
Security Implications of Memory Deduplication in a Virtualized
Environment

Jidong Xiao∗, Zhang Xu∗, Hai Huang†, Haining Wang∗

∗The College of William and Mary, Williamsburg, Virginia, USA
†IBM T. J. Watson Research Center, Hawthorne, New York, USA

Abstract— Memory deduplication has been widely used in
various commodity hypervisors. By merging identical memory
contents, it allows more virtual machines to run concurrently
on top of a hypervisor. However, while this technique improves
memory efficiency, it has a large impact on system security. In
particular, memory deduplication is usually implemented using
a variant of copy-on-write techniques, for which, writing to a
shared page would incur a longer access time than those non-
shared. In this paper, we investigate the security implication of
memory deduplication from the perspectives of both attackers
and defenders. On one hand, using the artifact above, we
demonstrate two new attacks to create a covert channel and
detect virtualization, respectively. On the other hand, we also
show that memory deduplication can be leveraged to safeguard
Linux kernel integrity.

I. INTRODUCTION

Memory deduplication is a technique implemented in
various commercial and open source hypervisors, including
VMWare ESX, Xen, and Linux KVM. The key idea is,
if multiple memory pages have the same content, then the
hypervisor only needs to keep one copy for these so-called
deduplicated pages. And later, if one of the deduplicated
pages is modified, a copy-on-write (COW) technique is used.
In other words, the page will be copied, and the write
operation will take effect on the copied page. This allows a
significant amount of memory space to be saved when there
are many identical pages.

However, this technique can also expose unexpected se-
curity vulnerabilities. Due to the extra copy operation, a
write to a deduplicated page and a normal page (non-
deduplicated page) will incur different access times. There-
fore, in a virtualized environment where both an attacker’s
virtual machine (VM) and a victim’s VM might co-exist
on the same host machine, the attacker can obtain memory
information from its neighboring VM [1], [2]. For example,
the attacker can detect whether a given page is located in the
memory of a neighboring VM by loading the same page into
its own memory, waiting for some time until the memory
deduplication takes effect, and then writing to that page, i.e.,
the one that has been loaded into its own memory. If the page
is deduplicated, writing to it would take longer than writing
to a normal page. Consequently, the attacker is able to know

whether the page also exists in a neighboring VM, resulting
in information leakage.

In this paper, exploiting this artifact of memory dedupli-
cation, we demonstrate two new attacks to create a covert
channel in a virtualized environment and detect virtual-
ization, respectively. Meanwhile, we observe that memory
deduplication can also be used for defense purposes. More
specifically, we leverage memory deduplication to detect
the existence of kernel rootkits in a timely manner with
negligible overhead. The major contributions of this work
are summarized as follows:

• From an attacker’s perspective, we develop a reliable
covert channel to transfer information between two
virtual machines. We validate the feasibility and effec-
tiveness of using this covert channel for information
leakage. Our experimental results show that the new
covert channel can reach nearly 100% accuracy, and
even in a system under high computation and memory
pressure, it can still achieve a reasonable transfer rate.
Furthermore, following the same approach, we also
present a virtualization detection technique that does
not depend on any specific instruction or guest OS,
and it is applicable to detect various virtual machine
monitors such as VMWare ESX server, Xen, and Linux
KVM.

• From a defender’s perspective, we propose a simple and
novel technique to ensure kernel runtime integrity. Our
technique, as a virtualization-based defense solution,
works in almost real time, and more importantly, it
does not require any understanding of the target OS
kernel. Thus, it mitigates the “semantic gap” issue that
commonly exists on most virtual machine introspection
tools [3], [4], [5]. Simply monitoring a memory statistic
provided by Linux kernel, it can detect any modifica-
tion against the read-only data of Linux kernel. Our
experimental results show that the defense technique is
able to effectively detect those rootkits that modify the
system call table.

We run our experiments on top of Linux/KVM with Ker-
nel Samepage Merging (KSM) implemented as a loadable

kernel module1. KSM is originally designed to combine
identical virtual machine memory pages into one copy, but
now it is able to merge any identical application mem-
ory pages. Although our experiments are performed on
Linux/KVM with KSM, we believe that the security implica-
tions being identified would also apply to other mainstream
commercial hypervisors, including VMWare ESX server,
which has implemented a content-based memory sharing
scheme [6], and Xen, which has incorporated memory page
sharing as an important feature in Xen 4.0 [7]. In this paper,
we use the term memory deduplication and page sharing
interchangeably.

The remainder of the paper is organized as follows.
Section II details the design of covert channel and virtual-
ization detection. Section III describes our solution to detect
kernel read-only data modification. Section IV presents
our experiment results. Section V discusses some related
issues. Section VI surveys related work. Finally, Section VII
concludes the paper.

II. OFFENSE TECHNIQUES

In this section, we first describe the construction of
the covert channel in a virtualized environment, and then
we present how to detect virtualization based on memory
deduplication.

A. Covert Channel Construction

To achieve high resource utilization, public cloud
providers such as RackSpace and Amazon EC2 often co-
locate users and have them share resources. Inevitably,
virtual machines belonging to different users are often placed
on the same physical machine with users having very little
control over the placement decisions. As Ristenpart et al. [8]
have demonstrated, such physical co-location gives attackers
a vantage point to perform malicious activities, such as
covert channel attacks.

