
Model-Based Covert Timing Channels:
Automated Modeling and Evasion

Steven Gianvecchio1, Haining Wang1, Duminda Wijesekera2, and Sushil
Jajodia2

1 Department of Computer Science
College of William and Mary, Williamsburg, VA 23187, USA

{srgian,hnw}@cs.wm.edu
2 Center for Secure Information Systems

George Mason University, Fairfax, VA 22030, USA
{dwijesek,jajodia}@gmu.edu

Abstract. The exploration of advanced covert timing channel design
is important to understand and defend against covert timing channels.
In this paper, we introduce a new class of covert timing channels, called
model-based covert timing channels, which exploit the statistical proper-
ties of legitimate network traffic to evade detection in an effective man-
ner. We design and implement an automated framework for building
model-based covert timing channels. Our framework consists of four main
components: filter, analyzer, encoder, and transmitter. The filter charac-
terizes the features of legitimate network traffic, and the analyzer fits the
observed traffic behavior to a model. Then, the encoder and transmitter
use the model to generate covert traffic and blend with legitimate net-
work traffic. The framework is lightweight, and the overhead induced by
model fitting is negligible. To validate the effectiveness of the proposed
framework, we conduct a series of experiments in LAN and WAN envi-
ronments. The experimental results show that model-based covert timing
channels provide a significant increase in detection resistance with only
a minor loss in capacity.

Keywords: covert timing channels, traffic modeling, evasion.

1 Introduction

A covert channel is a “communication channel that can be exploited by a process
to transfer information in a manner that violates a system’s security policy” [1].
There are two types of covert channels: covert storage channels and covert timing
channels. A covert storage channel manipulates the contents of a storage location
(e.g., disk, memory, packet headers, etc.) to transfer information. A covert timing
channel manipulates the timing or ordering of events (e.g., disk accesses, memory
accesses, packet arrivals, etc.) to transfer information. The focus of this paper is
on covert timing channels.

The potential damage of a covert timing channel is measured in terms of its
capacity. The capacity of covert timing channels has been increasing with the

development of high-performance computers and high-speed networks. While
covert timing channels studied in the 1970s could transfer only a few bits per
second [2], covert timing channels in modern computers can transfer several
megabits per second [3]. To defend against covert timing channels, researchers
have proposed various methods to detect and disrupt them. The disruption of
covert timing channels manipulates traffic to slow or stop covert timing channels
[4–8]. The detection of covert timing channels mainly uses statistical tests to
differentiate covert traffic from legitimate traffic [9–13]. Such detection methods
are somewhat successful, because most existing covert timing channels cause
large deviations in the timing behavior from that of normal traffic, making them
relatively easy to detect.

In this paper, we introduce model-based covert timing channels, which en-
deavor to evade detection by modeling and mimicking the statistical properties
of legitimate traffic. We design and develop a framework for building model-
based covert timing channels, in which hidden information is carried through
pseudo-random values generated from a distribution function. We use the inverse
distribution function and cumulative distribution function for encoding and de-
coding. The framework includes four components, filter, analyzer, encoder, and
transmitter. The filter profiles the legitimate traffic, and the analyzer fits the
legitimate traffic behavior to a model. Then, based on the model, the encoder
chooses the appropriate distribution functions from statistical tools and traffic
generation libraries to create covert timing channels. The distribution functions
and their parameters are determined by automated model fitting. The process
of model fitting proves very efficient and the induced overhead is minor. Lastly,
the transmitter generates covert traffic and blends with legitimate traffic.

The two primary design goals of covert timing channels are high capacity
and detection resistance. To evaluate the effectiveness of the proposed frame-
work, we perform a series of LAN and WAN experiments to measure the ca-
pacity and detection resistance of our model-based covert timing channel. We
estimate the capacity with a model and then validate the model with real exper-
iments. Our experimental results show that the capacity is close to that of an
optimal covert timing channel that transmits in a similar condition. In previous
research, it is shown that the shape [9, 10] and regularity [11, 12] of network
traffic are important properties in the detection of covert timing channels. We
evaluate the detection resistance of the proposed framework using shape and reg-
ularity tests. The experimental results show that both tests fail to differentiate
the model-based covert traffic from legitimate traffic. Overall, our model-based
covert timing channel achieves strong detection resistance and high capacity.

There is an arms race between covert timing channel design and detection. To
maintain the lead, researchers need to continue to improve detection methods
and investigate new attacks. The goal of our work is to increase the under-
standing of more advanced covert timing channel design. We anticipate that our
demonstration of model-based covert timing channels will ultimately lead to the
development of more advanced detection methods.

The remainder of the paper is structured as follows. Section 2 surveys related
work. Section 3 provides background information on covert timing channels and
describes two base cases in their design. Section 4 details the design and imple-
mentation of the proposed framework. Section 5 validates the effectiveness of the
model-based covert timing channel through live experiments over the Internet.
Finally, we conclude the paper and discuss future directions in Section 6.

2 Related Work

To defend against covert timing channels, researchers have proposed different
solutions to detect and disrupt covert traffic. The disruption of covert timing
channels adds random delays to traffic, which reduces the capacity of covert
timing channels but reduces the network performance as well. The detection of
covert timing channels is mainly accomplished using statistical tests to differen-
tiate covert traffic from legitimate traffic. While the focus of earlier work is on
the disruption of covert timing channels [4–8], more recent research has begun
to investigate the design and detection of covert timing channels [9–12,14].

