

in
u

te
s
)

Figure 8: The time spent to achieve co-
residence with a target.

timization, the time spent to achieve co-residence should
have a positive correlation with the number of instances
to launch, i.e., the more instances need to launch, the
more time spent for detecting co-residence.

Figure 3 illustrates how many instances are required
to achieve co-residence, while Figure 4 illustrates the
actual financial cost. Figure 5 illustrates how much time
it takes to achieve co-residence, i.e., the time cost. For
each type of instance, the measurement repeats for five
times and the mean value is shown in the figures. From
the figures, it is evident that the cost for achieving co-
residence of different types in different availability zones
is quite different. Intuitively, as a larger instance has
higher resource charge, it costs more money to achieve
co-residence with those instances at a larger size. How-
ever, there is no such rule that the smaller size an instance
is, the lower time cost we need to pay for co-residence.

4.2.2 Target co-residence

In the quantification of achieving co-residence with a par-
ticular target, we first randomly launched one instance
with specific type from one account as the target. Then,
from the other account, we also performed many rounds
of co-residence probing until we found the instance that
is co-resident with the target. The process of verifying
co-residence remains the same. As demonstrated by the
verification results of random co-residence above, differ-
ent availability zones do not greatly impact the difficulty
of achieving co-residence. Here we only show the results
when our target instances are placed in zone us-east-1a.

Figures 6, 7 and 8 illustrate the number of instances to
launch, the financial cost, and the time taken to achieve
co-residence with a particular target, respectively. For
each type of instance, the measurement is repeated for
15 times and the mean value is illustrated. The error bar
with standard deviation is also shown in the figures. As
is intuitive, achieving co-residence with a particular tar-
get requires launching more instances than achieving ran-
dom co-residence. Getting a random co-residence pair
requires launching 200 to 300 instances with two ac-
counts (i.e., 100 to 150 instances per account), which
can be done in 5 to 8 rounds. In contrast, achieving
co-residence with a particular target requires launching

300 to 400 instances, which will take 15 to 20 rounds
with each round launching 20 instances from one ac-
count. However, achieving co-residence with a particular
target does not cost more time than achieving a random
co-residence pair. The reason for this is simple: To get
a random pair, we need to check 400 candidate pairs in
each round, but to get a co-residence pair with a target,
we only need to check 20 candidates in one round.

It is also possible that an attacker is unable to achieve
co-residence with a certain target due to various rea-
sons, e.g., the target physical machine reaches full capac-
ity. During our study, we failed to achieve co-residence
with two targets, one is m1.medium type and the other
is m3.medium type. By failing to achieve co-residence
we mean that after trying with more than 1,000 probing
instances in two different days, we still cannot achieve
co-residence with these two targets.

Overall, it is still very feasible to achieve co-residence
in EC2 nowadays. However, an attacker needs to launch
hundreds of instances to reach that goal, which may in-
troduce considerable cost. In Section 4.4, we will com-
pare our results to previous studies, demonstrating that
achieving machine-level co-residence has become much
more difficult than before, due to the change in cloud en-
vironments and VM placement policies.

4.3 Quantifying rack level co-residence
While covert channel and side channel attacks require
an attacker to obtain an instance located exactly on the
same physical machine with the victim, some malicious
activities only need coarse-grained co-residence. Xu et
al. [23] proposed a new attack called power attack. In
their threat model, the attacker attempts to significantly
increase power consumption of multiple machines con-
nected by the same power facility simultaneously to trip
the circuit breaker (CB). Since these machines located
in the same rack are likely to be connected by the same
CB, in a power attack the attack instances are not re-
quired to be placed on a same physical machine. Instead
the attacker should place many instances within the same
rack as the victim, i.e., achieving as much rack-level co-
residence as possible. We performed measurement on
how much effort is required to place a certain number of
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Table 1: The number of co-residence pairs achieved by one round of
probing in 2008 [14].

Account A Account B Co-residence

Zone 1
1 20 1

10 20 5
20 20 7

Zone 2
1 20 0

10 20 3
20 20 8

Zone 3
1 20 1

10 20 2
20 20 8

instances under the same rack.
We first use one account to launch 20 instances, and

then we check whether there are any instances in this
batch that are located within the same rack. If there are
no instances located in the same rack, we just randomly
pick an instance and set its hosting rack as the target rack.
Thanks to the Top of Rack(ToR) switch topology, verify-
ing whether two instances are in the same rack is simple.
Through a simple trace-routing, we can verify whether an
instance has the same ToR switch with our target rack.
This rack level co-residence can be further verified by
performing trace-route from the candidate instance to the
target instance. If the two instances are in the same rack,
there should be only one hop in the trace, i.e., they are
one hop away.

Figure 9 shows our measurement results. It is clear
that an attacker can easily have multiple instances lo-
cated within the same rack. The information of ToR
switch helps the attacker quickly verify the rack-level
co-residence. Since the malicious attack based on the
rack-level co-residence is newly proposed [23], EC2 is
unlikely to take any action to suppress rack-level co-
residence.