1) Working Mechanism: Preventing unauthorized disclo-
sure of information is one of the major tasks in computer
security. While it might be relatively easy to prevent in-
formation disclosure in open channels by using encryption,
it is hard to detect and eliminate covert channels. Covert
channels were first defined by Lampson in 1973 as a com-
munication channel designed for information leakage [9].
Typically, a covert channel allows two isolated entities to
communicate with each other. It consists of a sender and
a receiver. In a cloud environment, both entities are virtual
machines running on the same physical machine. The sender
(of information) is generally the victim of the attack, and
we assume that the sender has been compromised by the
attacker, therefore, it is under the attacker’s control. To
bypass traditional monitoring techniques and remain hidden
as long as possible, the sender encodes the information the

1Linux has implemented kernel samepage merging(KSM) since kernel
2.6.32.

attacker is interested in and injects “signals” onto a covert
channel. The receiver is a virtual machine launched by the
attacker to be a co-resident with the sender VM. The receiver
will probe the covert channel and decode the “signals”. In
this way, the information on the victim machine can be
leaked while minimizing the chance of the attacker being
disclosed. Existing works have exploited various shared
hardware resources to build a covert channel in virtualization
environments, such as L2 cache [10]. However, the existing
techniques are not robust against environment noises.

Here we develop a covert channel based on memory
deduplication, which can achieve strong resistance to en-
vironment noises and still ensure a high bit rate. Figure
1 illustrates the framework of our covert channel. In the
first step, the sender and receiver load a certain amount of
memory with identical content. This can be easily done by
having both the sender and receiver opening and reading
the same file. Next, the sender encodes the information,
e.g., writing to certain pages so that the contents of these
pages are different from those launched by the receiver.
Once the pages are modified, the sender and receiver sleep
and wait for the system to merge these pages. Finally, the
receiver should write to all memory pages used by the covert
channel and record the write access time. The copy-on-write
mechanism makes writing to shared pages cost more time
than those that are not. Thus, the receiver can easily identify
those modified pages. With the knowledge of which pages
are modified, the receiver can decode the information. This
is basically how the sender and receiver communicate via
the memory deduplication covert channel.

The encoding mechanism is further detailed as follows.
Since we can detect memory deduplication at the granularity
of a page, we make each page represent one bit of infor-
mation. At the sender side, an unmodified page indicates
a 0 and a modified page denotes a 1. For instance, as
shown in Figure 1, if we want to transmit 001011 through
the covert channel, after the sender and receiver both read
six identical pages, the sender should modify the 3rd, 5th,
and 6th pages. After sleeping for a period of time, the
receiver will write to these six pages and record access time.
Since pages 1, 2, and 4 remain unchanged, the memory
deduplication mechanism should have merged them with
their counterparts. By contrast, pages 3, 5 and 6 have been
modified by the sender, and hence they are not deduplicated.
Thus, the receiver can find that it takes much more time
(according to our observation, at least six times more) to
write to pages 1, 2, and 4 than to pages 3, 5, and 6. At
the receiver side, a long access time indicates a 0 and a
short access time denotes a 1. Therefore, in our example the
receiver can easily infer that the sender is sending 001011.

2) Design Space: To make the covert channel practical
and maximize the transfer rate, we need to address the
following two questions: (1) how to identify an optimal
waiting time for memory deduplication mechanism to kick

File

1 12
3

4
110100

Modify Page

(Encoding)

Test Write Time

(Decoding)

Sender Receiver

Host
Shared

Pages

Load File into

Memory
Load File into

Memory

Wait for System to

Merge

Figure 1. Covert Channel Overview

in? and (2) how to select an appropriate memory size to
build the covert channel?

When the sender and receiver load contents into memory,
the system does not immediately merge identical pages
because it is usually done as a background task. In our
covert channel, we run two C programs on the sender side
and the receiver side, respectively. After page loading and
information encoding, the programs on both sides should
sleep for a while so that the memory deduplication mecha-
nism has sufficient time to complete its work. The length of
this sleeping time depends on the current load of the system
as well as the memory size used for building the covert
channel. Obviously, the heavier the load, the more slowly
memory deduplication would complete.

Meanwhile, increasing the size of the memory used to
build the covert channel has dual effect. On one hand, a
larger piece of memory can carry more information, i.e.,
the covert channel can transfer more information during
one transmission. On the other hand, more memory usage
implies that KSM has more memory pages to scan and
merge, which can prolong the required time to complete
one transmission. Moreover, if the used memory is too large,
the reliability of the covert channel starts to degrade and the
covert channel could be easily detected. Note that the bit rate
of the covert channel is the ratio between the information
of being delivered during one transmission and the time to
complete the transmission. The impact of the memory size
on the bit rate is detailed in Section 4.1.