Kang et al. [5] designed a device, known as “The Pump,” which reduces the
capacity of covert timing channels by disrupting the timing of communication.
This device increases the number of errors by randomly manipulating the timing
values. The basic version of “The Pump” is designed to address covert timing
channels within systems. A network version was later designed and developed
[6,7]. Giles et al. [8] studied the disruption of covert timing channels from a game
theoretic perspective. The authors takes the point of view of both the jammer
and the covert timing channel, and discusses the strategies for both optimal
jammers and optimal input processes. Fisk et al. [4] investigated the concept
of Active Wardens in relation to covert channels. The authors introduced the
quantity of Minimal Requisite Fidelity (MRF), which is the minimum fidelity
needed to support the communication channel, and proposed a system to identify
and eliminate unneeded fidelity in traffic that could be used for covert channels.

Cabuk et al. [11] designed and implemented a simple covert timing channel
and showed that the regularity of the covert timing channel can be used in
its detection. To disrupt the regularity, the authors tried two approaches. The
first is to change the timing intervals, which is still successfully detected. The
second is to introduce noise in the form of legitimate traffic. However, the covert
timing channel is still sometimes detected, even with 50% of the inter-packet
delays being legitimate traffic. This covert timing channel has similar regularity
test scores to Fixed-average Packet Rate (FPR) and OPtimal Capacity (OPC)
(described in Section 3) but transmits information more slowly.

Berk et al. [9, 10] proposed a scheme for detecting binary and multi-symbol
covert timing channels. The detection method measures the distance between
the mean and modes, with a large distance indicating a potential covert timing
channel. The detection test assumes a normal distribution for the inter-packet
delays and, as a result, is not applicable to the covert timing channels we dis-
cussed. The authors used the Arimoto-Blahut algorithm [15, 16] in the binary

case without considering the cost. In contrast, we use the Arimoto-Blahut al-
gorithm in the multi-symbol case but with a cost constraint, to formulate the
optimal input distribution for FPR.

Shah et al. [12] developed a keyboard device, called JitterBug, to create a
loosely-coupled covert channel capable of leaking information typed on a key-
board over the network. Such a covert timing channel takes advantage of small
delays in key-presses to affect the inter-packet delays of a networked application.
As a result, the keyboard slowly leaks information to an observer outside of the
network. The authors showed that the initial scheme leaves a regular pattern
in the inter-packet delays, which can be removed by rotating the position of
the window. The JitterBug transmits information much more slowly than our
model-based covert timing channel, but does so under tighter constraints on the
transmission mechanism.

Borders et al. [17] developed a system, called Web Tap, to detect covert
tunnels in web traffic based on header fields, inter-request delays, request sizes,
capacity usage, request regularity, and request time. Such a system is successful
in detecting several spyware and backdoor programs. However, the technique
used by our model-based covert timing channel to mimic the inter-request de-
lays and request regularity of traffic, could be used by spyware and backdoor
programs to evade the Web Tap.

While some recent research has taken steps to better hide covert timing chan-
nels [11, 12], these works focus on removing regularity rather than making the
covert timing channel look like legitimate traffic. Moreover, removing regularity
is the last step in the covert channel design process, instead of a consideration
up front. In contrast, our framework is designed from the ground up to provide
high detection resistance. As a result, the proposed model-based covert timing
channel is able to provide much stronger detection resistance than most practical
implementations of covert timing channel presented in the literature.

There are recent works on using timing channels to watermark traffic [18,19]
and on detecting such timing-based watermarks [20]. Wang et al. [18] developed
a robust watermarking scheme for tracing encrypted attack traffic through step-
ping stones. The scheme, through the use of redundancy, can resist arbitrarily
large timing perturbations, if there are a sufficient number of packets to water-
mark. Peng et al. [20] investigated how to detect such watermarks, as well as
methods for removing or duplicating the watermarks. Yu et al. [19] developed
a sophisticated technique for hiding watermarks by disguising them as pseudo-
noise. There are some interesting differences between timing-based watermarking
and traditional covert timing channels, such as the fact that the defender, not
the attacker, uses the timing channel in the watermarking schemes.

3 Background

In this section, we describe basic communication concepts and relate them to
covert timing channels. Then, based on these concepts, we formulate two base
cases in covert timing channel design. The basic problem of communication,

producing a message at one point and reproducing that message at another
point, is the same for both overt and covert channels, although covert channels
must consider the additional problem of hiding communication.

3.1 Basic Communication Concepts

The capacity of a communication channel is the maximum rate that it can reli-
ably transmit information. The capacity of a covert timing channel is measured
in bits per time unit [21]. The capacity in bits per time unit Ct is defined as:

Ct = max
X

I(X;Y)
E(X)

,

where X is the transmitted inter-packet delays or input distribution, Y is the
received inter-packet delays or output distribution, I(X;Y) is the mutual infor-
mation between X and Y , and E(X) is the expected time of X.

The mutual information measures how much information is carried across
the channel from X to Y . The mutual information I(X;Y) is defined as:

I(X;Y) =


∑
X

∑
Y

P (y | x)P (x)logP (y|x)P (x)
P (x)P (y) , (discrete)∫

X

∫
Y

P (y | x)P (x)logP (y|x)P (x)
P (x)P (y) dx dy, (continuous)

The noise, represented by the conditional probability in the above definitions,
is defined as:

P (y | x) = fnoise(y, x),

where fnoise is the noise probability density function, x is the transmitted inter-
packet delays, and y is the received inter-packet delays.

The noise distribution fnoise is the probability that the transmitted inter-
packet delay x results in the received inter-packet delay y. The specific noise
distribution for inter-packet delays is detailed in Section 5.2.