4.4 Battle in VM placement
Table 1 lists the data from the original work on co-
residence [14]. We can see that it was extremely easy
to achieve co-residence in 2008. With two accounts each
launching 20 instances, there were 7 or 8 co-residence
pairs observed. In the 2012 work [19], the cost of achiev-
ing a co-residence instance pair is also briefly reported: A
co-residence pair (micro) is achieved with 160 instances
booted.

As we can see, nowadays it is much more difficult to
achieve co-residence than in 2008 and 2012. EC2 could
have adjusted its VM placement policies to suppress co-
residence.

4.4.1 A larger pool

The business of EC2 is scaling fast, and thus it is intuitive
that Amazon keeps deploying more servers into EC2.
The measurement in 2008 [14] shows that there were
three availability zones in the US east region. At present,
the availability zones are expanded to four. Such expan-

sion in availability zones also indicates that the business
scale of EC2 is growing rapidly.

The measurement in 2008 [14] also shows 78 unique
Domain0 IP addresses with 1785 m1.small instances,
which means it only observed 78 physical machines that
host m1.small service. Due to the evolution in EC2 man-
agement, we are no longer able to identify Dom0. How-
ever, we have identified at least 59 racks of servers that
host m1.small instances. This suggests that the number
of physical machines hosting m1.small instances is sig-
nificantly larger than that in 2008. The enlarged pool pro-
vides EC2 with more flexibility to place incoming VMs,
which is one of the reasons that it is now much more dif-
ficult to achieve co-residence than before.

4.4.2 Time locality

Time locality can help to achieve co-residence. Time lo-
cality means if two accounts launch instances simultane-
ously, it is more likely that some of these instances with
time locality will be assigned to the same physical ma-
chine.

To verify whether such time locality exists in the cur-
rent EC2, we performed another measurement. We set
up four groups of experiments. In the first group, the two
accounts always launch 20 VMs simultaneously. In the
second group, the second account launches 20 VMs 10
minutes after the first account launches 20 VMs. In the
third group, the launching time of the second account is
one hour apart from that of the first account. In the fourth
group, the second account launches VMs four hours af-
ter the first account. All instances are t1.micro type. In
each group, the measurement terminates whenever a co-
residence pair is observed and the number of instances
required to achieve co-residence is recorded. All the ex-
periments are repeated 5 times and the average is noted.

Figure 10 illustrates the number of instances required
to achieve co-residence in each case. We can see that
the efforts required to achieve co-residence do not vary
significantly with the change of instance launching in-
tervals. This implies that time locality seems to be very
weak in the current EC2, which increases co-residence
cost.

4.4.3 Dynamic assignment

In 2008, the IP addresses and instances in EC2 were as-
signed in a relatively static manner [14]. However, as we
have demonstrated before, there are considerable map-
ping changes in our measurement, which indicates that
the IP assignment has introduced a certain dynamism.

Meanwhile, in 2008, the instances were placed strictly
based on the instance type, i.e., one physical machine
can only host one type of instance [14]. In contrast, our
measurement results show that such an assumption may
not hold anymore. First, some small instances use in-
ternal IP addresses that were used by micro instances
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Figure 9: Instances launched to place certain number of instances
within the same rack.
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Figure 10: Effort to achieve co-residence with different time lo-
cality.

before. Second, during our measurement, by accident
we observed that one live small instance has very close
IP to a medium instance. We then attempted to build
a covert channel between them. It turned out that the
covert channel did work, which verifies that these two in-
stances with different types are indeed located on a same
physical machine. Following such an observation, in the
rest of our rest measurement we also kept checking co-
residence between different types of instances. Overall,
five pairs of different-type co-residence instances are ob-
served throughout our study. Our results indicate that in
certain cases current VM placement policies in EC2 can
mix different types of instances on one physical machine,
potentially to reduce fragmentation. Such a policy also
increases the difficulty of achieving co-residence.

5 The Impact of Network Management
upon Co-residence

As network management plays a critical role in data
center management, it has a significant impact on co-
residence. On one hand, an attacker attempts to obtain
as much networking information inside the cloud as pos-
sible to ease the gaining process of co-residence. On the
other hand, the cloud vendors try to protect sensitive in-
formation while not degrading regular networking man-
agement and performance. In this section, we introduce
the adjustments made by EC2 in network management
during recent years to mitigate co-residence threat and
the effectiveness of these approaches.

5.1 Methodology
To study the adjustment made by EC2 in network man-
agement, we performed large scale trace-routing. First,
for the instances we booted, we performed “neighbor-
hood trace-routing” from our instances to their “neigh-
bors.” Here we define neighbors as all those instances
that share the /23 prefix of their private IP addresses with
our source instances. Such trace-routing can inform us of
the routing paths between an instance and other instances

in the same rack and neighboring racks.
We next performed trace-routing from several of our

instances (i.e., the instances we booted) to all the in-
stances in a target list. We use the live host list from our
scanning measurement (see Section 3.5 and Appendix A)
as the target list. Trace-routing from our instances to over
650,000 target instances takes more than 8 days, but it
can help us to understand network management in EC2
in a more comprehensive manner.