One advantage of our covert channel is that it is robust
against environment noises. In contrast, the existing L2
cache based covert channels are sensitive to environment
noises. When other users access the cache, the contents in
the cache might be replaced. Thus, the protocol between

the sender and the receiver is interfered. Even worse, some
hypervisors (e.g., Xen) have the mechanism of core migra-
tion. In other words, VMs will be periodically migrated to
different physical processors, which leads to a complete flush
of the L2 cache and a failure of the covert channel. On
the contrary, our covert channel will not be “coincidentally”
destroyed. Although theoretically it is possible that there are
other pages in the system happen to be identical to ours, by
properly designing the contents to be loaded into memory,
we can ensure that the likelihood of such interference is
astronomically small. Thus, only if we modify these pages,
will the deduplication be canceled. Moreover, our channel
is based on write access rather than read access. Compared
with read access, write access is affected far less by cache
mechanisms. Thus, our channel is even less sensitive to
environment perturbations. Furthermore, before writing a
page, we can always read it first, which can help us eliminate
the influence of swapping.

B. Virtualization Detection

In recent years, a large number of virtualization-based
defense mechanisms have been proposed. Virtualization is
leveraged by various techniques to monitor, analyze, and
thwart malicious attacks. Therefore, from an attacker’s per-
spective, it is crucial to detect the use of virtualization in the
target environment as it would allow the attacker to poten-
tially circumvent such defense mechanisms by dynamically
adapting the behavior of malicious code.

We found that the artifacts of memory deduplication can
be used for this purpose. Here is an example illustrating how
this can be done. First, we load a file into memory, write
to all the pages, and record write access time (t1). Next,
we load the same file into memory twice, in other words,

load the same file into two memory regions. This would
result in every page of the file having an exact replica page
in the memory. If this is a virtualized environment where
memory deduplication works at the hypervisor level, the
memory deduplication mechanism will take effect on these
pages after some time, at which time, we can write to these
deduplicated pages and record their access time (t2), and we
should notice that t2 is clearly larger than t1 due to COW. By
contrast, in a non-virtualized environment without memory
deduplication enabled, there should not be any discernible
differences between t1 and t2.

III. KERNEL RUNTIME INTEGRITY MONITORING

Although we have demonstrated that the memory dedupli-
cation mechanism can be exploited by attackers, we found
that it can also be used from a defender’s stand point.
In [2], the authors mentioned that page deduplication can be
leveraged to detect illegal applications and files on virtual
machines. Here we present one more scenario: using it to
monitor kernel read-only data’s integrity. Kernel read-only
data refers to the data that are not supposed to be changed
during kernel runtime, for example, system call table, which
is the target of many existing kernel rootkits.

As virtualization technologies have become more mature,
some defense mechanisms are shifted from the OS layer
to the hypervisor layer. By deploying defense tools at the
hypervisor level, we can detect rootkits that subvert the
guest OS kernel. However, existing virtual machine monitor
(VMM) based detectors have to cope with the semantic
gap between the low level information and the high level
OS abstractions. In other words, in order to monitor the
guest OS, the detailed knowledge of the guest OS kernel is
required. Over the past few years, although researchers have
proposed different approaches to overcoming this semantic
gap, the tools they have developed are still far from generic.
As OS kernels are upgrading in a relatively high frequency,
tools developed for one kernel version might not fit for
another kernel version. This property severely inhibits the
development and deployment of virtualization based security
products. By contrast, the technique we are going to present
is more generic, and is applicable to multiple, if not all,
Linux kernel versions.

In modern Linux systems, when a kernel image is gen-
erated, read-only data are stored in the .rodata section of
the kernel executable and linkable format (ELF) binary.
Therefore, we can extract this section from a kernel image,
which is the same as the one used by the running guest
OS, and store the extracted content in a file. Then, we
write a C program to load this file into memory, creating
two copies of the read-only data stored in memory. One is
loaded with the guest OS kernel, the other is loaded by the
C program. Since these two copies are identical, we can
expect their pages to be merged on a system where memory
deduplication is being used. One might think that, once all

the pages corresponding to the file are merged, we can write
to each page of that file, and we record the write access time
to each page, we can do the above “load ->wait ->write -
>record” procedure periodically, once the write access time
decreases dramatically, it implies the corresponding pages
become non-deduplicated pages. Therefore, we know that
the kernel integrity might be broken and thus the system
might be compromised.

However, this solution can be easily bypassed by attack-
ers. If attackers are aware of the existence of the above
integrity checking system, they can modify the system call
table or anything else inside the kernel’s read-only data
section, and at the same time, load an unmodified copy
of the .rodata section into another memory region. In this
way, even if the original .rodata section has been changed,
very likely, the integrity checking system will fail to detect
the rootkit, because the additional copy might have been
merged with our reference copy before we write to each
page. Consequently, the write access time will not change.