3.2 Base Cases in Design

The two main goals of covert timing channel design are high capacity and detec-
tion resistance. There are few examples of practical implementations of covert
timing channels in the literature, so we begin to explore the design space in
terms of both capacity and detection resistance. The focus of our model-based
covert timing channel is to achieve high detection resistance. In the following
section, we formulate two base cases in covert channel design as comparison to
the model-based covert timing channel.

The first case, optimal capacity, transmits as much information as possible,
sending hundreds or more packets per second. Such a design might not be able
to achieve covert communication, but is useful as a theoretical upper bound. The
second case, fixed average packet rate, sends packets at a specific fixed average
packet rate, encoding as much information per packet as possible. The fixed
average packet rate is mainly determined by the packet rate of legitimate traffic.

Optimal Capacity Channel The first design, OPtimal Capacity (OPC), uses
the discrete input distribution that transmits information as fast as possible. The
optimal capacity is dependent on the optimal distance between two symbols. The
first symbol is (approximately) zero and the second symbol is non-zero, so the
use of more symbols (i.e., four or eight) will introduce more non-zero symbols
and decrease the symbol rate. The use of smaller distances between the two
symbols increases the symbol rate and the error rate. The optimal distance is
the point at which the increase in error rate balances the increase in symbol
rate.

The code operates based on two functions. The encode function is defined
as:

Fencode(s) = ds =

{
0, s = 0
d, s = 1

where s is a symbol, ds is an inter-packet delay with a hidden symbol s, and d is
the optimal distance between the two symbols. The decode function is defined
as:

Fdecode(ds) = s =

{
0, ds <

1
2d

1, 1
2d ≤ ds

where ds is an inter-packet delay with a hidden symbol s.

Channel Capacity: The channel capacity of OPC is dependent on the optimal
input distribution and noise. The input distribution is defined as:

P (x) =


p, x = d

1− p, x = 0
0, otherwise

where p is the probability of the symbol s = 1, and 1 − p is the probability of
the symbol s = 0.

Therefore, the capacity of OPC is the maximum of the mutual information
with respect to the parameters d and p of the input distribution over the expected
time d · p:

Ct = max
d,p

1
d · p

∑
X

∑
Y

P (y | x)P (x)log
P (y | x)P (x)
P (x)P (y)

.

Fixed-Average Packet Rate Channel The second design, Fixed-average
Packet Rate (FPR), uses the input distribution that encodes as much information
per packet as possible with a constraint on the average cost of symbols. The cost
is measured in terms of the time required for symbol transmission. Therefore,
the optimal input distribution is subject to the constraint on the average packet
rate, i.e., the cost of symbol transmission.

The optimal input distribution for FPR is computed with the Arimoto-
Blahut algorithm generalized for cost constraints [16]. The Arimoto-Blahut al-
gorithm computes the optimal input distribution for capacity in bits per channel
usage. The capacity in bits per channel usage Cu is defined as:

Cu = max
X

I(X;Y).

In general, Cu and Ct do not have the same input distribution X. However,
if the input distribution is constrained so that E(X) = c (where c is a constant),
then the optimal input distribution X is optimal for both Cu and Ct, and Cu =
Ct · c. Thus, FPR transmits as much information per packet (channel usage)
and per second (time unit) as possible with a fixed average packet rate. We
use the Arimoto-Blahut algorithm to compute the optimal input distribution for
FPR. The capacity results for FPR, based on the Arimoto-Blahut algorithm, are
detailed in Section 5.

4 The Framework

The covert timing channel framework, as shown in Figure 1, is a pipeline that fil-
ters and analyzes legitimate traffic then encodes and transmits covert traffic. As
the output of the pipeline, the covert traffic mimics the observed legitimate traf-
fic, making it easy to evade detection. The components of the framework include
filter, analyzer, encoder, and transmitter, which are detailed in the following
paragraphs.

Fig. 1. Framework for building model-based covert timing channels.

� � � � �� � � � � � � � 	 � �
 � � � � �
 � � �� � � �� � � � � � � � � � �� � � � � � � � � � 	 � � � � � � � � 	 � � � � � � � � �
 � � �� � � � � � �
� � � � � �� � � � � 	 � � � � � � � � � � � � � �
� � � � � � 	 � � � � � � � � � � � �� � � � 	 � 	 � � � � � � � � � � �� � � � � � � � � � 	 � � � � � �� � � � � � � � � � � � � �� � 	 � � � 	 � � � � �� 	 � � � �

The filter monitors the background traffic and singles out the specific type
of traffic to be mimicked. The more specific application traffic the filter can
identify and profile, the better model we can have for generating covert traffic.
For example, FTP is an application protocol based on TCP, but generating a
series of inter-packet delays based on a model of all TCP traffic would be a poor
model for describing FTP behaviors. Once the specified traffic is filtered, the
traffic is further classified into individual flows based on source and destination IP
addresses. The filter then calculates the inter-packet delay between subsequent
pair of packets from each flow, and forwards the results to the analyzer.

