
RCB: A Simple and Practical Framework for

Real-time Collaborative Browsing

Chuan Yue, Zi Chu, and Haining Wang
The College of William and Mary

{cyue,zichu,hnw}@cs.wm.edu

Abstract

Existing co-browsing solutions must use either a spe-

cific collaborative platform, a modified Web server, or a

dedicated proxy to coordinate the browsing activities be-

tween Web users. In addition, these solutions usually re-

quire co-browsing participants to install special software

on their computers. These requirements heavily impede

the wide use of collaborative browsing over the Internet.

In this paper, we propose a simple and practical frame-

work for Real-time Collaborative Browsing (RCB). This

RCB framework is a pure browser-based solution. It

leverages the power of Ajax (Asynchronous JavaScript

and XML) techniques and the end-user extensibility of

modern Web browsers to support co-browsing. RCB en-

ables real-time collaboration among Web users without

the involvement of any third-party platforms, servers, or

proxies. It allows users to perform fine-grained high

quality co-browsing on arbitrary websites and webpages.

We implemented the RCB framework in the Firefox Web

browser and evaluated its performance and usability. Our

evaluation results demonstrate that the proposed RCB is

simple, practical, helpful and easy to use.

1 Introduction

Many end-user real-time applications have been widely

used on the Internet. Real-time audio/video communica-

tion is enabled by voice/video over IP systems, real-time

text-based communication is enabled by instant messag-

ing systems, and real-time document sharing and collab-

oration is enabled by Web-based services such as Google

Docs and Adobe Buzzword. However, one of the most

popular Internet activities, Web browsing, is still heavily

isolated. In other words, browsing regular webpages is

still a process that is mainly between a user client and

a remote Web server, and there is little real-time inter-

action between different users who are visiting the same

webpages.

Collaborative browsing, also known as co-browsing,

is the technique that allows different users to browse the

same webpages in a simultaneous manner and collabora-

tively fulfill certain tasks. Co-browsing has a wide range

of important applications. For example, instructors can

illustrate online materials to distance learning students,

business representatives can provide live online technical

support to customers, and regular Web users can conduct

online searching or shopping with friends.

Several approaches exist to achieve different levels of

co-browsing. At one extreme, simple co-browsing can be

performed by just sharing a URL in a browser’s address

bar via either instant messaging tools or Web browser

add-ons (such as CoBrowse [5]) that are installed on

each user’s computer. URL sharing is lightweight, but

it only enables very limited collaboration on a narrow

scope of webpages. Collaboration is limited since users

can only view webpages but cannot perform activities

such as co-filling online forms or synchronizing mouse-

pointer actions. Webpages eligible for this simple co-

browsing method are also limited because: (1) most

session-protected webpages cannot be accessed by just

copying the URLs, and (2) in many dynamically-updated

webpages such as Google Maps, the retrieved contents

will be different even with the same URL.

At the other extreme, complex co-browsing can be

achieved via screen or application sharing software such

as Microsoft NetMeeting. To enable co-browsing activ-

ities, these solutions must grant the control of a whole

screen or application to remote users. As a result, they

place high demands on both security assurance and net-

work bandwidth, and their use is more appropriate for

some other collaborative applications than co-browsing.

A number of solutions have been proposed to sup-

port full functional co-browsing with moderate overhead.

Based on the high-level architectures, these solutions

can be classified into three categories: platform-based,

server-based, and proxy-based solutions. Platform-based

solutions build their co-browsing functionalities upon

specific real-time collaborative platforms [9, 11, 15, 30].

Server-based solutions modify Web servers to meet col-

laborative browsing requirements [2, 7, 13, 22, 28].

Proxy-based solutions use external proxies, which are

deployed between Web servers and browsers, to facilitate

collaborative browsing [1, 3, 4, 6, 12, 14]. However, as

discussed in Section 2, the specific architectural require-

ments of these solutions limit their wide use in practice.

In this paper, we propose a simple and practical frame-

work for Real-time Collaborative Browsing (RCB). The

proposed RCB is a pure browser-based solution. It lever-

ages the power of Ajax (Asynchronous JavaScript and

XML) [20] techniques and the end-user extensibility of

modern Web browsers to support co-browsing. RCB en-

ables real-time collaboration among Web users without

using any third-party platforms, servers, or proxies. The

framework of RCB consists of two key components: one

is RCB-Agent, which is a Web browser extension, and

the other is Ajax-Snippet, which is a small piece of Ajax

code that can be embedded within an HTML page and

downloaded to a user’s regular browser. Installed on a

user’s Web browser, RCB-Agent accepts TCP connec-

tions from other users’ browsers and processes both Ajax

requests made by Ajax-Snippet and regular HTTP re-

quests. RCB-Agent and Ajax-Snippet coordinate the co-

browsing sessions and allow users to efficiently view and

operate on the same webpages in a simultaneous manner.

The framework of RCB is simple, practical, and ef-

ficient. A user who wants to host a collaborative Web

session only needs to install an RCB-Agent browser ex-

tension. Users who want to join a collaborative session

just use their regular JavaScript-enabled Web browsers,

and nothing needs to be installed or configured. End-

user extensibility is an important feature supported by

popular Web browsers such as Firefox [24] and Inter-

net Explorer [26]. Thus, it is feasible to implement and

run the RCB-Agent extension on these browsers. Mean-

while, currently 95% of Web users turn on JavaScript in

their browsers [21], and all popular Web browsers sup-

port Ajax techniques [20]. As a result, joining a col-

laborative Web session is like using a regular browser to

visit a regular website. The simplicity and practicabil-

ity of RCB bring important usability advantages to co-

browsing participants, especially in online training and

customer support applications. RCB is also efficient be-

cause co-browsing participants are directly connected to

the user who hosts the session, and there is no third-party

involvement in the co-browsing activities.

Other distinctive features of RCB are summarized as

follows. (1) Ubiquitous co-browsing: since no specific

platform, server, or proxy is needed, co-browsing can

be performed in many different places via any type of

network connection such as Ethernet, Wi-Fi, and Blue-

tooth. (2) Arbitrary co-browsing: co-browsing can be

applied to almost all kinds of Web servers and webpages.

Web contents hosted on HTTP or HTTPS Web servers

can all be synchronized to co-browsing participants by

RCB-Agent. Our RCB-Agent can also send cached con-

tents including image and Cascading Style Sheets (CSS)

files to participants, hence improving performance and

accessibility of co-browsing in some environments. (3)

Fine-grained co-browsing: co-browsed Web elements

and coordinated user actions can be very fine-grained.

Since RCB-Agent is designed as a browser extension,

the seamless browser-integration enables RCB-Agent to

fully control what webpage contents can be shared and

what actions should be allowed to participants, leading

to full functional high quality co-browsing.

We implemented the RCB framework in Firefox. As

a browser extension, RCB-Agent is purely written in

JavaScript. Ajax-Snippet is also written in JavaScript

and it works on different browsers like Firefox and Inter-

net Explorer. We evaluated the real-time performance of

RCB through extensive experiments in LAN and WAN

environments. Based on two real application scenar-

ios (collaboratively shopping online and using Google

Maps), we also conducted a formal usability study to

evaluate the high quality co-browsing capabilities of

RCB. Our evaluation results demonstrate that the pro-

posed RCB is simple, practical, helpful and easy to use.

2 Related Work

The existing co-browsing solutions can be roughly clas-

sified into platform-based, server-based, and proxy-

based solutions. Platform-based solutions build their co-

browsing architectures upon special real-time collabora-

tive platforms. As an early work in this category, Group-

Web [11] is built on top of the GroupKit groupware plat-

form [18], and similarly GroupScape [9] is developed

by using the Clock groupware development toolkit [10].

Two banking applications [15] for synchronous browser

sharing between bank representatives and customers are

designed on top of a multi-party, real-time collabora-

tive platform named CollaborationFramework [19]. Re-

cently, SamePlace [30] is built upon the XMPP (eXten-

sible Messaging & Presence Protocol) platform [32] to

support co-browsing of rich Web contents. The strong

dependence on specific collaborative platforms is the ma-

jor drawback of these co-browsing solutions.