5.2 The evolution in routing configuration
The routing information has been leveraged to perform
cloud cartography [14], which can further be used to
launch co-residence-based attacks. However, our trace-
routing results demonstrate that, as a response to cloud
cartography, EC2 has adjusted its routing configurations
to enhance security in the past few years. The adjust-
ments we found are listed as follows.

5.2.1 Hidden Domain0

EC2 uses XEN as the virtualization technique in the
cloud. According to the networking I/O mechanism of
XEN [6], all the network traffic of guest VMs (instances)
should travel through the privileged instance: Domain-
0 (i.e, Dom0). Thus, Dom0 acts as the gateway of all
instances on the physical machine, and all instances on
this physical machine should have the same first-hop in
their routing paths. Such Dom0 information provides an
attacker with a very efficient probing technique: by sim-
ply checking the Dom0’s IP addresses of two instances,
one can know whether they are co-resident. Therefore,
to prevent this Dom0 information divulgation, EC2 has
hidden Dom0 in any and all routing paths, i.e. at present
the Dom0 does not appear in any trace-routing results.

5.2.2 Hidden hops

To suppress cloud cartography enabled by trace-routing,
EC2 has hidden certain hops in the routing paths. Ac-
cording to the work in May 2013 [13], traffic only needs
to traverse one hop between two instances on the same
physical machine and two hops between instances in
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Figure 11: A common tree topology of a data
center.

Figure 12: The topology with End of Row
switch.

Figure 13: The topology with Top of Rack
switch.

a same rack but not on the same physical machine.
The paths between instances in different racks typically
have 4 or 6 hops. However, our neighborhood trace-
routing results show that the routing management has
been changed in EC2.

First, a path of one hop does not necessarily indicate
co-residence anymore. Our neighborhood trace-routing
results show that an instance can have a very large num-
ber of 1-hop neighbors. For instance, one m1.small in-
stance can have more than 60 1-hop neighbors. It is
technically impractical to host so many instances on an
m1 machine. To verify our hypothesis, we selected sev-
eral pairs of instances with a 1-hop path and checked
co-residence using covert channel construction. Our co-
residence verification fails for most of these pairs, con-
firming that two instances with a 1-hop path do not neces-
sarily co-locate on the same physical machine. This ob-
servation indicates that EC2 even hides the ToR switches
in the routing path in some cases, leaving only one hop
in the path between two instances in the same rack.

Second, we observed many odd-hop paths, accounting
for 34.26% of all paths. In contrast, almost all the paths
in the measurement conducted in May 2013 are even-
hop [13]. This indicates that the network configuration
of EC2 has changed since May 2013.

Third, the ToR switch of a source instance is shown
as the first hop in the path, which indicates that the ToR
switch should be an L3 router. However, we cannot ob-
serve the ToR switch of a target instance in the traces, im-
plying that EC2 has configured the ToR switch to hide it-
self in the incoming traffic to the rack. Moreover, among
our traces, we observed that 76.11% of paths have at least
one hop filled with stars. The hops filled with stars can
be a result of the configuration of certain devices such as
L2 switches; it is also possible that EC2 has deliberately
obscured those hops for security reasons. These paths
with invisible or obscured hops significantly increase the
difficulty of conducting cloud cartography.

5.3 Introducing VPC
To suppress the threat from internal networks, EC2 pro-
poses a service called Virtual Private Cloud (VPC). VPC
is a logically isolated networking environment that has a
separate private IP space and routing configuration. Af-
ter creating a VPC, a customer can launch instances into

its VPC, instead of the large EC2 network pool. The
customer can also divide a VPC into multiple subnets,
where each subnet can have a preferred availability zone
to place instances.

Moreover, EC2 provides instance types that are ded-
icated for VPC instances. These instance types include
t2.micro, t2.small, and t2.medium. According to the in-
stance type naming policy, instances with t2 type should
be placed on those physical servers with the t2 model.

An instance in a VPC can only be detected through its
public IP address, and its private address can never be
known by any entity except the owner. Therefore, within
a VPC, an attacker can no longer speculate the physical
location of a target using its private IP address, which
significantly reduces the threat of co-residence.

5.4 Speculating network topology
Besides routing configuration, the knowledge of network
topology also helps to achieve co-residence, especially
for high level co-residence such as rack-level. Figure 11
depicts the typical network topology in a data center. The
core and aggregation switches construct a tree topology.
Before connecting to the aggregate switches, there are
two mainstream ways to connect servers in a rack/racks:
End of Row (EoR) switches and Top of Rack (ToR)
switches.

For EoR switches, as illustrated in Figure 12, servers
of several racks are connected to the same EoR switch.
To be more precise, an EoR switch can be a switch ar-
ray including a group of interconnected switches. These
switches can function as aggregate switches themselves.
For ToR switches, as illustrated in Figure 13, all servers
in a rack are first connected to a separate ToR switch, and
then the ToR switch is connected to aggregate switches.
Such a topology has currently become the mainstream
network topology in a data center.