We propose a new technique to monitor kernel read-
only data integrity. Unlike some existing techniques, our
approach does not require any changes in the kernel or
the hypervisor; and thus it is more practical to use. Our
technique mainly relies on a particular memory statistic term
(related to memory deduplication) maintained by the Linux
kernel. It is called PSS, which stands for “proportional set
size”. The PSS of a process describes the number of pages
the process has in memory weighted by how the pages
are deduplicated. For instance, if a process has 100 unique
pages and another 100 pages shared and deduplicated with
another process, its PSS should be 150, i.e., 100 + 100/2.
The Linux kernel exports this memory statistic in the file of
/proc/$pid/smaps. Basically, this file is used to show
memory consumption for each of the process’s mappings.
Here is an example:

00400000-00495000 r-xp 00000000 08:01 2097157
/bin/bash
Size: 596 kB
Rss: 496 kB
Pss: 38 kB
Shared Clean: 496 kB
Shared Dirty: 0 kB
Private Clean: 0 kB
Private Dirty: 0 kB
Referenced: 496 kB
Anonymous: 0 kB
Swap: 0 kB
KernelPageSize: 4 kB
MMUPageSize: 4 kB

We observe that by monitoring PSS value, we can detect
kernel rootkits that modify kernel read-only data such as the

Table I
SYSTEM CONFIGURATION

Components Specification

Host CPU Intel Xeon 3.07GHz, Quad-Core
Host Memory 4GB
Host OS openSuSE 11.4
Host Kernel 2.6.37.6-0.11-desktop x86 64
Qemu 0.14.0 rc1-1.4.2.x86 64
KVM 0.14.0.0-1.14.2.x86 64
Guest CPU QEMU Virtual CPU version 0.14.0
Guest Memory 1GB
Guest OS Fedora 16
Guest Kernel 3.1.0-7.fc16.i686

system call table.2 The idea is, we load the aforementioned
file (which just includes kernel read-only data section) into
the host memory and wait briefly until memory deduplica-
tion takes effect on the pages corresponding to that file, and
then we turn off KSM, thereby preventing further memory
deduplication from happening. Thus, the PSS should be a
fixed value and never be changed, unless the read only data
section of the guest OS is changed, which would result in the
shared pages become unshared. Therefore, by periodically
monitoring the PSS value, we can infer whether or not the
kernel read-only data is modified. To achieve this, just a
simple shell script would suffice.3

Overall, our implementation just includes a simple C
program and a simple shell script. The C program, being
responsible for loading the rodata file into host memory,
consists of less than one hundred lines of C code, and the
shell script, being in charge of checking PSS periodically,
is less than ten lines. Due to its simplicity, the overhead
of our approach is negligible. For the same reason, we can
expect an average system administrator being able to write
a similar program to load the kernel .rodata section and a
similar shell script to monitor the corresponding PSS, thus
monitoring the kernel runtime integrity.

IV. EXPERIMENTAL EVALUATION

Our experiments can be divided into three parts, with re-
spect to covert channel construction, virtualization detection,
and kernel integrity monitoring, respectively. The system
configuration of our test machine is listed in Table 1.

A. Covert Channel Construction

To evaluate the feasibility of the memory deduplication
based covert channel, we first verify that such a covert
channel does work well in a virtualized environment. We

2Note that this file is exported by the host OS, not by the guest OS,
and therefore, attackers who might have compromised the guest OS cannot
directly control or modify this file.

3Ideally, we can detect the modifications on the read only data section
regardless of turning off KSM or not, however, in reality, if KSM keeps
running, there might be some false positives; for example, it is possible that
some pages just happen to be the same as a read only data page, therefore,
they will be merged, and this might result in PSS change. In contrast, by
turning off KSM at this point, we can fully eliminate false positives.

boot two virtual machines on the same hypervisor. One
virtual machine is selected as the sender and the other is
set as the receiver. We load a file of size 1088KB (i.e., 272
4KB pages) into memory. In order to ensure the reliability
of deduplication, we set the sleeping time to 250 seconds.
We set up four sets of experiments. In each experiment, the
sender modifies different pages to transfer different messages
to the receiver, and we record all the write access time
to these 272 pages at the receiver side to see whether
information has been correctly delivered.

Figure 2 shows the experimental results. In the first ex-
periment, the sender wants to send a 272-bit data beginning
with 00111 as the first 5 bits followed by all 0s. Between
the sender and receiver, if a modified page denotes an 1
and an unmodified page denotes a 0, the sender would need
to modify the 3rd, 4th and 5th pages to encode such data.
For the other three experiments, the sender modifies pages
260, 261 and 262 in the second experiment, pages 205,
206 and 207 in the third experiment, and pages 69, 70
and 71 in the last experiment. From Figure 2, we can see
although different experiments demonstrate different write
access spikes, the sender-modified pages always incur much
less write access time. This is because once the sender
modifies a page, the page will become a non-deduplicated
page, and hence less time is required for the following write
access issued by the receiver. We also observe that, the time
of writing to a deduplicated page is always at least 6 times
longer than writing to a non-deduplicated page. This strong
signal-to-noise ratio implies that the covert channel can be
reliably established.