Server-based solutions modify Web servers and inte-

grate collaborative components into servers to support

co-browsing [2, 7, 13]. CWB (Collaborative Web Brows-

ing) [7] is a typical example in this category. CWB con-

sists of a controller module that runs on a Web server

and a control panel that runs on a Web browser. The con-

troller module is implemented as a Java servlet and is the

central control point for collaborative activities. The con-

trol panel reports local browser instance changes to the

controller module on the Web server, and it also polls the

controller module for changes made by other users. In

addition to CWB, some commercial software like Back-

base Co-browse & Chat suite [22] and PageShare [28]

also adopt this approach. However, these solutions have

two obvious limitations: (1) they require Web develop-

ers to add controller modules to Web servers, and (2) the

server-side modification is usually tailored and dedicated

to individual websites, and it is infeasible to apply such

a modification to most Web servers.

Proxy-based solutions rely on dedicated HTTP prox-

ies to coordinate co-browsing among users [1, 3, 4, 6, 12,

14]. Users configure the proxy setting on their browsers

to access the Internet via an HTTP proxy. The proxy

serves co-browsing users by forwarding their HTTP re-

quests to a Web server and returning identical HTML

pages to them. The proxy also inserts applets (often

in the form of Java applets [4, 12] or JavaScript snip-

pets [3]) into the returned HTML pages to track and syn-

chronize user actions. The major drawback of proxy-

based solutions is the extra cost of setting up and main-

taining such a proxy. Moreover, there are security and

privacy concerns on using a proxy. Since all the HTTP

requests and responses have to go through a proxy, each

user has no choice but to trust the proxy.

3 Framework Design

In this section, we first present the architecture of the

RCB framework. We then justify our design decisions.

Finally, we analyze the co-browsing topologies and poli-

cies of RCB, and discuss the security design of RCB.

3.1 Architecture

The design philosophy of RCB is to make co-browsing

simple, practical, and efficient. As shown in Figure 1, the

architecture of the RCB framework consists of two major

components. One is the RCB-Agent browser extension

that can be seamlessly integrated into a Web browser.

The other is Ajax-Snippet — a small piece of Ajax [20]

code that can be embedded within an HTML page and

downloaded to a user’s regular browser. For a user who

wants to host a co-browsing session, the user (referred

to as a co-browsing host) only needs to install an RCB-

Agent browser extension. For a user who wants to join

a co-browsing session, the user (referred to as a co-

browsing participant) does not need to install anything

and just uses a regular JavaScript-enabled Web browser.

Our design philosophy of making the participant side as

simple as possible is similar to the basic concept of many

thin-client systems such as VNC (virtual network com-

puting) [17].

Host Browser

RCB-Agent

Cache

Participant Browser

Webpage

head

body

Ajax-Snippet

Webpage

head

body

Web Servers

8*

2 5 8 9

1

4
6

3 7

Figure 1: The architecture of the RCB framework.

In Figure 1, the host browser represents the browser

used by a co-browsing host, and the participant browser

corresponds to the browser used by a co-browsing par-

ticipant. The webpage on each browser stands for a cur-

rently co-browsed HTML webpage. The displayed con-

tent of each webpage is the same on both browsers, but

the source code of each webpage is different on the two

browsers. The cache of the host browser is only read but

not modified by RCB-Agent.

A co-browsing session can be broken down into nine

steps. In step 1, a co-browsing host starts running

RCB-Agent on the host browser with an open TCP port

(e.g., 3000). In step 2, a co-browsing participant types

the URL address of RCB-Agent (e.g., http://example-

address:3000, where the example-address is a reachable

hostname or IP address) into the address bar of the par-

ticipant browser and sends a connection request to RCB-

Agent. The RCB-Agent responds to a valid request

by returning an initial HTML page that contains Ajax-

Snippet. Ajax-Snippet will then periodically poll RCB-

Agent, and the communication channel between the co-

browsing host and participant is established.

On the host browser, whenever the co-browsing host

visits a webpage (step 3), RCB-Agent monitors the inter-

nal browser-state changes and records file-downloading

activities related to the webpage (step 4). When the web-

page is loaded on the host browser, RCB-Agent creates

an in-memory copy of the page’s HTML document and

makes necessary modifications to this copy. Then, in step

5, upon receipt of a polling request from a participant

browser, RCB-Agent will send the content of the modi-

fied copy to the participant browser.

On the participant browser, Ajax-Snippet will ana-

lyze the received content and replace the correspond-

ing HTML elements of the current page, in which Ajax-

Snippet always resides, with the received content (step

6). In addition to the HTML document that describes the

page structure, a webpage often contains supplementary

objects such as stylesheets, images, and scripts. There-

fore, to accurately render the same webpage, the partic-

ipant browser needs to download all these supplemen-

tary objects. Based on RCB-Agent’s modifications on

the copied HTML document, the RCB framework allows

a participant browser to download these supplementary

objects either from the original Web server (step 7), or

directly from the host browser (step 8 and 8*).

Allowing a participant browser to directly download

cached objects from the host browser can bring two at-

tractive benefits to the co-browsing participant. One is

that the co-browsing participant does not need to have

the capability of establishing network connection with

the original Web server (the connection marked in step

7 is denoted by a dashed line due to this reason). The

other is that if the co-browsing participant has a fast net-

work connection with the co-browsing host (e.g., they

are within the same LAN), downloading cached objects

from the host browser rather than from the remote Web

server can often reduce the response time.

In step 9, any dynamic changes made (e.g., by

JavaScript or Ajax) to a co-browsed webpage can be syn-

chronized in real time from the host browser to the par-

ticipant browser. Meanwhile, one user’s (either a host

user or a participant user) browsing actions such as form

filling and mouse-pointer moving can be monitored and

instantly mirrored to other users. When the co-browsing

host visits new webpages, the loop from steps 3 to 9 is

repeated. In a co-browsing session, users can visit differ-

ent websites and collaboratively browse and operate on

as many webpages as they like.

3.2 Decisions

The design of the RCB framework is mainly based

on three decisions with respect to the communica-

tion model, the service model, and the synchronization

model, respectively.

3.2.1 Direct Communication Model

Our RCB framework uses a direct communication model

to support the collaboration between a co-browsing host

and a co-browsing participant. A participant browser es-

tablishes a TCP connection to a host browser, without the

support of any third-party platform, server, or proxy.

This direct communication model is simple, conve-

nient, and widely applicable. Users in the same LAN can

use Ethernet or Wi-Fi to establish their TCP connections.

For WAN environments, if the host browser is running on

a machine with a resolvable hostname or reachable IP ad-

dress, remote co-browsing participants can use the host-

name or IP address and an allowed TCP port to establish

the connections; otherwise, a co-browsing host can still

allow remote participants to reach a TCP port on a private

IP address inside a LAN using port-forwarding [29] tech-

niques. We also consider to integrate some NAT (net-

work address translation) traversal techniques into RCB-

Agent to further improve its accessibility.

3.2.2 HTTP-based Service Model

In our RCB framework, RCB-Agent on a host browser

uses an HTTP-based service model to serve co-browsing

participants. The key benefit of using this model is that

there is no need for a co-browsing participant to make

any installation or configuration. With the direct com-

munication model, other service models (e.g., a peer-to-

peer model or a non-HTTP based service model) exist

but they all require changes at the participant side.

Integrating this HTTP-based service model into a

browser also simplifies the host side installation since

a co-browsing host only needs to install an RCB-Agent

browser extension. Meanwhile, this browser integration

approach maximizes the co-browsing capability because

a browser extension normally can access both the con-

tent and related events of the browsed webpages. Fur-

thermore, the end-user extensibility provided by mod-

ern Web browsers such as Internet Explorer and Firefox

makes the implementation of this service model feasible.