There are several variants of EoR topology, such as
Middle of Rack (MoR) and ToR switch with EoR man-
agement. Meanwhile, there are other potential topolo-
gies such as OpenStack cluster in a data center. There-
fore, we classify the network topology of a rack/racks
into two classes: ToR connected and non-ToR connected.
To identify whether a rack uses a ToR switch or a non-
ToR switch, we analyze the neighborhood trace-routing
results of multiple instances. Based on our analysis, we
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proposed a method to identify the network topology of a
rack, ToR-connected or non-ToR-connected.

ToR-connected: a rack that deploys ToR switches
must satisfy all of the following conditions:

1. For an instance A in the rack, there should be at least
one instance B that is only one hop away from A.

2. For an instance A in the rack, there should be at least
8 instances that are two hops away from A.

3. For any two instances A and B, if (i) conditions 1
and 2 hold for both A and B, (ii) the trace-routing
path between A and B has no more than two hops,
and (iii) for any instance C, the first hop in the trace-
routing path from A to C is the same as the first hop
in the path from B to C, then A and B are considered
as being in the same ToR rack.

4. For an instance A in the rack, for any trace-routing
path with A as source and length larger than 2, the
first hop in the path should share the /16 prefix with
the private IP address of A.

The IP address of the first hop (i.e., ToR switch’s IP ad-
dress) is used to differentiate two ToR racks.

Non-ToR-connected: a rack that deploys non-ToR
switches must satisfy all of the following conditions:

1. For an instance A in the rack, there should be no
instance B such that the path between A and B has
two hops.

2. For an instance A in the rack, for any instance B
in EC2, either (i) A and B are machine-level co-
resident and the path between A and B has only one
hop or (ii) the path between A and B has more than
two hops.

3. For two instances A and B, if (i) conditions 1 and
2 hold for both A and B, (ii) A and B share the /24
prefix of their private IP, (iii) the trace-routing path
between A and B has 4 or 6 hops, and (iv) for any
instance C, the first hop in the path between A and
C is the same as the first hop in the path between B
and C, then A and B are considered as being in the
same non-ToR rack.

4. For an instance A in the rack, for any trace-routing
path with A as source and length larger than 2, the
first hop in the path should not share the /20 prefix
with the private IP address of A.

Again, the IP address of the first hop is used to differen-
tiate two non-ToR racks.

In EC2, there are two “generations” of instances. The
old generation carries all the instances with m1 type, and
the new generation covers all the instances with other
types. We applied our method on m1.small, m1.medium,
m3.medium, and m3.large type, which cover both old-
generation instances and new-generation instances.

Overall, we identified 59 distinct racks that host
m1.small instances, 18 racks that host m1.medium in-
stances, 22 racks that host m3.medium instances, and

10 racks that host m3.large instances. Among the 109
racks, there are only 14 racks identified as non-ToR-
connected while the rest are ToR-connected. Among the
14 non-ToR racks, we observed 12 old-generation racks,
in which 7 racks host m1.small instances and 5 racks host
m1.medium instances, and only 2 new-generation racks
host m3.medium instances.

Our results demonstrate that while both ToR racks and
non-ToR racks exist in EC2, ToR-connected is the dom-
inating topology in EC2. Moreover, it is evident that
new-generation machines are more likely to be located
in the ToR-connected topology, indicating that the ToR-
connected topology has become the main trend. While
the ToR-connected topology is easy to manage, the rout-
ing information is very straightforward since the first hop
reveals which rack the instance is in. Such information
can be leveraged by an attacker to achieve rack-level co-
residence.

6 A New Battle in VPC
Using VPC, customers can protect their instances in an
isolated network environment. However, VPC only logi-
cally isolates the networks. The instances from different
VPCs may still share the same physical machine, leaving
the opportunity to achieve co-residence. In this section,
we first take an overview on the usage of VPC in EC2,
and then we introduce a new method to attack instances
that are hidden behind VPCs.

6.1 The overview of VPC usage
For those instances in the default networks of EC2, our
inside scanner can obtain their private addresses via DNS
lookups. However, the DNS query for an instance in
a VPC will only return its public IP address. There-
fore, the instances in a VPC can be easily identified by
checking the DNS query results of our inside scanner,
i.e., any instance whose private IP address cannot be de-
tected by our inside scanner is an instance in a VPC. Fig-
ure 14 shows the VPC usage in EC2. As we can see,
all instances in VPC are assigned public IP addresses
in five different ranges: 107.20.0.0/14, 184.72.64.0/18,
54.208.0.0/15, 54.236.0.0/15, and 54.80.0.0/13. This im-
plies that all instances in a VPC are managed in a uni-
form manner. On average, in each round of our probing
we can observe 115,801 instances in a VPC, which are
around 17% of all live instances observed, demonstrat-
ing that VPC is widely used in EC2 to protect instances.

6.2 Routing paths of VPC instances
Since a VPC should be treated as a private network, the
routing policies for instances inside a VPC must be dif-
ferent from those in the default EC2 network. This rout-
ing difference can help us further understand the manage-
ment of a VPC. To connect a VPC to the public Internet, a
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Figure 14: The live instances in VPCs.

customer must create a gateway and attach it to the VPC.
The gateway must be included into the route table of the
VPC. All traffic from or to the Internet must go through
the gateway, but the traffic inside EC2 does not require
the gateway to be involved.