Next we evaluate the channel’s robustness and transfer
speed to see whether it is practical. As the covert channel
is based on memory deduplication, it is important to figure
out the relationship between the memory size used to build
the covert channel and the bit rate we can achieve. The bit
rate (R) is determined by the time needed to complete one
transmission (T), and the volume (V) of information that can
be delivered in one transmission: R=V/T. Moreover, since
the transmission time is dominated by the sleeping time (i.e.,
the transmission time is almost equivalent to the sleeping
time), we can use the sleeping time as the time required
to complete one transmission without losing accuracy. In
this set of experiments, we also set up two virtual machines
as the sender and the receiver, respectively. In each round,
the sender and the receiver load a file with a certain size
into memory to build the channel. We gradually increase
the sleeping time until it reaches a threshold such that the
information can be transferred through the covert channel
without any errors. We call such a threshold stable sleeping
time. Then, we gradually increase the size of the loaded
file and record the change of the stable sleeping time. After
obtaining the stable sleeping time for each different memory
size, we can calculate the bit rate using the formula of
R=V/T.

0 50 100 150 200 250 300

0

10

20

30

W
rit

e
A

cc
es

s
T

im
e(

m
ic

ro
se

co
nd

)

0 50 100 150 200 250 300

0

10

20

30

0 50 100 150 200 250 300

0

10

20

30

0 50 100 150 200 250 300

0

10

20

30

Page

Figure 2. Information Transferring in Covert Channel

Figure 3 illustrates the dynamics of achieved bit rate with
the change of memory size, in which the stable sleeping
time in each case is also marked. When the memory size
increases from 1MB to 100MB, we can easily observe that
the bit rate significantly increases but the stable sleeping time
only modestly increases. When the memory size is 1MB,
or 256 4K pages, it takes our channel 205s to complete
the transmission. The bit rate under this case is merely
256b/205s=1.24bps. However, when the file size reaches
100MB, namely 25,600 pages, the covert channel only takes
around 280s to complete the transmission. In this way, the
bit rate can surge to above 90bps. This means that we
should select relatively large memory size for the covert
channel construction. Unfortunately, we cannot keep increas-
ing memory size indefinitely. In one experiment, we load a
300MB file into memory to build the channel. However, the
result is, even when we increase the sleeping time to 3,600s,
the covert channel still cannot achieve 100% correctness.
This indicates that when the memory size reaches a certain
threshold, the covert channel will lose reliability. Moreover,
using too much memory might easily expose our covert
channel. Thus, a memory size in the range of 80MB to
100MB can be a good choice.

The performance of the covert channel is also dependent
upon the system workload. Given a certain memory size, we
run a set of experiments to study how the bit rate changes
when the system workload increases. In the experiments, we
first boot two virtual machines as the sender and receiver,

and then we gradually increase the system workload by
launching more virtual machines and running CPU and
memory intensive benchmarks on the virtual machines.

Figure 4 illustrates the dynamics of the bit rate under
different system workloads, which can be divided into six
cases. For the first five cases, the size of the leveraged
memory is fixed at 10MB. Initially, only two virtual ma-
chines are launched and they collude with each other to
construct the covert channel. In this first case, the stable
sleeping time is 145s and the bit rate is 17.66bps. In the
second case, we boot another two virtual machines (we call
them the irrelevant VMs) with the same configuration and
keep them idle. Now the stable sleeping time is increased
to 180s and thus the bit rate is reduced to 14.44bps. To
further increase system workload, in the third case, we run
CPU intensive benchmark Cuadro [11] on the two irrelevant
VMs. Again, the bit rate drops to 11.64bps. Then we also run
the benchmark on the sender, i.e. the victim VM. This fourth
scenario is close to a real world one: the victim machine and
other co-resident machines are busy running services while
the attacker-controlled receiver can keep idle. Such a system
configuration in the fourth case yields the stable sleeping
time of 225s with the bit rate of 11.38bps. In the fifth case,
when we also run the benchmark on the receiver, the bit rate
drops a little again to 11.13bps. These results agree with
our assumption: increasing system workload will result in a
longer stable sleeping time and a lower bit rate. This is due
to the competition between KSM and other processes of the

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

Memory Size(MB)

B
it

R
at

e
(b

/s
)

205s

230s

280s

260s

230s

220s

275s

205s

Figure 3. The relationship between memory size and bit rate. The stable
sleeping time is also marked.

2 Idle 4 Idle 2Idle 2Busy 1Idle 3Busy 4 Busy 4Busy, 100MB size
0

10

20

30

40

50

60

70

80

90

System Workload

B
it

R
at

e
(b

/s
)

145s 180s 220s 225s 320s230s

Figure 4. The relationship between computation workload and bit rate.
The stable sleeping time is also marked.

system on CPU resources. The more CPU resources used
by guests, the fewer CPU cycles left for KSM to perform
deduplication.

However, from Figure 4, we can also see that the perfor-
mance of the covert channel is not severely influenced by
system workload. When the system workload increases, the
bit rate only drops slightly. Moreover, in the experiments
of the sixth case, all the virtual machines are busy running
benchmarks and we leverage 100MB memory to construct
the covert channel. Since the stable sleeping time is no more
than 320s, we can still achieve a bit rate above 80bps. This
indicates that even in a close-to-real-world scenario where
multiple users run different services on different VMs above
a single physical machine, our covert channel is still able
to transfer information in a decent rate. According to the
analysis of [10], a real world L2 cache channel can only
achieve a bit rate around 11bps with some errors. Thus,
it is clear that our memory deduplication covert channels
outperform L2 cache covert channels.