Table 1. The scores for different models for a sample of HTTP inter-packet delays

model parameters root mean squared error

Weibull 0.0794, 0.2627 0.0032

Gamma 0.1167, 100.8180 0.0063

Lognormal -4.3589, 3.5359 0.0063

Pareto 3.6751, 0.0018 0.0150

Poisson 11.7611 0.0226

Exponential 11.7611 0.0294

The analyzer fits the inter-packet delays in sets of 100 packets with the
Exponential, Gamma, Pareto, Lognormal, Poisson, and Weibull distributions.
The fitting process uses maximum likelihood estimation (MLE) to determine the
parameters for each model. The model with the smallest root mean squared error
(RMSE), which measures the difference between the model and the estimated
distribution, is chosen as the traffic model. The model selection is automated.
Other than the set of models provided to the analyzer, there is no human input.
The models are scored based on root mean squared errors, as shown in Table 1.
The model with the lowest root mean squared error is the closest to the data
being modeled. Since most types of network traffic are non-stationary [22], the
analyzer supports piecewise modeling of non-stationary processes by adjusting
the parameters of the model after each set of 100 covert inter-packet delays.
The analyzer refits the current model with new sets of 100 packets to adjust the
parameters. The analyzer can take advantage of a larger selection of models to
more accurately model different types of application traffic. For example, if we
know that the targeted traffic is well-modeled as an Erlang distribution, we will
add this distribution to the set of models. For each of the current models, the
computational overhead is less than 0.1 milliseconds and the storage overhead
for the executable is less than 500 bytes, so the induced resource consumption
for supporting additional models is not an issue.

The filter and analyzer can be run either offline or online. In the offline mode,
the selection of the model and parameters is based on traffic samples. The offline
mode consumes less resources, but the model might not represent the current
network traffic behavior well. In the online mode, the selection of the model and
parameters is based on live traffic. The online mode consumes more resources
and requires that the model and parameters be transmitted to the decoder with
the support of a startup protocol, but the model better represents the current
network traffic behavior. The startup protocol is a model determined in advance,
and is used to transmit the online model (1 byte) and parameters (4-8 bytes) to
the decoder.

The encoder generates random covert inter-packet delays that mimic legit-
imate inter-packet delays. The input to the encoder includes the model, the
message, and a sequence of random numbers. Its output is a sequence of covert
random inter-packet delays. The message to be sent is separated into symbols.

The symbols map to different random timing values based on a random code
that distributes symbols based on the model.

Using a sequence of random numbers r1, r2, ..., rn., we transform the discrete
symbols into continuous ones. The continuization function is

Fcontinuize(s) = (
s

| S |
+ r) mod 1 = rs,

where S is the set of possible symbols, s is a symbol and r is a Uniform(0,1)
random variable. The corresponding discretization function is:

Fdiscretize(rs) =| S | ·((rs − r)mod 1) = s,

where rs is a Uniform(0,1) random variable with a hidden symbol s.
The encoder and decoder start with the same seed and generate the same

sequence of random numbers, r1, r2, ..., rn. To maintain synchronization, the en-
coder and decoder associate the sequence of symbols with TCP sequence num-
bers, i.e., s1 with the first TCP sequence number, s2 with the second TCP
sequence number, and so on. 3 Therefore, both the encoder and decoder have
the same values of r through the sequence of symbols. The inverse distribution
function F−1

model takes a Uniform(0,1) random number as input and generates a
random variable from the selected model as output. The sequence of transformed
random numbers rs1, rs2, ..., rsn is used with the inverse distribution function to
create random covert inter-packet delays ds1, ds2, ..., dsn. The encode function
is:

Fencode = F−1
model(rs) = ds,

where F−1
model is the inverse distribution function of the selected model. The

decode function is:
Fdecode = Fmodel(ds) = rs,

where Fmodel is the cumulative distribution function of the selected model, and
ds is a random covert inter-packet delay with a hidden symbol s.

The transmitter sends out packets to produce the random covert inter-packet
delays ds1, ds2, ..., dsn. The receiver then decodes and discretizes them to recover
the original symbols s1, s2, ..., sn.

4.1 Model-Based Channel Capacity

The model-based channel capacity is also dependent on the input distribution
and noise. The input distribution is defined as:

P (x) = fmodel(x)

where fmodel is the probability density function of the selected model.

3 With this mechanism, repacketization can cause synchronization problems, so other
mechanisms such as “bit stuffing” [12] could be useful for synchronization.

Therefore, the capacity of the model-based channel is the mutual information
over the expected time E(X):

Ct =
1

E(X)

∫
X

∫
Y

P (y | x)P (x)log
P (y | x)P (x)
P (x)P (y)

.

4.2 Implementation Details

We implement the proposed framework using C and MATLAB in Unix/Linux envi-
ronments. The components run as user-space processes, while access to tcpdump
is required. The filter is written in C and runs tcpdump with a user-specified
filtering expression to read the stream of packets. The filter processes the traffic
stream and computes the inter-packet delays based on the packet timestamps.
The analyzer is written in MATLAB and utilizes the fitting functions from the
statistics toolbox for maximum likelihood estimation.

The encoder is written in C, and uses random number generation and random
variable models from the Park-Leemis [23] simulation C libraries. The transmit-
ter is also written in C, with some inline assembly, and uses the Socket API. The
timing mechanism used is the Pentium CPU Time-Stamp Counter, which is ac-
cessed by calling the RDTSC (Read Time-Stamp Counter) instruction. The RDTSC
instruction has excellent resolution and low overhead, but must be calibrated
to be used as a general purpose timing mechanism. The usleep and nanosleep
functions force a context switch, which delays the packet transmission with small
inter-packet delays, so these functions are not used.

5 Experimental Evaluation

In this section, we evaluate the effectiveness of a model-based covert timing
channel built from our framework. The OPC and FPR covert timing channels,
discussed in Section 3, are used as points of comparison. In particular, we ex-
amine the capacity and detection resistance of each covert timing channel.

5.1 Experimental Setup

The defensive perimeter of a network, composed of firewalls and intrusion de-
tection systems, is responsible for protecting the network. Typically, only a few
specific application protocols, such as HTTP and SMTP, are commonly allowed
to pass through the defensive perimeter. We utilize outgoing HTTP inter-packet
delays as the medium to build model-based covert timing channels, due to the
wide acceptance of HTTP traffic for crossing the network perimeter. We refer to
the model-based HTTP covert timing channel as MB-HTTP.