Besides the basic understanding of the routing config-
uration of a VPC, we also need to know how a VPC is
connected with the default EC2 network and other VPCs.
We created several VPCs with two different accounts.
The instances with different types are launched into these
VPCs. Trace-routing is performed in four different ways:
(1) trace-routing from an instance in a VPC to another
instance in the same VPC, (2) trace-routing from an in-
stance in a VPC to an instance in another VPC, (3) trace-
routing from an instance in a VPC to an instance in the
default EC2 network, and (4) trace-routing from an in-
stance in the default EC2 network to an instance in a
VPC.

6.2.1 Routing within VPC

Routing inside the same VPC is expected to be simple.
We performed trace-routing between two instances in the
same VPC, using both private and public IP addresses.
The results show that trace-routing with private IP or
public IP addresses will yield different routing paths. If
trace-routing is performed with the private IP of the tar-
get instance, the result path has only one-hop, i.e., the
direct connection to the destination, which is reasonable.
However, if trace-routing is performed with the public IP
of the target, trace-routing will return two hops with the
first hop obscured with stars. Apparently, EC2 intention-
ally hides some routing information. The routing infor-
mation between the two instances within the same VPC
is made transparent to customers. Such obscuration dis-
ables a customer from speculating the physical location
of the instances.

As discussed in Section V, even within the same VPC,
two instances can be located in different “subnets.” We
also performed trace-routing between two instances in
the same VPC but in different subnets. The resulting
paths do not differ from the paths between two instances
within the same subnet.

6.2.2 Routing between VPCs

The traffic between instances in different VPCs should
traverse multiple switches and routers. Surprisingly, we
found that any routing path between any two instances in
any two different VPCs only has two hops: the first hop is
obscured and the second hop is the destination. EC2 once
again obscures the routing path between VPCs to prevent
an adversary from revealing sensitive information of a
VPC, e.g., the IP address of a gateway.

6.2.3 Routing from VPC to default EC2 network

Although instances in a VPC no longer share a pri-
vate network with the default pool of EC2, the
switches/routers that connect VPCs might still be physi-
cally connected to the other switches/routers in the data
center. How EC2 routes the traffic between instances in a
VPC and instances in the default EC2 network can reveal
its network topology to some extent. Figure 15 shows
a sample trace-routing result from an instance in a VPC
to an instance in the default EC2 network. We can see
that the first two hops of the path are obscured. This pre-
vents us from knowing the switch/router that connects
the VPC, thereby hiding the physical location of VPC
instances. However, we can still see parts of the path
and can infer the end-to-end latency based on the trace-
routing result.

6.2.4 Routing from default EC2 network to VPC

Figure 16 shows a sample trace-routing result from an
instance in the default EC2 network to an instance in a
VPC. The path is almost symmetric to the path from a
VPC to the default EC2 network. Again, the last two
hops before reaching the destination are obscured to hide
the information of the router/switch.

Overall, EC2 manages a VPC in a transparent fashion,
i.e., to a customer it should look like all instances in a
VPC are connected by a dedicated switch, just like a real
private network. However, instances in the same VPC
are not physically located together. These instances are
still located in different racks and are connected to differ-
ent ToR or EoR switches. Thus, the traffic inside a VPC
might still traverse multiple switches/routers. Similarly,
the traffic between an instance in a VPC and an instance
in the default EC2 network can have a similar path to the
traffic between two instances in the default EC2 network.
However, EC2 hides or obscures certain hops in the path
to provide the image of “private network.”

6.3 Co-residence in VPC
The traditional way of achieving co-residence relies on
the knowledge of private IP address to seek potential can-
didates. With VPC, this approach no longer works as
VPC hides the private IP address of an instance. An alter-
native is to infer the physical location of a target based on
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Figure 15: A sample trace-routing result from an instance in VPC
to an instance in EC2.

Figure 16: A sample trace-routing result from an instance in EC2
to an instance in VPC.

the routing paths to the target. Unfortunately, our trace-
routing results show that sensitive information of a rout-
ing path is obscured by EC2, and therefore it also does
not work well.

However, in our trace-routing results we found that
the end-to-end latency to and from an instance in a VPC
varies with different instance types and the location of
the instance. This latency variation can be leveraged to
help an attacker speculate the type and location of a tar-
get instance. Moreover, while performing trace-routing
between an instance in a VPC and an instance in the de-
fault EC2 network, the number of hops required is not
obscured. Therefore, the number of hops in a path can
also be leveraged to derive useful information for achiev-
ing co-residence.

Based on our measurement analysis, we propose a new
method to achieve co-residence with instances in a VPC.
It has two steps: (1) speculate the type and availability
zone of a target and (2) launch probing instances with
the same type in the same availability zone and perform
co-residence verification.