Finally, we evaluate the performance of our covert channel
under high memory pressure. Figure 5 illustrates the dynam-
ics of the bit rate under different system memory pressure.
In this series of experiments, we boot 4 VMs and all of them
run the CPU benchmark except for the receiver. We perform

Medium Pressure 2 VMs under High Pressure 3 VMs under High Pressure
0

10

20

30

40

50

60

70

80

90

100

System Memory Pressure

B
it

R
a

te
 (

b
/s

)

50MB

70MB

90MB

100MB

245s 555s500s 570s260s 480s305s270s 470s 600s605s505s

Figure 5. The relationship between system memory pressure and bit rate.
The stable sleeping time is also marked.

the experiments with different memory pressure. At the
beginning, the memory usage of all virtual machines remain
medium. From Figure 5 we can see under medium memory
pressure, the achievable bit rate is decent. Then, we launch
a memory intensive benchmark LMBench [12] on those two
irrelevant VMs. The benchmark makes the virtual machines
under high memory pressure. Since our system is configured
as over-committed, the entire system suffers from a high
memory pressure. Due to the high memory pressure, the bit
rate of the channel decreases. After we run the benchmark
on the sender side as well, the stable sleeping time rises and
the bit rate drops again. Such results are expected: under
high memory pressure KSM has many more pages to scan,
which takes more time. Moreover, over-committing memory
could cause swapping, which might affect the deduplication
as well. However, even in the extreme scenario where the
system is under a memory pressure as high as in our
experiments, a 100MB memory deduplication covert channel
can still achieve a bit rate above 40bps, which is acceptable.

B. Virtualization Detection

To evaluate the effectiveness of the proposed virtualization
detection method, we conduct four groups of experiments to
cover the following four scenarios: (1) run the experiment
on the guest OS, while memory deduplication is enabled on
the host OS; (2) run the experiment on the guest OS, while
memory deduplication is disabled on the host OS; (3) run
the experiment on the host OS, while memory deduplication
is enabled on the host OS; and (4) run the experiment on
the host OS, while memory deduplication is disabled on the
host OS. On current Linux systems, we can enable KSM by
writing 1 to /sys/kernel/mm/ksm/run and disable it
by writing 0 to the same file. The KSM in the guest OS is
always turned off so as not to interfere with the KSM at the
host level.

For each group, the experiment is conducted in two
separate rounds. First, we load the ELF binary for apache
into memory, write to each page, and record the access
time for each page. Second, we load the same ELF binary

0 20 40 60 80 100 120

0

5

10

15

20

Page

W
ri
te

 A
c
c
e
s
s
 T

im
e
(m

ic
ro

s
e
c
o
n
d
)

load once

load twice

Figure 6. Write access to apache pages on guest OS with memory
deduplication enabled on host

0 20 40 60 80 100 120

0

0.5

1

1.5

2

Page

W
ri
te

 A
c
c
e

s
s
 T

im
e

(m
ic

ro
s
e

c
o

n
d

)

load once

load twice

Figure 7. Write access to apache pages on guest OS with memory
deduplication disabled on host

into two memory regions, wait for five minutes, allowing
memory deduplication to take effect, and then for one of the
two regions, we write to each page and record the access
time.

Figures 6, 7, 8, and 9 show the results for the four
groups of experiments, respectively. In all the four figures,
the red squares represent the write access time when we
load the binary once, while the green asterisks represent the
write access time when we load the same binary twice into
memory (at two different memory regions). The size of the
apache ELF file is 468,560 bytes, indicating that it occupies
about 114 pages in memory.

In the first scenario, the write access in the second round
should take longer time than the first round, because of
the extra copy operation. As shown in Figure 6, the green
asterisks are clearly on top of the red squares, indicating
that our experimental results match with the analysis above.
In the other three scenarios, the write accesses of the
two rounds should have no significant difference. From
Figures 7, 8, and 9, we can see that in these scenarios,
there is no significant difference between the red squares and
the green asterisks, indicating that the write access times at
different rounds are no longer distinguishable.

The third scenario deserves more explanation. We run our
program on the host OS, and Linux KSM is enabled on the
host OS. However, Linux KSM has no performance impact

0 20 40 60 80 100 120

0

0.5

1

1.5

2

Page

W
ri
te

 A
c
c
e
s
s
 T

im
e
 (

m
ic

ro
s
e
c
o
n
d
)

load once

load twice

Figure 8. Write access to apache pages on host OS with memory
deduplication enabled

0 20 40 60 80 100 120

0

0.5

1

1.5

2

Page

W
ri
te

 A
c
c
e

s
s
 T

im
e

(m
ic

ro
s
e

c
o

n
d

)

load once

load twice

Figure 9. Write access to apache pages on host OS with memory
deduplication disabled

upon write access, as shown in Figure 8. This is because
in the current Linux KSM implementation, page sharing is
not transparent to applications. The applications that want
to benefit from Linux KSM have to explicitly invoke a
system call function madvise() to inform the kernel that their
memory can be shared. But madvise() is not called in our
experiment, and thus Linux KSM will not merge the pages
owned by the application. In other words, although Linux
KSM is on, it is not utilized by the application and thereby
producing zero impact on the application’s write accesses.