Testing Scenarios There are three different testing scenarios in our experi-
mental evaluation. The first scenario is in a LAN environment, a medium-size
campus network with subnets for administration, departments, and residences.
The LAN connection is between two machines, located in different subnets. The
connection passes through several switches, the routers inside the campus net-
work, and a firewall device that protects each subnet.

The other two scenarios are in WAN environments. The first WAN connection
is between two machines, both are on the east coast of the United States but
in different states. One is on a residential cable network and the other is on
a medium-size campus network. The second WAN connection is between two
machines on the opposite coasts of the United States, one on the east coast and
the other on the west coast. Both machines are on campus networks.

Table 2. The network conditions of each test scenario

LAN WAN E-E WAN E-W

distance 0.3 miles 525 miles 2660 miles

RTT 1.766ms 59.647ms 87.236ms

IPDV 2.5822e-05 2.4124e-03 2.1771e-04

hops 3 18 13

IPDV - inter-packet delay variation

The network conditions for different experiment scenarios are summarized in
Table 2. The two-way round-trip time (RTT) is measured using the ping com-
mand. We compute the one-way inter-packet delay variation based on the delays
between packets leaving the source and arriving at the destination. The inter-
packet delay variations of the three connections span three orders of magnitude,
from 1×10−3 to 1×10−5. The LAN connection has the lowest inter-packet delay
variation and the two WAN connections have higher inter-packet delay variation,
as expected. The WAN E-E connection is shorter and has smaller RTT time
than the WAN E-W connection. However, WAN E-E has higher inter-packet
delay variation than WAN E-W, due to more traversed hops. This implies that
the inter-packet delays variation is more sensitive to the number of hops than
the physical distance and RTT between two machines.

Building MB-HTTP We install the components of the framework on the
testing machines. The filter distinguishes the outgoing HTTP traffic from back-
ground traffic. The analyzer observes 10 million HTTP inter-packet delays, then
fits the HTTP inter-packet delays to the models, as described in Section 4. The
fitting functions use maximum likelihood estimation (MLE) to determine the
parameters for each model. The model with the best root mean squared error
(RMSE), a measure of the difference between the model and the distribution
being estimated, is chosen as the traffic model.

For the HTTP inter-packet delays, the analyzer selects the Weibull distribu-
tion based on the root mean squared error. Note that HTTP inter-packet delays

have been shown to be well approximated by a Weibull distribution [22]. The
Weibull probability distribution function is:

f(x, λ, k) =
k

λ
(
x

λ
)(k−1)e−(xλ)k .

The parameters, which vary for each set of 100 packets, have a mean scale
parameter λ of 0.0371 and a mean shape parameter k of 0.3010. With these
parameters, the mean inter-packet delay is 0.3385, approximately 3 packets per
second.

Table 3. The mean packets per second and mean inter-packet delay for OPC

LAN WAN E-E WAN E-W
channel PPS IPD PPS IPD PPS IPD

OPC 12,777.98 7.87e-05 137.48 7.31e-03 1,515.56 6.63e-04

PPS - mean packets per second, IPD - mean inter-packet delay

Formulating OPC and FPR The average packet rate for FPR is fixed at
1

0.3385 = 2.954 packets per second, based on the average packet rate of HTTP
traffic. We use the Arimoto-Blahut algorithm to compute the optimal input
distribution, with the average packet rate of 2.954 as the cost constraint. The
optimal input distribution balances high cost symbols with low probabilities
and low cost symbols with high probabilities, such that the average cost con-
straint is satisfied. The constraint can be satisfied for infinitely large symbols
with infinitely small probabilities, and hence, the optimal input distribution de-
cays exponentially to infinity. The results of the Arimoto-Blahut algorithm, as
the number of intervals increases, reduce to an Exponential distribution with an
inverse scale parameter of λ = 2.954. The Exponential probability distribution
function is:

f(x, λ) = λe−λx.

We compute the optimal distance between packets for OPC based on the
noise distribution. The optimal distance between packets and the average packet
rate for OPC is shown in Table 3. For connections with higher inter-packet delay
variation, OPC increases the time elapse between packets to make the inter-
packet delays easier to distinguish, and, as a result, lowers the average number
of packets per second.

5.2 Capacity

The definition of capacity allows us to estimate the capacity of each covert
timing channel based on the network conditions of each connection. In pre-
vious research [24], the inter-packet delay differences have been shown to be

well-modeled by a Laplace distribution. The probability density function of the
Laplace distribution is:

f(x, µ, b) =
1
2b
e−
|x−µ|
b .

The setting of the scale parameter b is based on the inter-packet delay vari-
ation for each connection. The variation of the Laplace distribution is σ2 = 2b2.
Therefore, we set b to:

b =

√
1
2
σ2,

where σ2 is the inter-packet delay variation for each connection.

Table 4. The theoretical capacity of each covert timing channel

LAN WAN E-E WAN E-W
channel CPP CPS CPP CPS CPP CPS

MB-HTTP 9.39 27.76 4.12 12.19 6.84 20.21

FPR 12.63 37.32 6.15 18.17 9.59 28.35

OPC 0.50 6395.39 0.50 68.80 0.50 758.54

CPP - capacity per packet, CPS - capacity per second

The results, in terms of capacity per packet and capacity per second, are
shown in Table 4. While OPC has the highest capacity, it is the least efficient
in terms of capacity per packet. Furthermore, with the large number of packets
per second, it can be easily detected by most intrusion detection systems.