6.3.1 Type and zone speculation

We collected statistical data of the end-to-end latency be-
tween a pair of instances with different types and in dif-
ferent zones. Table 2 shows part of the end-to-end latency
statistics. Each row represents an instance in a VPC with
a certain type and availability zone preference. Each col-
umn stands for an instance in the default EC2 network
with a certain type and availability zone preference. Each
value in the table is calculated as the average of 50 sam-
ples. Each sample is obtained with a distinct instance
pair and is averaged over five rounds of latency measure-
ment. With this latency table, we are able to construct a
latency vector for each target instance in a VPC and use
the latency vectors to speculate the type and availability
zone of a target.

There are three availability zones and each zone has
six types: t1.micro, m1.small, m1.medium, m1.large,
m3.medium, and m3.large. Thus, the complete version
of Table 2 has 18 rows and 18 columns, which can be
found in our technical report [22]. Note that each row
in the table can represent a latency vector, and such a
latency vector derived from our controlled sampling is
called a baseline vector.

In each different availability zone, we randomly se-

lect an instance for each different type, resulting in 18
(3×6) sample instances in total for testing type and zone
speculation. For each target in a VPC, we perform trace-
routing from each of our sample instances to the target for
5 times and record the average end-to-end latency of each
pair. Such measurement can provide us 18 end-to-end la-
tency values, which constitute an input vector of length
18. We then calculate the cosine similarity between the
input vector and these 18 baseline vectors. The baseline
latency vector that has the highest similarity with the tar-
get input vector is selected, and we can speculate that the
target instance has the same {instance type, availability
zone} as the instance in the selected baseline vector.

6.3.2 Verifying co-residence

To achieve co-residence with an instance in a VPC, our
probing instances are also launched in a VPC. There are
two reasons that we do not use the instances in the default
EC2 network as probing instances. First, it is possible
that EC2 uses a separate algorithm to place instances in
a VPC. In other words, compared to an instance in the
default EC2 network, an instance in a VPC may have a
better chance to achieve co-residence with an instance in
another VPC. Second, as we have observed, the end-to-
end latency between two instances in two different VPCs
is more stable than the latency between an instance in the
default EC2 network and an instance in a VPC, which
allows us to leverage latency for pre-filtering.

Similar to verifying co-residence in the default EC2
network, verifying co-residence in a VPC also includes
two steps: pre-filtering and covert channel construction.
While the way of using covert channel construction to
confirm co-residence remains the same, the pre-filtering
process in a VPC is different.

To verify whether an attack instance is co-resident with
a target, we rely on two rounds of pre-filtering to screen
out irrelevant candidates. First, we perform trace-routing
from our 18 sample instances to our attack instance and
the target instance. If any path from the sample instance
to the attack instance is not equivalent to the correspond-
ing path from the sample instance to the target in terms
of number of hops, this attack instance is abandoned.

Second, if all the paths match in the number of hops,
we measure end-to-end latency between our attack in-
stance and the target instance. Figure 17 shows a sam-
ple latency distribution between an instance in a VPC
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Table 2: End to end latency between different instances.

1a-t1.micro 1a-m1.small 1a-m1.medium 1b-t1.micro 1b-m1.small 1b-m1.medium
1a-t1.micro 1.224ms 1.123ms 1.025ms 2.237ms 2.221ms 2.304ms
1a-m1.small 1.361ms 1.059ms 1.100ms 2.208ms 2.055ms 2.198ms
1a-m1.medium 1.165ms 1.102ms 0.986ms 2.211ms 2.060ms 1.988ms
1b-t1.micro 2.101ms 2.235ms 2.188ms 1.108ms 1.243ms 1.202ms
1b-m1.small 2.202ms 2.003ms 2.190ms 1.131ms 0.968ms 1.048ms
1b-m1.medium 2.087ms 2.113ms 1.965ms 1.088ms 1.023ms 0.855ms
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Figure 17: End-to-end latency between an instance in VPC and all
other instances in other VPCs in EC2.

with the micro type in availability zone 1a to all live
VPC instances in EC2. As we can see, most end-to-end
latency values (over 99%) are above 1ms, and in very
rare cases (below 0.1%) the latency is below 0.850ms.
We perform such latency measurement from 18 sample
VPC instances with different types in different availabil-
ity zones, and similar distribution is repeatedly observed.
Based on such observations and the heuristics that in-
stances located on the same physical machine should
have lower latency than instances located in a different
physical location, we set a latency threshold for each type
of instance in each availability zone. The threshold is se-
lected so that for an instance in a VPC with certain type
and availability zone, the end-to-end latency between the
instance and 99.9% of all other VPC instances should
be above the threshold. For example, based on our mea-
surement introduced above, if we speculate that the target
VPC instance is located in availability zone 1a with mi-
cro type, the latency threshold is set to 0.850ms. Only
if the end-to-end latency between a probing instance and
a target instance is below the threshold, will the probing
instance be considered as a co-residence candidate.

If the probing instance passes the two rounds of filter-
ing, we will perform covert-channel construction to con-
firm co-residence.