3.2.3 Poll-based Synchronization Model

After the connection between a co-browsing host and

its participant is established, Ajax-Snippet will period-

ically poll RCB-Agent to synchronize the co-browsing

session. HTTP is a stateless protocol [8], and the com-

munication is initiated by a client. Since the HTTP pro-

tocol does not support the push-based synchronization

model, we use poll-based synchronization to emulate

the effect of pushing webpage content and user interac-

tion information between co-browsing users. In addition

to poll-based synchronization, an HTTP server can use

“multipart/x-mixed-replace” type of responses to emu-

late the content pushing effect. However, compared with

poll-based synchronization, this alternative approach in-

creases the complexity of co-browsing synchronization

and decreases its reliability.

Ajax-Snippet is written in pure JavaScript. All popu-

lar Web browsers support Ajax techniques [20] and cur-

rently about 95% of Web users turn on JavaScript in their

browsers [21]. Therefore, this synchronization model is

well supported on users’ regular browsers.

3.3 Co-browsing Topologies and Policies

The use of RCB is very flexible. Each co-browsing host

can support multiple participants, and a participant can

join or leave a session at any time. A user can even

host a co-browsing session and meanwhile join sessions

hosted by other users using different browser windows

or tabs. RCB-Agent knows exactly which participants

are connected, and it can notify this information to a co-

browsing host or participant.

Each co-browsing session is hosted and moderated

by a co-browsing host. A participant’s actions such as

mouse click and data input are synchronized to the co-

browsing host, and the co-browsing host will decide on

further navigating actions. A participant browser never

leaves the URL address of RCB-Agent, and contents

from different websites and webpages are simply pushed

to the participant browser. This tightly coupled scenario

is typical for co-browsing applications (e.g., online train-

ing and customer support) that need a user to preside over

a session, and it is also typical for co-browsing applica-

tions (e.g., online shopping) that require users to accom-

plish a common task on session-protected webpages.

To coordinate co-browsing actions among users, RCB-

Agent can enforce different high-level policies for dif-

ferent application scenarios. For example, when a par-

ticipant clicks a link on a co-browsed webpage and this

action information is sent back to the host browser, RCB-

Agent can either immediately perform the click action on

the host browser, or ask the co-browsing host to inspect

and explicitly confirm this click action. Similarly, if mul-

tiple participants are involved in a co-browsing session, it

is up to the high-level policy enforced on RCB-Agent to

decide whom are allowed to perform certain interactions

and whose interaction action will be finally submitted to

a website. However, the specification and enforcement

of co-browsing policies is usually application-dependent,

and it is out of the scope of this paper.

3.4 Security Design and Analysis

For a co-browsing participant, using RCB is as secure as

visiting a trusted HTTP website. This is because a par-

ticipant only needs to type in the URL address of RCB-

Agent given by a trusted co-browsing host and then per-

form regular browsing actions such as clicking and form-

filling on a regular Web browser. We therefore keep the

focus of our security design on the protection of RCB-

Agent by authenticating its received requests.

Our current design on request authentication is based

on a conventional mechanism of sharing a session secret

key and computing the keyed-Hash Message Authentica-

tion Code (HMAC). On a host browser, a session-specific

one-time secret key is randomly generated and used by

RCB-Agent. The co-browsing host shares the secret key

with a participant using some out-of-band mechanisms

such as telephone calls or instant messages. On a partici-

pant browser, the secret key is typed in by a co-browsing

participant via a password field on the initial HTML page

and then stored and used by Ajax-Snippet.

Before sending a request, Ajax-Snippet computes an

HMAC for the request and appends the HMAC as an

additional parameter of the request-URI. After receiv-

ing a request sent by Ajax-Snippet, RCB-Agent com-

putes a new HMAC for the received request (discard-

ing the HMAC parameter) and verifies the new HMAC

against the HMAC embedded in the request-URI. The

data integrity and the authenticity of a request are as-

sured if these two HMACs are identical. Since the size

of a request sent by Ajax-Snippet is small, an HMAC

can be efficiently calculated and any important informa-

tion in a request can also be efficiently encrypted us-

ing a JavaScript implementation [25]. However, using

JavaScript to compute an HMAC for a response (or en-

crypt/decrypt a response) is inefficient, especially if the

size of the response is large. We plan to integrate other

security mechanisms to address this issue in the future.

4 Implementation Details

Although the design of the proposed RCB framework is

relatively simple and straightforward, its implementation

poses several challenges. The implementation of RCB-

Agent has two major challenges: (1) how to efficiently

process requests so that participant browsers can be syn-

chronized in real time, and (2) how to accurately gen-

erate response contents so that fine-grained high-quality

co-browsing activities can be easily supported. The key

implementation challenge of Ajax-Snippet lies in how

to properly and smoothly update webpage contents on

a participant browser. We have implemented the RCB

framework in Firefox and successfully addressed these

challenges. We present the implementation details of the

framework in this section.

4.1 RCB-Agent

RCB-Agent is implemented as a Firefox browser exten-

sion, and it is purely written in JavaScript. Its request

processing and response content generation functionali-

ties are detailed as follows.

4.1.1 Request Processing

The request processing functionality of RCB-Agent is

implemented as a JavaScript object of Mozilla’s nsIS-

erverSocket interface [33]. This interface provides meth-

ods to initialize a server socket and maintain it in the lis-

tening state. For this server socket object, we create a

socket listener object which implements the methods of

Mozilla’s nsIServerSocketListener interface [33]. RCB-

Agent uses this socket listener object to asynchronously

Accept an HTTP

Request

Check

Request Type

Cache
Request Content

Check and Data Merge

Generate

Response with

Empty Content

Set "application/xml"

Response Content Type

Initial

HTML

Page

Write Data into Output

Stream from an Input Stream

Read Cached

Object

Read Initial

HTML Page

Set "text/html" Response

Content Type

Generate

Response with

New Content

Send an HTTP

Response

Send New

Content in

Response?

New Connection Request Object Request (for cache mode)

Ajax Polling Request

No Yes

Figure 2: Request processing procedure of RCB-Agent.

listen for and accept new TCP connections. We also

create a data listener object which implements Mozilla’s

nsIStreamListener interface [33]. We associate this data

listener object with the input stream of each connected

socket transport. Therefore, over each accepted TCP

connection, RCB-Agent uses this data listener object to

asynchronously accept incoming HTTP requests and ef-

ficiently process them.

Figure 2 illustrates the high-level request processing

procedure of RCB-Agent. From a participant browser,

RCB-Agent may receive three types of HTTP requests:

a new connection request, an object request, and an Ajax

polling request. RCB-Agent identifies the type of request

by simply checking the method token and request-URI

token in the request-line [8]. Both a new connection re-

quest and an object request use the “GET” method, but

they can be differentiated by checking their request-URI

tokens. The former has a root URI, but the later has a

URI pointing to a specific resource such as an image file.

Ajax polling requests always use the “POST” method be-

cause we want to directly piggyback action information

of a co-browsing participant onto a polling request.

A new connection request is sent to RCB-Agent af-

ter the URL of RCB-Agent is entered into the address

bar of a participant browser. RCB-Agent responds to

this request by sending back a “text/html” type of HTTP

response to the participant browser with the content of

an initial HTML page. The head element of this ini-

tial HTML page contains Ajax-Snippet, which will later

send Ajax polling requests to RCB-Agent periodically.

An object request is sent to RCB-Agent if the cache

mode is used to allow a participant browser to directly

download a cached object from the host browser. RCB-

Agent keeps a mapping table, in which the request-URI

of each cached object maps to a corresponding cache

key. After obtaining the cache key for a request-URI,

RCB-Agent reads the data of a cached object by creat-

ing a cache session via Mozilla’s cache service [33]. To

save time and memory, RCB-Agent directly writes data

from the input stream of the cached object into the output

stream of the connected socket transport.

An Ajax polling request is sent by Ajax-Snippet

from a participant browser to check if any page content

changes or browsing actions have occurred on the host

browser. RCB-Agent follows three steps to process an

Ajax polling request: data merging, timestamp inspec-

tion, and response sending.