The capacity of MB-HTTP is 67% to 74% of that of FPR, with larger differ-
ences for connections with high inter-packet delay variation than for those with
low inter-packet delay variation. The Weibull distribution has a larger proportion
of very small values than the Exponential distribution. As a result, MB-HTTP
uses more small values than FPR and benefits more from lower inter-packet
delay variation.

The theoretical capacity is somewhat optimistic. The model only considers
the noise introduced after packets leave the transmitter. With the real covert
timing channels, noise is introduced before packets leave the transmitter. The
transmitter is sometimes not able to transmit at the appropriate times, due
to slow processing, context switches, etc. Thus, the actual distance between
packets can increase or decrease from the intended distance as the packets are
transmitted.

Empirical Capacity To evaluate the channel capacity in practice, we run
covert timing channels on each connection. The channels are configured to trans-
mit 16,000 random bits of information. For FPR and MB-HTTP, the number of

Fig. 2. The empirical capacity and bit error rates for WAN E-E and WAN E-W

bits encoded per packet is set to 16 (i.e., 216 = 65, 536 different values), while
OPC transmits a single bit per packet.

During these tests, we measure the bit error rate of each covert timing channel
from the most significant bit to the least significant bit of each packet. The most
significant bit represents a large part of the inter-packet delay, where the least
significant bit represents a small part of the inter-packet delay. While flipping the
most significant bit causes a difference in seconds or tenths of seconds, changing
the least significant bit means a difference only in milliseconds or microseconds.
In other words, the higher the number of bits encoded per packet, the smaller the
precision of the lowest order bits. Interestingly, encoding at 16 bits per packet
and decoding at 8 bits per packet produces the most significant 8 bits of the 16
bit code.

To determine the transmission rate with error correction, we measure the
empirical capacity of each bit as a binary symmetric channel. The binary sym-
metric channel is a special case where the channel has two symbols of equal
probability. The capacity of a binary symmetric channel is:

C = I(X;Y) = 1− (p log p+ q log q),

where p is the probability of a correct bit and q = 1− p is the probability of an
incorrect bit.

The empirical capacity and bit error rate for each bit, from the most signifi-
cant to the least significant, are shown in Figure 2. The empirical capacity per
bit degrades as the bit error rates increase. The total capacity of the channel is
the summation of the capacity for each bit. For MB-HTTP, the bit error rate
increases somewhat linearly. For FPR, the bit error rate accelerates gradually,
eventually overtaking the bit error rates of MB-HTTP, though at this point the
capacity per bit is insignificant.

Table 5. The empirical capacity of each covert timing channel

LAN WAN E-E WAN E-W
channel ECPP ECPS ECPP ECPS ECPP ECPS

MB-HTTP 6.74 19.93 2.15 6.35 5.18 15.31

FPR 10.95 32.35 4.63 13.67 9.37 27.69

OPC 0.85 10,899.62 0.66 91.28 0.98 1,512.53

ECPP - empirical capacity per packet, ECPS - empirical capacity per second

The empirical capacity of each covert timing channel is shown in Table 5.
The empirical capacity of MB-HTTP is still about 46% to 61% of that of FPR,
somewhat lower than the case in the theoretical model. This is because a larger
proportion of MB-HTTP traffic has small inter-packet delays than that of FPR,
and small inter-packet delays are more sensitive to noise caused by transmis-
sion delays (i.e., slow processing, context switches, etc.) than large inter-packet
delays, which is not represented in the theoretical model.

5.3 Detection Resistance

The detection resistance, as described in Section 3, is estimated based on the
shape and regularity tests. To examine the shape of the distribution, we use the
Kolmogorov-Smirnov test [25], which is a non-parametric goodness-of-fit test.
To examine the regularity of the traffic, we use the regularity test [11], which
studies the variance of the traffic pattern. In this section, we detail these two
tests and show the detection resistance of MB-HTTP against both tests.

Shape Tests The two-sample Kolmogorov-Smirnov test determines whether or
not two samples come from the same distribution. The Kolmogorov-Smirnov test
is distribution free, meaning the test is not dependent on a specific distribution.
Thus, it is applicable to a variety of types of traffic with different distributions.
The Kolmogorov-Smirnov test statistic measures the maximum distance between
two empirical distribution functions.

KSTEST = max | S1(x)− S2(x) |,

where S1 and S2 are the empirical distribution functions of the two samples.

In our experiments, we test a large set of legitimate inter-packet delays
against a sample of either covert or legitimate inter-packet delays. The large
set is a training set of 10,000,000 HTTP inter-packet delays. The training set is
used to represent the normal behavior of the HTTP protocol.

The test score by comparing the two sets is used to determine if the sample is
covert or legitimate. A small score indicates that the behavior is close to normal.
However, if the test score is large, i.e., the sample does not fit the normal behavior
of the protocol, it indicates a potential covert timing channel.

Table 6. The mean and standard deviation of the Kolmogorov-Smirnov test scores

LEGIT-HTTP MB-HTTP FPR OPC
sample size mean stdev mean stdev mean stdev mean stdev

100x 2,000 .193 .110 .196 .093 .925 .002 .999 .000

100x 10,000 .141 .103 .157 .087 .925 .001 .999 .000

100x 50,000 .096 .088 .122 .073 .924 .000 .999 .000

100x 250,000 .069 .066 .096 .036 .924 .000 .999 .000

The Kolmogorov-Smirnov test is run 100 times for each of 2,000, 10,000,
50,000, and 250,000 packet samples of legitimate and covert traffic from each
covert timing channel. The mean and standard deviation of the test scores are
shown in Table 6. For FPR and OPC, the mean scores are over 0.90 and the
standard deviations are extremely low, indicating that the test can reliably dif-
ferentiate both covert timing channels from normal HTTP traffic. By contrast,
the mean scores for MB-HTTP samples are very close to those of legitimate
samples. The mean scores are for 100 tests, which in total include as many as 25
million (250,000 x 100) inter-packet delays. The distribution of individual test
scores is illustrated in Figure 3.