6.4 VPC co-residence evaluation
To verify the feasibility of our VPC co-residence ap-
proach, we conducted a series of experiments in EC2. We
first tested whether our approach can speculate the type
and availability zone of a target instance correctly. We
launched VPC instances in three availability zones with
six different types. For each combination, 20 instances
were launched. We applied our approach to speculate
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Figure 18: The effort for co-residence with instances in VPC.

the type and availability zone of the target. If both the
type and availability zone are correctly inferred, we con-
sider that the target instance is correctly identified. Ta-
ble 3 lists our evaluation results. Each number in the
table indicates the number of the successfully identified
instances among the 20 launched instances for a zone-
type combination (e.g., 1a-t1.micro means t1.micro in-
stances launched in the us-east-1a zone). The results
show that our type/zone speculation can achieve an ac-
curacy of 77.8%.

We then evaluated the overall effectiveness of our ap-
proach for achieving co-residence. We launched 40 in-
stances in one VPC, with different types and availability
zones. We performed the full process of achieving co-
residence with VPC instances.

First, we measured the effectiveness of our two-stage
filtering technique. Among all the probing instances we
launched, 63.2% of them did not pass the first step fil-
tering. For the second stage, our technique filtered out
97.9% of the instances that passed the first stage filter-
ing. For all the instances passed the two-stages filter-
ing, 17.6% of them passed the covert-channel verifica-
tion, which are the instances actually co-resident with the
target.

Eventually, among 40 instances, we successfully
achieved co-residence with 18 of them. Figure 18 illus-
trates the effort we paid to achieve co-residence, showing
that to achieve co-residence in VPC is not an easy task.
An attacker may need to launch more than 1,000 probing
instances and such a process can take many hours.

Overall, we are the first to demonstrate that an attacker
can achieve co-resident with a target inside a VPC with
high cost, and hence VPC only mitigates co-residence
threat rather than eliminating the threat all together.

13



Table 3: The number of successfully identified targets.

1a-t1.micro 1a-m1.small 1a-m1.medium 1a-m1.large 1a-m3.medium 1a-m3.large
Success 16 13 18 14 16 17

1b-t1.micro 1b-m1.small 1b-m1.medium 1b-m1.large 1b-m3.medium 1b-m3.large
Success 13 13 19 16 20 17

1d-t1.micro 1d-m1.small 1d-m1.medium 1d-m1.large 1d-m3.medium 1d-m3.large
Success 12 18 15 13 14 18

7 A More Secure Cloud

Based on our measurement analysis, we have proposed
some guidelines towards more secure IaaS cloud man-
agement.

First, the cloud should manage the naming system
properly. In general, a domain name is not sensitive
information. However, EC2’s automatic naming sys-
tem reveals its internal space. In contrast, Azure and
Rackspace employ flexible naming systems that can pre-
vent automatic location probing. However, automatic
domain name generation is more user-friendly since it
allows a user to launch instances in batch, while a cus-
tomer can only launch instances one by one in Azure and
Rackspace. Moreover, automatic domain name gener-
ation can help an IaaS vendor manage the cloud more
efficiently. To balance management efficiency and se-
curity, we suggest that IaaS clouds integrate automatic
domain name generation with a certain randomness. For
example, a random number that is derived from the cus-
tomer’s account information can be embedded into the
EC2 default domain name. This improved naming ap-
proach can prevent location probing while not degrading
management efficiency.

Second, it is controversial to publish all IP ranges of a
cloud. With the introduction of ZMap [10], it is not diffi-
cult to scan all public IPs in the cloud. We have demon-
strated that such scanning can cause serious security con-
cerns.

Third, the routing information should be well-
protected. While trace-routing is a tool for a customer to
diagnose a networking anomaly, it can also be exploited
by an attacker to infer the internal networking informa-
tion of the cloud. However, the approach taken by Azure
and Rackspace is too strict. The prohibition of network-
ing probing deprives a customer from self-diagnosis and
self-management. A good trade-off is to show only part
of the paths, but always obscure the first hop (ToR) and
the last second hop.

Fourth, VM placement should be more dynamic and
have more constraints. Locality reduction will make it
more difficult for an attacker to locate a target. IaaS
vendors can also leverage some historical information of
a user’s account to prevent the abuse of launching in-
stances. While EC2 has significantly increased the dif-
ficulty of achieving machine-level co-residence, it is also
necessary to suppress rack-level co-residence in the fu-

ture.