Data merging: RCB-Agent examines the content of a

“POST” type Ajax polling request and may merge data

if the content contains piggybacked browsing action in-

formation of the co-browsing participant. For example,

if users are co-filling a form, the form data submitted by

a co-browsing participant can be extracted and merged

into the corresponding form on the host browser.

Timestamp inspection: RCB-Agent looks for any new

content needs to be sent back to the co-browsing partic-

ipant. RCB-Agent uses a simple timestamp mechanism

to ensure that only new content, which has never been

sent to this participant before, is included in the response

message. A timestamp used here is the number of mil-

liseconds since midnight of January 1, 1970. RCB-Agent

maintains a timestamp for the latest webpage content on

the host browser. Whenever this new content is sent to a

participant browser, its timestamp is also included in the

same response. Each Ajax polling request from a partic-

ipant browser carries back the timestamp of its current

webpage content, so RCB-Agent can compare the cur-

rent timestamp on the host browser and the received one

to accurately determine whether the page content on each

particular participant browser needs to be updated.

Response sending: if any new content needs to be

sent to a participant browser, RCB-Agent generates a re-

sponse with the new content. Response content gener-

ation is an important functionality of RCB-Agent, and

it is detailed in the following subsection. To facilitate

efficient content parsing in a participant browser, RCB-

Agent sends out the new content in the form of an XML

document using the “application/xml” type of HTTP re-

sponse. If no new content needs to be sent back, RCB-

Agent sends a response with empty content to the partic-

ipant browser in order to avoid hanging requests.

4.1.2 Response Content Generation

The response content generation functionality of RCB-

Agent generates responses with new content for Ajax

polling requests. It guarantees that webpage content can

Document

Content Changes

Cache

Generate XML Format

Response Content

Lookup

Clone a documentElement Node

of Current HTMLDocument

No

Yes

Yes

No Objects Exist

 in Cache?

Change Relative URL Addresses to Absolute URL

Addresses for Elements in the Cloned Document

Change Absolute URL Addresses to RCB-Agent

URL Address for Elements in the Cloned Document

Cache Mode?

Document Element Action Rewriting for

Elements in the Cloned Document

Figure 3: Response content generation procedure of

RCB-Agent.

be efficiently extracted on a host browser and later on

accurately rendered on a participant browser. The high-

quality implementation of this functionality is essential

for adding upper-level co-browsing features such as form

co-filling and action synchronization.

Figure 3 illustrates the high-level response content

generation procedure of RCB-Agent. When document

content changes on the host browser need to be sent

to a participant browser, RCB-Agent uses the follow-

ing five steps to generate the XML format response con-

tent. First, RCB-Agent clones the documentElement

node (namely the “<html>” root element of an HTML

webpage) of the current HTMLDocument object on the

host browser. The following changes are made only to

the cloned documentElement node (referred to as the

cloned document) so that the content generation proce-

dure will not cause any state change to the current docu-

ment on the host browser.

In the second step, for the supplementary objects of

the cloned document, RCB-Agent changes all the rel-

ative URL addresses to absolute URL addresses of the

original Web servers. This URL conversion is neces-

sary to support RCB’s non-cache mode in which a par-

ticipant browser needs to use absolute URL addresses to

correctly download supplementary objects from original

Web servers. To achieve an accurate URL conversion,

we create an observer object which implements the meth-

ods of Mozilla’s nsIObserverService [33]. Using this ob-

server object, RCB-Agent can record complete URL ad-

dresses for all the object downloading requests.

In the third step, if the cache mode is used, for the

supplementary objects of the cloned document that exist

in the browser cache, their absolute URL addresses are

changed to RCB-Agent URL addresses. Subsequently,

<?xml version=’1.0’ encoding=’utf-8’?>

<newContent>

<docTime>documentTimestamp</docTime>

<docContent>

<docHead>

<hChild1><![CDATA[escape(hData1)]]></hChild1>

<hChild2><![CDATA[escape(hData2)]]></hChild2>

......

</docHead>

<!-- for a page using body element -->

<docBody><![CDATA[escape(bData)]]></docBody>

<!-- for a page using frames -->

<docFrameSet><![CDATA[escape(fData)]]>

</docFrameSet>

<docNoFrames><![CDATA[escape(nData)]]>

</docNoFrames>

</docContent>

<userActions>userActionData</userActions>

</newContent>

Figure 4: XML format response content.

when a participant browser renders the page content, it

will automatically send “GET” type of HTTP requests to

RCB-Agent to retrieve cached objects. For the non-cache

mode, nothing needs to be done in this step. Switching

between these two modes is very flexible and fully con-

trolled by RCB-Agent. For example, RCB-Agent can al-

low different participant browsers to use different modes,

allow different webpages sent to a particular participant

browser to use different modes, and even allow different

objects on the same webpage to use different modes.

In the fourth step, RCB-Agent rewrites event attributes

such as onclick and onsubmit for children elements of the

cloned document. The purpose of this rewriting is to en-

able upper-level co-browsing features such as form co-

filling and action synchronization. For instance, to sup-

port the form co-filling feature, RCB-Agent changes the

onsubmit event attribute values of form elements in the

cloned document. More specifically, RCB-Agent adds

a call to a specific JavaScript function residing in Ajax-

Snippet to each form’s onsubmit event handler. So later

on, when a form is submitted on a participant browser,

this JavaScript function is called and the related form

data can be carried back by an Ajax polling request to

the host browser.

Finally, after making the above changes, RCB-Agent

generates an XML format response content for this Ajax

polling request. From top-level children of the cloned

document, RCB-Agent follows their order in the DOM

(Document Object Model [23]) tree to process these el-

ements, including extracting their attribute name-value

lists and innerHTML values. For most webpages, the

cloned document only contains two top-level children:

a head element and a body element. For some webpages,

their top-level children may include a head element, a

frameset element, and probably a noframes element.

Figure 4 illustrates the simplified XML format of the

generated response content. The newContent element

contains a docTime element that carries the document

timestamp string, a docContent element that carries the

data extracted from the cloned document, and a userAc-

tions element that can carry additional browsing action

(such as mouse-pointer movement) information.

Within the docContent element, for each child element

of the cloned document head, its attribute name-value list

and innerHTML value are encoded using the JavaScript

escape function and carried inside the CDATA section of

a corresponding hChild element. For example, hChild1

may contain the data for the title child element of the

head, and hChild2 may contain the data for a style ele-

ment of the head. The contents of these children head

elements are separately transmitted so that later Ajax-

Snippet can properly and easily update document con-

tents on different types of browsers such as Firefox and

Internet Explorer. Similarly, the name-value lists and in-

nerHTML values extracted from other top-level children

(e.g., body or frameset) of the cloned document are car-

ried in the CDATA sections of their respective elements.

We use the escape encoding function and CDATA sec-

tion to ensure that the response data can be precisely

contained in an “application/xml” message and correctly

transmitted over the Internet.

The generation of this XML format response content

combines both the structural advantages of using DOM

and the performance and simplicity advantages of us-

ing innerHTML. This implementation ensures that the

response content can be efficiently generated on a host

browser; more importantly, it guarantees the same web-

page content can be accurately and efficiently rendered

on a participant browser. The innerHTML property is

well supported by all popular browsers and has been in-

cluded into the HTML 5 DOM specification. Note that

the whole response content generation procedure is ex-

ecuted only once for each new document content, and

the generated XML format response content is reusable

for multiple participant browsers. Also note that RCB-

Agent does not replicate HTTP cookies or the referer

request header to a participant browser. We can extend

RCB-Agent to have these capabilities, but in our experi-

ments we did not observe the necessity to do so because a

participant browser can download supplementary objects

of a webpage from a website (in the non-cache mode)

or RCB-Agent (in the cache mode) for both HTTP and

HTTPS sessions.

4.2 Ajax-Snippet

Ajax-Snippet is implemented as a set of JavaScript func-

tions. It is embedded in the head element of the initial

HTML page and sent to a participant browser as a part

of RCB-Agent’s response to a new connection request.