Table 7. The false positive and true positive rates for the Kolmogorov-Smirnov test

LEGIT-HTTP MB-HTTP FPR OPC

sample size cutoff false pos. true pos. true pos. true pos.

100x 2,000 KSTEST ≥ .66 .01 .01 1.00 1.00

100x 10,000 KSTEST ≥ .65 .01 .01 1.00 1.00

100x 50,000 KSTEST ≥ .41 .01 .01 1.00 1.00

100x 250,000 KSTEST ≥ .21 .01 .02 1.00 1.00

The detection resistance based on the Kolmogorov-Smirnov test is shown
in Table 7. The targeted false positive rate is 0.01. To achieve this false posi-
tive rate, the cutoff scores—the scores that decide whether samples are legit-
imate or covert—are set at the 99th percentile of legitimate sample scores.
The true positive rates, based on the cutoff scores, are then shown for each
covert timing channel. Since the true positive rates in all 100 tests are 1.00,

Fig. 3. The distribution of Kolmogorov-Smirnov test scores

the Kolmogorov-Smirnov test detects FPR and OPC easily. However, the true
positive rates for MB-HTTP are approximately the same as the false positive
rates. The Kolmogorov-Smirnov test cannot differentiate between MB-HTTP
and legitimate samples. Such a result can be explained based on the distribution
of individual test scores, which is shown in Figure 3. While the mean scores of
MB-HTTP traffic in Table 6 are slightly higher than those of LEGIT-HTTP, the
distributions of individual scores overlap so that the false positive rate and true
positive rate are approximately equal.

Regularity Tests The regularity test [11] determines whether the variance of
the inter-packet delays is relatively constant or not. This test is based on the
observation that for most types of network traffic, the variance of the inter-packet
delays changes over time. With covert timing channels, the code used to transmit
data is a regular process and, as a result, the variance of the inter-packet delays
remains relatively constant over time.

In our experiments, we test the regularity of a sample of either covert or
legitimate inter-packet delays. The sample is separated into sets of w inter-packet
delays. Then, for each set, the standard deviation of the set σi is computed. The
regularity is the standard deviation of the pairwise differences between each σi

and σj for all sets i < j.

regularity = STDEV (
| σi − σj |

σi
, i < j,∀i, j)

The regularity test is run 100 times for 2,000 packet samples of legitimate and
covert samples from each covert timing channel. The window sizes of w = 100
and w = 250 are used. The mean regularity scores are shown in Table 8. If the
regularity is small, the sample is highly regular, indicating a potential covert
timing channel.

Table 8. The mean of the regularity test scores

sample size LEGIT-HTTP MB-HTTP FPR OPC

100x 2,000 w=100 43.80 38.21 0.34 0.00

100x 2,000 w=250 23.74 22.87 0.26 0.00

The mean regularity scores for OPC are 0.0 for both tests, indicating reg-
ular behavior. There are two values, each with 0.5 probability. Therefore, the
standard deviation within sets is small σ = 0.5d = 3.317e − 4, and there is no
detectable change in the standard deviation between sets. The mean regularity
score for FPR is small as well, showing that the test is able to detect the regular
behavior. While the standard deviation of FPR, which is based on the Exponen-
tial distribution, is σ = λ = 0.3385, the code is a regular process, so the variance
of the inter-packet delays remains relatively constant.

The mean regularity scores for MB-HTTP are close to those of legitimate
samples. This is because the parameters are recalibrated after each set of 100
packets, as described in Section 4. The parameters of the distribution determine
the mean and standard deviation, so adjusting the parameters changes the vari-
ance after each set of 100 inter-packet delays. As a result, like legitimate traffic,
the variance of the inter-packet delays appears irregular.

Table 9. The false positive and true positive rates for the regularity test

LEGIT-HTTP MB-HTTP FPR OPC

sample size cutoff false pos. true pos. true pos. true pos.

100x 2,000 w=100 reg. ≤ 6.90 .01 .00 1.00 1.00

100x 2,000 w=250 reg. ≤ 5.20 .01 .00 1.00 1.00

The detection resistance based on the regularity test is shown in Table 9. The
targeted false positive rate is 0.01. The cutoff scores are set at the 1st percentile
of legitimate sample scores, in order to achieve this false positive rate. The true
positive rates, based on the cutoff scores, are then shown for each covert timing
channels. The regularity test is able to detect FPR and OPC in all 100 tests.

The resulting true positive rates for MB-HTTP are approximately the same as
the false positive rate. Basically, the test is no better than random guessing at
detecting MB-HTTP.

6 Conclusion

We introduced model-based covert timing channels, which mimic the observed
behavior of legitimate network traffic to evade detection. We presented a frame-
work for building such model-based covert timing channels. The framework con-
sists of four components: filter, analyzer, encoder, and transmitter. The filter
characterizes the specific features of legitimate traffic that are of interest. The
analyzer fits the traffic to several models and selects the model with the best
fit. The encoder generates random covert inter-packet delays that, based on the
model, mimic the legitimate traffic. The transmitter then manipulates the timing
of packets to create the model-based covert timing channel.