C. Kernel Integrity Monitoring

The purpose of this experiment is to demonstrate how we
utilize memory deduplication and smaps to detect rootkits
that modify kernel read-only data. We run our monitoring
program on the physical machine (host OS) and we monitor
the runtime integrity of a guest OS that is running Fedora
16.

On Linux systems, after kernel compilation, an ELF file
called vmlinux will be generated. Generally, this file includes
.text section, .data section, .rodata section, .bss section, etc.
Among these sections, the .rodata section is the one that
stores read only data such as the system call table. In fact,
the system call table is a commonly modified data structure
targeted by kernel module rootkits [13], [14], [15], [16].
By redirecting system calls from standard system call code
to malicious code, attackers can hide files, processes, and

Figure 10. Kernel Read-Only Data Pages Monitoring

network connections. So, it is critical to ensure the integrity
of the system call table. We achieve this by monitoring the
.rodata section.

First, we use objcopy command to dump the .rodata
section from the vmlinux (of Fedora 16) into a small file.
We call this file rodata file below. In our experiments,
the size of the vmlinux is 151MB; while the size of the
rodata file is 1.8MB, including 457 pages plus 1 incomplete
page in our system whose page size is 4KB. And then
we launch the virtual machine. On the host OS, we also
load the rodata file into memory (using the C program
we mentioned before). Since the rodata file is relatively
small (1.8MB), it usually takes less than one minute to
merge its identical pages. After that, we read the PSS value
corresponding to the file. As Figure 10 shows, the PSS is
918KB, i.e., PSS=(457/2+1)*4KB=918KB, where ‘1’ means
the incomplete page that will not be shared.

Later on, we port a well-known real world rootkit called
override [17], [18], [19] that hijacks several system calls by
modifying the system call table. The system calls being hi-
jacked include sys getuid(), sys geteuid(), sys getdents64(),
sys chdir(), and sys read(). After we successfully load the
rootkit as a loadable kernel module into the target Linux
kernel, the page corresponding to the system call table
should become unshared 4. From Figure 10, we can see that
PSS is now 920KB, i.e., PSS=(456/2+1+1)*4KB=920KB,

4In standard Fedora 16 (32-bit) kernel, there are 347 entries in the system
call table. Given the fact that one entry corresponds to 4 bytes, the whole
table occupies less than one page.

and the number of shared pages decreases from 457 to 456.
Therefore, we can infer the kernel read only data has been
modified.

Based on the experimental result above, it is evident that
our solution can effectively detect the malicious modifica-
tions on the system call table. We believe that the same
mechanism will work for any kernel pages that are not
supposed to be changed during runtime.

V. DISCUSSION

When page sharing mechanism is initially proposed, it is
for the sake of saving memory. Thus, it is understandable
that the developers might have overlooked some hidden
security issues. Based on our study, we observe that current
page sharing mechanism is practically not secure, and there-
fore we suggest to improve the page sharing mechanism for
striking a better balance between performance and security.
In the following, we first discuss potential countermeasures
to thwart the disclosed attacks, and then discuss an issue
related to the kernel integrity monitoring technique.

A. Potential Countermeasures
To defeat covert channels, we propose to use a random

sharing scheme - merge identical pages randomly. In doing
so, in the covert channel attack scenario, the receiver will
not be able to reliably decide which pages are written by the
sender, and hence it cannot decode the information being
transferred.

In order to prevent virtualization detection, we can modify
the page sharing system so that identical pages from the

same virtual machine or the same process are not merged,
unless they are zero pages. In this manner, the attacker will
not see the write access time difference between loading
two copies of the same file into memory and just loading
one copy, because neither can induce page sharing. One
might argue that this strategy may reduce the benefit of
page sharing, however, given the fact that there are already
existing mechanisms for sharing same-content pages within
a virtual machine, for example, shared libraries, we believe
the opportunities lost due to not merging (non-zero) identical
pages within a virtual machine would be minor.

B. KSM Off

As to our kernel integrity monitoring technique, one might
argue that, to eliminate false positives, when the read only
data pages have been merged, we need to turn off KSM,
which might cause a performance loss. However, this is not
necessarily true. First of all, we propose to turn off KSM
only because, from security’s perspective, it’s the safest
way to eliminate a false positive theoretically. In practice,
whether or not turning off the KSM would not affect the
detection results. In our experiments, we never encounter
any false positives no matter whether KSM is turned off
or not. Also, in reality, since the kernel read-only data just
occupies one page, it’s easy to determine if any PSS changes
is caused by data modification or by false positives, because
they would incur different PSS changes. Last but not least,
although KSM reduces memory usage, it increases CPU
usage. Whether KSM improves performance depends on the
type of workload; and system administrators are expected to
keep KSM on or turn it off based on their environments [20].

VI. RELATED WORK

This section briefly summarizes previous work related to
covert channel construction in a virtualized environment,
virtualization detection, and kernel integrity monitoring,
respectively.