Ajax-Snippet uses the XMLHttpRequest object [31] to

asynchronously exchange data with RCB-Agent.

Response is Successful and

responseXML is Loaded

New Content?

Clean up the Head Element of Current

Document and Only Keep Ajax-Snippet

No

Yes

Send a New Polling Request

after a Specified Time Interval

Set the Head Element of Current Document using New Content

Clean up Other Useless Top Elements of the Current Document

Set Other Top Elements of Current Document using New Content

Figure 5: Response processing procedure of Ajax-

Snippet.

4.2.1 Ajax Request Sending

Sending Ajax requests is relatively simple for Ajax-

Snippet. The first Ajax request is sent after the initial

HTML page is loaded on a participant browser. Each

following Ajax request is triggered after the response

to the previous one is received. A new XMLHttpRe-

quest object is created to send each Ajax request. An

“onreadystatechange” event handler is registered for an

XMLHttpRequest object to asynchronously process its

readystatechange events. The XMLHttpRequest object

uses the “POST” method so that action information of a

co-browsing participant can be directly piggybacked in

an Ajax polling request. Before a request is sent out, its

Content-Length request header needs to be correctly set.

4.2.2 Ajax Response Processing

It is more challenging for Ajax-Snippet to properly

process Ajax responses and smoothly update webpage

content on a participant browser. Figure 5 illustrates

the high-level response processing procedure of Ajax-

Snippet. This procedure is implemented in the “on-

readystatechange” event handler. It is triggered when a

response is successful (HTTP status code sent by RCB-

Agent is 200) and the data transfer has been completed

(readyState is “DONE” and responseXML is loaded) for

an XMLHttpRequest. If RCB-Agent indicates “no new

content” with an empty response content, Ajax-Snippet

simply uses the JavaScript setTimeout function to send a

new polling request after a specified time interval; other-

wise, Ajax-Snippet will update the current webpage doc-

ument in which it resides, using the new content con-

tained in the responseXML document.

A new content could be either a brand new webpage

or an update to the existing webpage. To make the

content update process smooth and simple on a partic-

ipant browser, Ajax-Snippet follows a specific four-step

procedure. First, Ajax-Snippet cleans up other content

in the head element of the current document, but it al-

ways keeps itself as a “<script>” child element within

the head element of any current document. Next, Ajax-

Snippet extracts the attribute name-value lists and inner-

HTML values from the docHead element of the new con-

tent (shown in Figure 4) and appends them to the head

element of the current document. Ajax-Snippet detects

browser capability and executes this step differently to

best accommodate different browser types. For exam-

ple, since the innerHTML property of the head element

is writable in Firefox, Ajax-Snippet will directly set the

new value for it. In contrast, the innerHTML property

is read-only for the head element (and its style child el-

ement) in Internet Explore, so Ajax-Snippet will con-

struct each child element of the head element using DOM

methods (e.g., createElement and appendChild).

After properly updating the content of the head el-

ement in the above two steps, Ajax-Snippet will then

check the new content and clean up other useless top-

level elements of the current document. For example,

if the current document uses a body top-level element

while the new content contains a new webpage with a

frameset top-level element, Ajax-Snippet will remove

the body node of the current document. Finally, Ajax-

Snippet sets other attribute name-value lists and inner-

HTML values of the current document based on the data

extracted from the new content, following their order in

the XML format.

The above procedure ensures that the webpage content

on a participant browser can be accurately and smoothly

synchronized to that on the host browser. Meanwhile,

Ajax-Snippet always resides in the current webpage on a

participant browser to maintain the communication with

the host browser. After updating the current document

with the new content, Ajax-Snippet sends a new polling

request to RCB-Agent, in the same way as it does for the

“no new content” case.

It is also worth mentioning that any dynamic DOM

changes on a host browser are synchronized to a par-

ticipant browser. Since Ajax-Snippet updates the con-

tent mainly using innerHTML, the code between a pair

of “<script>” and “</script>” tags will not be exe-

cuted automatically in both Firefox and Internet Explore.

However, event handlers previously rewritten by RCB-

Agent can be triggered. The executions of these event

handlers on a participant browser will not directly update

any URL or change the DOM; they just ask Ajax-Snippet

to send action information back to the host browser.

5 Evaluations

In this section, we present the performance evaluation

and usability study of our RCB framework.

5.1 Performance Evaluation

To quantify the performance of our RCB framework, we

conducted two sets of experiments: one in a LAN envi-

ronment and the other in a WAN environment.

5.1.1 Experimental Methods

The homepages of 20 sample websites (shown in Ta-

ble 1) were used for co-browsing experiments. These

websites were chosen from the top 50 sites listed by

Alexa.com, with a few diversity-related criteria (such as

geographical location and content category) taken into

consideration.

We introduce six metrics to evaluate the real-time per-

formance of the RCB framework: M1, the time used by a

host browser to load the HTML document of a homepage

from a Web server; M2, the time used by a participant

browser to load the content of the same HTML docu-

ment from the host browser; M3, the time used by the

participant browser to download the supplementary Web

objects (of the HTML document) in the non-cache mode;

M4, the time used by the participant browser to down-

load the supplementary Web objects (of the HTML doc-

ument) in the cache mode; M5, the time used by the host

browser to generate the response content for an HTML

document; M6, the time used by the participant browser

to update its current document based on the new content

of an HTML document.

Intuitively, the metric M1 measures the download

speed of an HTML document while the metric M2 mea-

sures the synchronization speed of the HTML document.

We use M3 and M4 to determine whether using the cache

mode is beneficial to a co-browsing participant. The met-

rics M5 and M6 quantify the speed of RCB-Agent in re-

sponse content generation (i.e., the procedure illustrated

in Figure 3) and the speed of Ajax-Snippet in response

processing (i.e., the procedure illustrated in Figure 5),

respectively. User browsing action information (such as

form co-filling data) can be carried in a small-sized re-

quest or response and efficiently transmitted, so we do

not present the detailed results.

In each experimental environment, we used one host

browser and one participant browser. The polling time

interval of Ajax-Snippet was set to one second, which

we believe is small enough because users’ average think

time on a webpage is about ten seconds [16]. We co-

browsed all the 20 sample sites in the cache mode for

the first round and then in the non-cache mode for the

second round. Both browsers were directly connected

to the Internet without using any proxies. Before each

round of co-browsing, the caches of both browsers were

cleaned up. This procedure was repeated five times and

we present the average results.

Figure 6: HTML document load time in the LAN envi-

ronment.

Figure 7: HTML document load time in the WAN envi-

ronment.

5.1.2 Experimental Results

The first set of experiments were conducted in a

100Mbps Ethernet LAN environment, where the host

and participant PCs resided in the same campus network.

The second set of experiments were performed in a WAN

environment, where the host and participant PCs resided

in two geographically separated homes. Both homes

used slow speed Internet access services with 1.5Mbps

download speed and 384Kbps upload speed.

Figure 6 shows the comparison between metrics M1

and M2 in the LAN environment, and Figure 7 presents

the same comparison in the WAN environment. In the

LAN environment, for all the 20 sample sites, the val-

ues of M2 are less than 0.4 seconds, which are much

smaller than those of M1. In other words, the HTML

document content synchronization delay experienced by

the participant browser is much smaller than the time it

has to spend to directly download the HTML document

from a remote Web server. This result is expected since

the host PC and participant PC were in the same LAN. In

the WAN environment, the values of M2 become larger

than those in the LAN environment. This is mainly be-

cause the upload link speed at the host PC side was slow

(only 384Kbps). However, we can see that most values

of M2 (17 out of 20 sample sites) are still smaller than

those of M1, indicating an acceptable content synchro-

nization speed.

Figure 8: Cache mode performance gain in the LAN en-

vironment.