Using channel capacity and detection resistance as major metrics, we evalu-
ated the proposed framework in both LAN and WAN environments. Our capacity
results suggest that model-based covert timing channels work efficiently even in
the coast-to-coast scenario. Our detection resistance results show that, for both
shape and regularity tests, covert traffic is sufficiently similar to legitimate traf-
fic that current detection methods cannot differentiate them. In contrast, the
Kolmogorov-Smirnov and regularity tests easily detect FPR and OPC.

Our future work will further explore the detection of model-based covert
timing channels. There are other non-parametric goodness-of-fit tests, such as
the Anderson-Darling and Cramer-Von Mises tests [25], that are less general than
the Kolmogorov-Smirnov test but might be more effective in measuring certain
types of traffic. We will also further consider the regularity test at different
levels of granularity. We believe that a scheme capable of detecting model-based
covert timing channels will be effective in detecting other types of covert timing
channels as well.

Acknowledgments

We would like to thank Cheng Jin and Lachlan Andrew at CalTech for assisting
us in the coast-to-coast experiments. We also thank the anonymous reviewers
for their insightful comments. This work was partially supported by NSF grants
CNS-0627340 and CNS-0627493.

References

1. Department of Defense, U.S.: Trusted computer system evaluation criteria (1985)
2. Lampson, B.W.: A note on the confinement problem. Communications of the

ACM 16(10) (Oct. 1973)
3. Wang, Z., Lee, R.: Covert and side channels due to processor architecture. In:

Proc. of ACSAC 2006. (Dec. 2006)

4. Fisk, G., Fisk, M., Papadopoulos, C., Neil, J.: Eliminating steganography in inter-
net traffic with active wardens. In: Proc. of the 2002 International Workshop on
Information Hiding. (Oct. 2002)

5. Kang, M.H., Moskowitz, I.S.: A pump for rapid, reliable, secure communication.
In: Proc. of ACM CCS 1993. (Nov. 1993)

6. Kang, M.H., Moskowitz, I.S., Lee, D.C.: A network version of the pump. In: Proc.
of the 1995 IEEE Symposium on Security and Privacy. (May 1995)

7. Kang, M.H., Moskowitz, I.S., Chincheck, S.: The pump: A decade of covert fun.
In: Proc. of ACSAC 2005. (Dec. 2005)

8. Giles, J., Hajek, B.: An information-theoretic and game-theoretic study of timing
channels. IEEE Trans. on Information Theory 48(9) (Sep. 2002)

9. Berk, V., Giani, A., Cybenko, G.: Covert channel detection using process query
systems. In: Proc. of FLOCON 2005. (Sep. 2005)

10. Berk, V., Giani, A., Cybenko, G.: Detection of covert channel encoding in network
packet delays. Technical Report TR2005-536, Department of Computer Science,
Dartmouth College, Hanover, NH., USA (Aug. 2005)

11. Cabuk, S., Brodley, C., Shields, C.: IP covert timing channels: Design and detec-
tion. In: Proc. of ACM CCS 2004. (Oct. 2004)

12. Shah, G., Molina, A., Blaze, M.: Keyboards and covert channels. In: Proc. of the
2006 USENIX Security Symposium. (July–Aug. 2006)

13. Gianvecchio, S., Wang, H.: Detecting covert timing channels: An entropy-based
approach. In: Proceedings of the 2007 ACM Conference on Computer and Com-
munications Security. (October 2007)

14. Luo, X., Chan, E.W.W., Chang, R.K.C.: Cloak: A ten-fold way for reliable covert
communications. In: Proc. of ESORICS. (Sept. 2007)

15. Arimoto, S.: An algorithm for computing the capacity of arbitrary discrete mem-
oryless channels. IEEE Trans. on Information Theory 18(1) (Jan. 1972)

16. Blahut, R.E.: Computation of channel capacity and rate-distortion functions. IEEE
Trans. on Information Theory 18(4) (July 1972)

17. Borders, K., Prakash, A.: Web tap: Detecting covert web traffic. In: Proc. of ACM
CCS 2004. (Oct. 2004)

18. Wang, X., Reeves, D.S.: Robust correlation of encrypted attack traffic through
stepping stones by manipulation of interpacket delays. In: Proc. of ACM CCS
2003. (Oct. 2003)

19. Yu, W., Fu, X., Graham, S., Xuan, D., Zhao, W.: Dsss-based flow marking tech-
nique for invisible traceback. In: Proc. of the 2007 IEEE Symposium on Security
and Privacy, Washington, DC, USA (May 2007)

20. Peng, P., Ning, P., Reeves, D.S.: On the secrecy of timing-based active watermark-
ing trace-back techniques. In: Proc. of the 2006 IEEE Symposium on Security and
Privacy. (May 2006)

21. Moskowitz, I.S., Kang, M.H.: Covert channels - here to stay? In: Proc. of the 1994
Annual Conf. on Computer Assurance. (June 1994)

22. Cao, J., Cleveland, W.S., Lin, D., Sun, D.X.: On the nonstationarity of internet
traffic. In: Proc. of SIGMETRICS/Performance 2001. (June 2001)

23. Leemis, L., Park, S.K.: Discrete-Event Simulation: A First Course. Prentice-Hall,
Upper Saddle River, NJ., USA (2006)

24. Zheng, L., Zhang, L., Xu, D.: Characteristics of network delay and delay jitter and
its effect on oice over IP (VoIP). In: Proc. of the 2001 IEEE International Conf.
on Communications. (June 2001)

25. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley-Interscience, New
York, NY., USA (2001)