8 Conclusion
We have presented a systematic measurement study on
the co-residence threat in Amazon EC2, from the per-
spectives of VM placement, network management, and
VPC. In terms of VM placement, we have demonstrated
that time locality in VM placement is significantly re-
duced and VM placement in EC2 becomes more dy-
namic, indicating that EC2 has adjusted its VM place-
ment policy to mitigate co-residence. Regarding net-
work management, by conducting a large-scale trace-
routing measurement, we have shown that EC2 has re-
fined networking configurations and introduced VPC to
reduce the threat of co-residence. We have also pro-
posed a novel method to identify a ToR-connected or
non-ToR-connected topology, which can help an attacker
to achieve rack-level co-residence. As the first to in-
vestigate the co-residence threat in VPC, on one hand,
we have confirmed the effectiveness of VPC in mitigat-
ing the co-residence threat. On the other hand, we have
shown that an attacker can still achieve co-residence by
exploiting a latency-based probing method, indicating
that VPC only mitigates co-residence threat rather than
eliminating the threat.
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A Business scale of EC2

Figure 19 illustrates the number of all the detected live
instances in EC2 US east region during the measurement
period. We can see that the business scale in EC2 US east
region is very impressive. Our scanning can always de-
tect more than 650,000 live instances in the cloud. Dur-
ing the peak time, we can detect almost 700,000 live
instances. It is noteworthy that our system only scans
some common ports. Besides the instances we detected,
there are some instances with no common ports opened
or within the VPC that do not have public IP addresses.
Thus, the real number of live instances in the cloud could
be even larger.

Table 4 lists the break-down statistics, showing the
number of instances hosting a certain service on average.
It is obvious that web service still dominates the usage
in IaaS. Most customers rent the instances to host their
web services. Among these web services (i.e., HTTP),
more than half of them deploy HTTPS at the same time.
Since the default way of accessing an instance in EC2 is
through SSH, the number of instances listening on port
22 is the second largest. There are also considerable in-
stances hosting FTP service, DNS service, and database
service (MYSQL+SQL). For the rest of services, the
number of instances hosting them are less significant.
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Table 4: Number of instances hosting a certain service

FTP SSH Telnet SMTP WHOIS DNS DHCP Finger HTTP SQL HTTPS MYSQL
Live in-
stances 24,962 327,294 350 18,376 305 3,392 15 68 441,499 48 261,446 25,872
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Figure 22: The distribution of internal IP addresses of instances with dif-
ferent types in availability zone us-east-1a.
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Figure 23: The distribution of internal IP addresses of instances in differ-
ent availability zones.

B Dynamic environment of EC2

Our measurement can also reflect the dynamic environ-
ment of EC2 to some extent. First, as shown in Figure 19,
the number of live instances varies over time within a day.
We observed a similar pattern each day: the peak time is
around 5 p.m. (EST) while the service reaches a valley
around 4 a.m. (EST). Despite this diurnal pattern, the
difference in the number of live instances between peak
and valley is not as significant as we expected. There are
only 1,000 more live instances at peak than valley, which
is relatively small considering the overall 650,000 live in-
stances. The diurnal pattern is reasonable, as 4 a.m. EST
is very early morning for the US east coast and it is also
midnight for the US west coast. It is intuitive that at this
time period fewer users are using EC2. The small differ-
ence between peak and valley can be explained from two
aspects. First, most instances run stable services such as
web and database services. These instances remain active
all the time. Second, although the data center is located
in the US, the customers are distributed all around the
world. For instance, Bermudez et al. [8] demonstrated
that the Virginia data center is responsible for more than
85% of EC2 traffic in Italy. The time of 4 a.m. on the
US east coast is 10 a.m. in Italy when customers are very
active there.

We are also interested in how dynamic the cloud en-
vironment is. Figure 20 illustrates how many instances
are shutdown, newly booted, or re-located between each
round of measurement. We can see there are more than
15,000 hosts that are changed every 20 minutes, indicat-
ing that EC2 is a very dynamic environment with tens of
VMs booted and shut down every second.

Besides the dynamics of live instances, we are also in-
terested in the networking dynamics. During our mea-
surement, we observed overall 975,032 distinct private
IP addresses and 1,024,589 distinct public IP addresses.
We recorded all the mappings from public IP to private IP
and the mappings from private IP to public IP during our

measurement. We also recorded the mappings that are
changed during the measurement period. Over the course
of our 15-day measurement, 103,242 mappings changed.
This implies that EC2 has likely recruited dynamic NAT
for address translation.

Figure 21 shows the private IP addresses that are in-
cluded in the changed mappings. It is clear that the IP
address pool in the cloud is dynamic as well. The den-
sity of the IPs in a certain range is significantly higher
than other areas. This range of private IPs are mostly
assigned to micro and small instances. Since micro and
small instances are usually used for temporary purposes,
ON/OFF operations on them are more frequent, leading
to more frequent changes in private-public IP mappings.

C VM placement locality in EC2

To investigate the VM placement locality in EC2, we
launched numerous instances with different types and in
different availability zones to study whether the type or
zone will impact the physical location of an instance.

Figure 22 illustrates the private IP distribution of some
sample instances with different types in zone us-east-1a.
The IP distribution exhibits a certain type locality. We
can see from the figure that the instances of the same
type tend to have closer internal IPs, i.e., they are more
likely to be placed physically close to one another. How-
ever, compared with corresponding results in 2008 [14],
we can see that such type locality has been significantly
weakened.

We also study how availability zone could affect VM
placement. Figure 23 illustrates the internal IP distribu-
tion of instances in different availability zones. As we
can see, VM placement still has availability zone local-
ity, i.e., instances in the same zone are more likely to
have their internal IP addresses located within a certain
range. However, such locality is also much weaker than
in 2008 [14].
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