Index Site Name Page Size M5 non-cache M5 cache M6
(KB) (second) (second) (second)

1 yahoo.com 130.3 0.066 0.098 0.135
2 google.com 6.8 0.015 0.020 0.045
3 youtube.com 69.2 0.107 0.172 0.126
4 live.com 20.9 0.019 0.037 0.057
5 msn.com 49.6 0.079 0.145 0.119
6 myspace.com 53.2 0.085 0.097 0.126
7 wikipedia.org 51.7 0.113 0.138 0.171
8 facebook.com 23.2 0.029 0.036 0.067
9 yahoo.co.jp 101.4 0.111 0.156 0.154
10 ebay.com 50.5 0.049 0.098 0.100
11 aol.com 71.3 0.099 0.189 0.142
12 mail.ru 83.8 0.176 0.346 0.268
13 amazon.com 228.5 0.371 0.687 0.318
14 cnn.com 109.4 0.298 0.599 0.280
15 espn.go.com 110.9 0.175 0.376 0.194
16 free.fr 70.0 0.211 0.279 0.222
17 adobe.com 37.3 0.050 0.085 0.086
18 apple.com 10.0 0.029 0.056 0.118
19 about.com 35.8 0.056 0.100 0.081
20 nytimes.com 120.0 0.221 0.382 0.196

Table 1: Homepage size and processing time of 20 sites.

Figure 8 illustrates the comparison between metrics

M3 and M4 in the LAN environment. We can see that

the values of M4 are less than those of M3 for all the 20

sample sites. It means that for the participant browser,

downloading the supplementary Web objects from the

host browser is faster than retrieving them from the re-

mote Web server. This result is expected as well since the

co-browsing PCs were in the same LAN. Therefore, we

suggest to turn on the cache mode in LAN environments

so that co-browsing participants can take advantage of

the performance gain provided by cache. In the WAN

environment, co-browsing participants can still benefit

from the cache at the host side although the performance

gain is not as significant as that in the LAN environment.

We omit the details to save space.

Table 1 lists the homepage size of the sample sites and

the processing time in terms of the M5 metric for both

the non-cache mode and cache mode, and the M6 metric.

Based on the results in the table, we have the following

observations. First, the larger the HTML document size

is, the more processing time is needed. Second, RCB-

Agent can efficiently generate the response content for

an HTML document. Most pages (16 out of 20 for M5

non-cache, and 14 out of 20 for M5 cache) can be pro-

cessed in less than 0.2 seconds. Since a generated new

content can be reused by multiple co-browsing partici-

pants, this processing time on the host browser is reason-

ably small. Third, RCB-Agent needs more processing

time in the cache mode than in the non-cache mode, i.e.,

the values of M5 cache are greater than those of M5 non-

cache. This is because extra cache lookup time is spent in

the cache mode. However, this small cost is outweighed

by the benefits of using the cache-mode for co-browsing

participants, especially in LAN environments as shown

above. Finally, Ajax-Snippet can efficiently update web-

page content on a participant browser. As indicated by

the values of the M6 metric, this processing time is less

than one-third of a second for all the 20 webpages.

5.2 Usability Evaluation

To measure whether our RCB framework is helpful and

easy to use, we conducted a usability study based on two

real co-browsing scenarios: (1) coordinating a meeting

spot via Google Maps, and (2) online co-shopping at

Amazon.com. In the remainder of this section, we first

introduce these two scenarios and explain why we chose

them. We then present and analyze the usability study.

5.2.1 Coordinating a Meeting Spot via Google Maps

Suppose Alice is going to visit New York City. She plans

to meet her local cousin Bob at the Cartier jewelry store

on the Fifth Avenue in Manhattan to buy a watch. Bob

wants to use Google Maps to show Alice the direction to

the store. Since the neighborhood around the Fifth Av-

enue in Manhattan is extremely crowded, Bob uses our

RCB tool to give Alice accurate directions to the exact

meeting spot.

Bob hosts a co-browsing session and Alice joins the

session. Bob then searches the store address using

Google Maps. He may zoom in and out of the map, drag

the map, and show different views of the map. What-

ever content Bob is seeing on his browser is instantly

and accurately synchronized to Alice’s browser. Figure 9

shows one snapshot of the destination map shown on Al-

ice’s browser. Bob may even use the street-view Flash of

Google Maps to show Alice panoramic street-level views

of the meeting spot. Note that our current implementa-

tion does not support the synchronization of users’ ac-

tions on a Flash, so Alice and Bob can only individually

operate on a Flash. During the session, they may use

an instant message tool (e.g., MSN Messenger) or tele-

phone as the supplementary communication channel to

mediate actions. Eventually Alice and Bob come to the

agreement that they will meet outside the four red roof

show-windows of Cartier on the Fifth Avenue side.

Figure 9: Snapshot of the destination map shown on Al-

ice’s browser.

This scenario exemplifies that our RCB framework

can efficiently support rich Web contents and commu-

nication intensive webpages. Google Maps actually also

uses Ajax to asynchronously retrieve small images (usu-

ally in the size of 256 by 256 pixels) and smoothly up-

date the map content grid by grid. With our RCB tool,

one user’s view is further synchronized accurately and

smoothly to another user’s browser, achieving real-time

collaborative browsing. In general, the URL in the ad-

dress bar remains the same even if the webpage content

has been updated by Ajax and many other DHTML (Dy-

namic HTML) techniques. Therefore, without RCB, the

map content changes caused by Bob’s browsing actions

such as zooming and panning cannot be synchronized to

Alice by simply sharing URLs.

5.2.2 Online Co-shopping at Amazon.com

Bob is going to buy a present for his cousin Alice. Bob

hosts a co-browsing session and Alice joins the session.

They co-browse a number of webpages at Amazon.com

to select a newly-released MacBook Air laptop favored

by Alice. Both Alice and Bob can type in, search and

click on a webpage. Bob’s browsing requests will be di-

rectly sent to Amazon.com, but Alice’s action informa-

tion such as searching or clicking is first sent back to the

RCB-Agent on Bob’s browser and then sent out to Ama-

zon.com. After they made the decision, Bob adds the

selected laptop to the shopping cart and uses his account

to start the checkout procedure. Bob can ask Alice to co-

fill some forms (e.g., the shipping address form) using

her information, and he finishes the rest of the checkout

procedure. Figure 10 shows the snapshot of the form fill-

ing window on Bob’s browser, on which the form data is

sent back from Alice’s browser.

The online shopping scenario verifies that our RCB

tool can: (1) correctly synchronize webpages with very

Figure 10: Snapshot of the form filling window on Bob’s

browser.

complicated layout and dynamically-generated content,

(2) allow anyone in a co-browsing session to initiate

browsing actions and navigate to new pages, (3) support

co-browsing features such as form co-filling and mouse

clicking, and (4) support session-protected webpages.

5.2.3 Usability Study

The main objective of the usability study is to measure

whether our RCB tool is helpful and easy to use.

(1) Test subjects: A total of 20 adults, 11 females and

9 males, participated as users in our study. These test

subjects were undergraduate and graduate students who

were randomly recruited from nine degree programs at

our university. Eighteen test subjects were between ages

of 18 and 30, and two were over 30 years old. Nineteen

test subjects were using the Internet daily, and one was

using it weekly. We did not screen test subjects based on

experience using Firefox because they simply had to per-

form tasks (such as entering URLs and interacting with

webpages) that are common to different browsers. We

also did not screen test subjects based on experience us-

ing Google Maps or shopping at Amazon.com.

(2) Procedure and Tasks: We combined the two

scenarios (Google Maps and Amazon.com) introduced

above into a single co-browsing session. Each session

consists of 20 tasks as listed in Table 2. Ten tasks were

performed by Bob and ten tasks were performed by Al-

ice, and Alice and Bob represent two role-players regard-

less of their actual genders. The 20 test subjects were

randomly grouped into 10 pairs. We asked each pair of

test subjects to complete two sessions. In the first ses-

sion, we randomly asked one test subject to act as Alice

and the other test subject to act as Bob. After the two test

subjects finished the 20 tasks in a session, they switched

their roles to perform the 20 tasks in the second session.

The two test subjects in a pair were asked to use two

computers located at different locations either in our de-

Task# Brief Task Description

T1-B Bob starts a RCB co-browsing session using a Firefox browser.

T1-A Alice types the URL told by Bob in a Firefox browser to join the session.

T2-B Bob searches the location “653 5th Ave, New York” using Google Maps.

T2-A Alice tells Bob that the map of the location is automatically shown on
her browser.

T3-B Bob zooms in and out of the map, drags up/down/left/right the map.

T3-A Alice tells Bob that the map is automatically updated on her browser.

T4-B Bob clicks to the street-view of the searched location.

T4-A Alice tells Bob that the street-view is also automatically shown on her
browser.

T5-B Bob tells Alice to meet outside the four red roof show-windows of Cartier
shown in the street-view.

T5-A Alice finds the four red roof show-windows of Cartier and agrees with
the meeting spot.

T6-B Bob continues to visit the homepage of Amazon.com website.

T6-A Alice tells Bob that the homepage of Amazon.com is automatically
shown on her browser.

T7-B Bob searches and clicks to find a MacBook Air laptop at the Ama-
zon.com website.

T7-A Alice tells Bob that the pages are automatically updated on her browser.

T8-B Bob asks Alice to search and click on the pages shown on her browser to
choose a different MacBook Air laptop.

T8-A Alice chooses a different MacBook Air laptop and tells Bob that this
laptop is her final choice.

T9-B Bob adds the selected laptop to the shopping cart and starts the checkout
procedure.

T9-A Alice fills the shipping address form shown on her browser.

T10-B Bob finishes the rest of the checkout procedure.

T10-A Alice leaves the co-browsing session.

Table 2: The 20 tasks used in a co-browsing session. Al-

ice and Bob are two role-players. Bob performs ten tasks

from T1-B to T10-B, and Alice performs ten tasks from

T1-A to T10-A. Bob and Alice use a voice supplemen-

tary communication channel to mediate actions.

partment or in the library of university. We pre-installed

RCB-Agent to the Firefox browser on Bob’s computer

so that we can keep the focus of the study on using the

RCB tool itself. Before a pair of test subjects started per-

forming the tasks, we explained the main functionality of

RCB and how to use it. We also gave them an instruction

sheet that describes the two scenarios and lists the tasks

to be completed by a role-player.

(3) Data Collection: We collected data in two ways:

through observation and through two questionnaires.

During each co-browsing session, two experimenters sat

with each test subject to observe the progress of the

tasks. After completing two co-browsing sessions, each

test subject was asked to answer a five-point Likert-scale

(Strongly disagree, Disagree, Neither agree nor disagree,

Agree, Strongly Agree) [27] questionnaire. The 16 ques-

tions in this questionnaire are listed in Table 3. In addi-

tion to this close-ended questionnaire, each test subject

was also asked to answer an open-ended questionnaire to

solicit additional feedback. After finishing the two ques-

tionnaires and before leaving, each test subject was given

a $5 gift card as compensation for the participation.

(4) Results and Analysis: Through observation, we

found that the 10 pairs of test subjects successfully com-

pleted all their co-browsing sessions. Each pair of test

subjects took an average of 10.8 minutes to complete

Perceived Usefulness

Q1-P: It is helpful to use RCB to coordinate a meeting spot via Google Maps.
Q1-N: It is useless to use RCB to coordinate a meeting spot via Google Maps.
Q2-P: It is helpful to use RCB to perform online co-shopping at Amazon.com.
Q2-N: It is useless to use RCB to perform online co-shopping at Amazon.com.

Ease-of-use as a co-browsing host

Q3-P: It is easy to use RCB to host the Google Maps scenario.
Q3-N: It is hard to use RCB to host the Google Maps scenario.
Q4-P: It is easy to use RCB to host the online co-shopping scenario.
Q4-N: It is hard to use RCB to host the online co-shopping scenario.

Ease-of-use as a co-browsing participant

Q5-P: It is easy to participate in the RCB Google Maps scenario.
Q5-N: It is hard to participate in the RCB Google Maps scenario.
Q6-P: It is easy to participate in the RCB online co-shopping scenario.
Q6-N: It is hard to participate in the RCB online co-shopping scenario.

Potential Usage

Q7-P: It would be helpful to use RCB on other co-browsing activities.
Q7-N: It wouldn’t be helpful to use RCB on other co-browsing activities.
Q8-P: I would like to use RCB in the future.
Q8-N: I wouldn’t like to use RCB in the future.

Table 3: The 16 close-ended questions in four groups.

Test subjects were not aware of the groupings. From Q1-

P to Q8-P are eight positive Likert questions, and from

Q1-N to Q8-N are eight correspondingly inverted nega-

tive Likert questions. These questions were presented to

a test subject in random order to reduce response bias.

two sessions. Such a 100% success ratio may be at-

tributable to two main reasons. One is that all the 20

test subjects were frequent Internet users and they might

be familiar with online shopping and Web mapping ser-

vice sites. The other reason is that RCB does not add

any new user interface artifact and users simply use reg-

ular Web browsers, visit regular websites, and perform

regular browsing activities.

A summary of the responses to the 16 close-ended

questions is presented in Table 4. Since the data col-

lected are ordinal and do not necessarily have interval

scales, we used the median and mode to summarize the

data and used the percentages of responses to express

the variability of the results. Overall, the test subjects

were very enthusiastic about this RCB tool. The median

and mode responses are positive Agree for all the ques-

tions. In terms of the perceived usefulness (Q1-P, Q1-

N, Q2-P, Q2-N), 52.5% of responses agree and 40.0%

of responses strongly agree that it is helpful to use RCB

in both the Google Maps scenario and the Amazon.com

scenario.

In terms of the ease-of-use as a co-browsing host (Q3-

P, Q3-N, Q4-P, Q4-N), 50.0% of responses agree and

40.0% of responses strongly agree that it is easy to use

RCB to host the Google Maps scenario, and 62.5% of re-

sponses agree and 27.5% of responses strongly agree that

it is easy to use RCB to host the online co-shopping sce-

nario. In terms of the ease-of-use as a co-browsing par-

ticipant (Q5-P, Q5-N, Q6-P, Q6-N), 62.5% of responses

agree and 35.0% of responses strongly agree that it is

easy to participate in the RCB Google Maps scenario,

and 57.5% of responses agree and 35.0% of responses

Strongly Disagree Neither agree Agree Strongly Median Mode

disagree nor disagree Agree

Q1-P 0.0% 0.0% 7.5% 52.5% 40.0% Agree Agree

Q2-P 0.0% 0.0% 7.5% 52.5% 40.0% Agree Agree

Q3-P 5.0% 0.0% 5.0% 50.0% 40.0% Agree Agree

Q4-P 0.0% 2.5% 7.5% 62.5% 27.5% Agree Agree

Q5-P 0.0% 2.5% 0.0% 62.5% 35.0% Agree Agree

Q6-P 0.0% 5.0% 2.5% 57.5% 35.0% Agree Agree

Q7-P 0.0% 2.5% 5.0% 55.0% 37.5% Agree Agree

Q8-P 0.0% 0.0% 15.0% 55.0% 30.0% Agree Agree

Table 4: Summary of the responses to the 16 close-ended

questions. To provide statistical coherence, we inverted

the scores to the eight negative Likert questions (Q1-N

to Q8-N) about the neutral mark (i.e., Strongly agree to

Strongly disagree, Agree to Disagree, and vice versa) and

then merged them with the scores to the corresponding

positive Likert questions (Q1-P to Q8-P).

strongly agree that it is easy to participate in the RCB on-

line co-shopping scenario. These two groups of results

also indicate that participating a co-browsing session is

slightly easier than hosting a session.

In terms of the potential usage (Q7-P, Q7-N, Q8-P, Q8-

N), 55.0% of responses agree and 37.5% of responses

strongly agree that it would be helpful to use RCB on

other co-browsing activities, and 55.0% of responses

agree and 30.0% of responses strongly agree that the test

subject would like to use RCB in the future.

In our open-ended questionnaire, the test subjects

were asked to write down whatever they think about

the RCB tool. One test subject did not write anything,

but nineteen test subjects wrote many positive comments

such as “cool”, “it helps cooperation”, “useful”, “simple

operation”, and “love it, fascinating and useful”. Mean-

while, some test subjects also wrote a few suggestions

and expectations to the RCB tool. For example, two test

subjects suggested that indicators of the other person’s

connection and status may be needed. Four test sub-

jects mentioned that it would be great if actions in the

Google Maps street-view Flash could also be synchro-

nized. Seven test subjects expressed that on some pages

the wait time is a bit long, but it is not bad at all.

In summary, the results of the usability study clearly

demonstrate that RCB is very helpful and easy to use. It

is a simple and practical real-time collaborative brows-

ing tool that people would like to use in their everyday

browsing activities.

6 Conclusion

We have presented a simple and practical framework

for Real-time Collaborative Browsing (RCB). Leverag-

ing the power of Ajax techniques and the end-user ex-

tensibility of modern Web browsers, RCB enables real-

time collaboration among Web users without the involve-

ment of any third-party platforms, servers, or proxies.

A co-browsing host only needs to install an RCB-Agent

browser extension, and co-browsing participants just use

their regular JavaScript-enabled Web browsers. We de-

tailed the design and the Firefox version implementation

of the RCB framework. We measured the real-time per-

formance of RCB through extensive experiments, and we

validated its high quality co-browsing capabilities using

a formal usability study. The evaluation results demon-

strate that our RCB framework is simple, practical, help-

ful and easy to use.

In our future work, we plan to explore co-browsing

in mobile computing environments. We have recently

ported our RCB-Agent implementation to the Fennec

Web browser, which is the mobile version of Firefox.

Our preliminary experiments on a Nokia N810 Internet

tablet show that RCB-Agent can also efficiently support

co-browsing using mobile devices. Currently we are ap-

plying our RCB techniques to enable a few interesting

mobile applications. We also plan to implement RCB-

Agent on other Web browsers. Enabling direct interac-

tions between Web end-users can create many interesting

interactive Internet applications. We believe that further

exploring this end-user direct interaction capability and

its applications is an important future research direction.

7 Acknowledgments

We thank the anonymous reviewers and our shepherd

Niels Provos for their insightful comments and valuable

suggestions. We also thank Professor Peter M. Vish-

ton of the Department of Psychology at the College of

William and Mary for his generous help in usability

study. This work was partially supported by NSF grants

CNS-0627339 and CNS-0627340.

References

[1] ANEIROS, M., AND ESTIVILL-CASTRO, V. Usability of Real-

Time Unconstrained WWW-Co-Browsing for Educational Set-
tings. In Proc. of the IEEE/WIC/ACM International Conference

on Web Intelligence (2005), pp. 105–111.

[2] APPELT, W. WWW Based Collaboration with the BSCW Sys-

tem. In Proc. of the 26th Conference on Current Trends in Theory

and Practice of Informatics (1999), pp. 66–78.

[3] ATTERER, R., SCHMIDT, A., AND WNUK, M. A Proxy-Based

Infrastructure for Web Application Sharing and Remote Collab-

oration on Web Pages. In Proc. of the IFIP TC13 Interantional

Conference on Human-Computer Interaction (2007), pp. 74–87.

[4] CABRI, G., LEONARDI, L., AND ZAMBONELLI, F. A proxy-

based framework to support synchronous cooperation on the

Web. Softw. Pract. Exper. 29, 14 (1999), 1241–1263.

[5] CHANG, M. L. CoBrowse Firefox Add-ons. https://addons.

mozilla.org/en-US/firefox/addon/1469.

[6] COLES, A., DELIOT, E., MELAMED, T., AND LANSARD, K. A

framework for coordinated multi-modal browsing with multiple

clients. In Proc. of the WWW (2003), pp. 718–726.

[7] ESENTHER, A. W. Instant Co-Browsing: Lightweight Real-

time Collaborative Web Browsing. In Proc. of the WWW (2002),

pp. 107–114.

[8] FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MAS-

INTER, L., LEACH, P., AND BERNERS-LEE, T. Hypertext

Transfer Protocol – HTTP/1.1, RFC 2616, 1999.

[9] GRAHAM, T. C. N. GroupScape: Integrating Synchronous

Groupware and the World Wide Web. In Proc. of the IFIP

TC13 Interantional Conference on Human-Computer Interaction

(1997), pp. 547–554.

[10] GRAHAM, T. C. N., URNES, T., AND NEJABI, R. Efficient dis-

tributed implementation of semi-replicated synchronous group-

ware. In Proc. of the ACM UIST (1996), pp. 1–10.

[11] GREENBERG, S., AND ROSEMAN, M. GroupWeb: a WWW
browser as real time groupware. In Proc. of the ACM CHI Com-

panion (1996), pp. 271–272.

[12] HAN, R., PERRET, V., AND NAGHSHINEH, M. WebSplitter:

a unified XML framework for multi-device collaborative Web

browsing. In Proc. of the ACM CSCW (2000), pp. 221–230.

[13] ICHIMURA, S., AND MATSUSHITA, Y. Lightweight Desktop-

Sharing System for Web Browsers. In Proc. of the 3rd Interna-

tional Conference on Information Technology and Applications

(2005), pp. 136–141.

[14] JACOBS, S., GEBHARDT, M., KETHERS, S., AND RZASA, W.

Filling HTML forms simultaneously: CoWeb architecture and

functionality. Comput. Netw. ISDN Syst. 28, 7-11 (1996), 1385–
1395.

[15] KOBAYASHI, M., SHINOZAKI, M., SAKAIRI, T., TOUMA, M.,

DAIJAVAD, S., AND WOLF, C. Collaborative customer services

using synchronous Web browser sharing. In Proc. of the ACM

CSCW (1998), pp. 99–109.

[16] MAH, B. A. An Empirical Model of HTTP Network Traffic. In

Proc. of the INFOCOM (1997), pp. 592–600.

[17] RICHARDSON, T., STAFFORD-FRASER, Q., WOOD, K. R.,

AND HOPPER, A. Virtual network computing. IEEE Internet

Computing 2, 1 (1998), 33–38.

[18] ROSEMAN, M., AND GREENBERG, S. Building real-time group-

ware with GroupKit, a groupware toolkit. ACM Trans. Comput.-

Hum. Interact. 3, 1 (1996), 66–106.

[19] SAKAIRI, T., SHINOZAKI, M., AND KOBAYASHI, M. Collab-

orationFramework: A Toolkit for Sharing Existing Single-User

Applications without Modification. In Proc. of the Asian Pacific

Computer and Human Interaction (1998), pp. 183–188.

[20] Ajax (programming).

http://en.wikipedia.org/wiki/Ajax (programming).

[21] Browser Statistics.

http://www.w3schools.com/browsers/browsers stats.asp.

[22] Cobrowse & Chat for Rich Ajax Applications - Backbase.

http://www.backbase.com/products/ajax-applications/cobrowse.

[23] Document Object Model (DOM). http://www.w3.org/DOM.

[24] Firefox Extensions. http://developer.mozilla.org.

[25] http://point-at-infinity.org.

[26] Internet Explorer Browser Extensions.

http://msdn.microsoft.com/en-us/library/aa753587(VS.85).aspx.

[27] Likert scale. http://en.wikipedia.org/wiki/Likert scale.

[28] PageShare. https://www.pageshare.com/web/products/index.html.

[29] Port forwarding. http://en.wikipedia.org/wiki/Port forwarding.

[30] SamePlace. http://sameplace.cc/wiki/shared-web-applications.

[31] XMLHttpRequest. http://www.w3.org/TR/XMLHttpRequest.

[32] XMPP Standards Foundation. http://www.xmpp.org.

[33] XPCOM. http://www.xulplanet.com/references/xpcomref.