A. Covert Channel

Ristenpart et. al [8] have succeeded in identifying co-
resident virtual machines and then launching L2-cache based
side channel attacks in a real cloud environment, i.e., Ama-
zon EC2. In fact, L2 cache channel is one of the most
widely studied covert channels. Compared with L2 cache
channel, our memory deduplication channel can achieve
higher reliability as well as higher bit rate. According to
the work done by Xu et al. [10], the optimal bit rate of
L2 cache covert channel can be around 262bps and the
achievable bit rate in EC2 is around 11bps. Our memory
deduplication covert channel can achieve 1,000bps in an
ideal situation, where we set the entire system to be idle and
leverage 400MB memory to build the channel. Meanwhile,
in a realistic scenario, the bit rate of our covert channel can
achieve more than 40bps. Moreover, our covert channel is

more reliable than L2 cache channel, i.e., with the same
bit rate our channel will introduce much fewer errors and
by properly setting sleeping time our channel can reach
100% correctness. Wu et. al [21] proposed the memory bus
based covert channel, and their transmission rate in Amazon
EC2 cloud can achieve 100bps. However, their approach
relies on the lower level features and therefore has some
hardware limitations, e.g., the atomic instructions it exploits
are platform dependent.

Milo’s et al [22] mentioned the potential threat of covert
channel attacks based on page sharing. However, in their
context, by covert channel, they primarily meant information
leakage rather than two guest OSes collude with each other
to transmit information. Similarly, Suzaki et al. [1] also, in
a few words, described the potential threat of side channel
attacks leveraging memory deduplication. Again, they just
mentioned that attackers can use the channel to search
for another VM in the cloud. In contrast, we not only
implemented a covert channel to transmit information but
also evaluated it with experiments and conducted a compre-
hensive analysis to verify its feasibility and performance.

Besides memory deduplication, there is another type of
deduplication, commonly known as data deduplication or
storage deduplication [23], [24], [25]. Data deduplication
means that when there are multiple copies of the same
data, only one copy is stored. Data deduplication is a key
technique used by online storage service vendors, such
as Dropbox [26], one of the most popular cloud storage
provider. By storing and transferring only one copy of
redundant data, data deduplication can reduce disk space
consumption significantly.

However, recent research efforts [27], [28] have demon-
strated that data deduplication also offers new chances to
attackers. By exploiting two crucial features of the current
data deduplication mechanism: source-based deduplication
and cross-user deduplication, attackers can reveal the content
of other users’ files; in addition, a similar covert channel can
also be constructed by attackers.

B. Virtualization Detection

In the past several years, many solutions have been
proposed to detect virtualization. However, most of them are
not generic enough. For example, RedPill [29] and Scooby
Doo [30] can only detect VMWare, while the LDT [31]
based approach only works on Windows guest OSes, and
the counter-based mechanism [32] requires a multi-core
processor. In contrast, our approach is more generic, as it
does not rely on any specific hardware or guest/hypervisor
implementation, and the feature it leverages—memory
deduplication—is commonly used in various mainstream
hypervisors.

A variety of timing analysis based detection mechanisms
have also been proposed [33], [34]. The basic idea is that,
some instructions (e.g., RDMSR) will be intercepted by

the hypervisor, and hence the execution time will increase
compared to running on a real machine. However, timing
analysis suffers from the difficulty of obtaining accurate
timing, since the hypervisor can fool the guest OS [35]. In
contrast, our approach is more stealthy, and thus can hardly
be cheated by the hypervisor.

C. Kernel Integrity

The ultimate goal of kernel integrity monitoring is to
detect rootkits. Traditional rootkit detection tools running
inside the system can be easily defeated when the system is
compromised by attackers. Another type of rootkit detection
tools, which rely on an external PCI card to acquire system
memory, are considered to be more reliable [36], [37], but
recent research [38] has demonstrated that they can still be
fooled by attackers.

A new type of rootkit detector is based on virtualization.
Livewire [3], which presents the idea of virtual machine
introspection, namely inspects a virtual machine from the
hypervisor level. By marking the code section as well as
some other critical data structures read-only, Livewire is
able to ensure kernel code integrity. Inspired by Livewire, in
recent years, more and more researchers have proposed to
build defense tools using this virtual machine introspection
methodology, such as VMwatcher [4] and HIMA [39].
As alluded to earlier, a common problem in these virtual
machine introspection based tools is that, the semantic gap
between the hypervisor and the guest OSes prevents the
hypervisor from monitoring guest OSes efficiently. In other
words, to monitor the guest OSes, significant efforts are
required; for example, in VMwatcher, the authors wrote a
Windows device driver to interpret Linux file systems, which
are the root file system for the guest OS. Worse yet, these
tools highly depend on the internal kernel data structures.
When the internal kernel data structures change, these tools
need to be changed accordingly. Thus, the maintenance
cost of such tools are quite high. In contrast, although our
solution is also based on virtualization technology, it does
not require any understanding on the guest OS. As long
as we have a clean Linux kernel image file (vmlinux), we
can extract the read-only section and load it into memory,
and then use the detection technique we described before
to monitor kernel integrity. In other words, our solution is
more generic since it is applicable to the vast majority of
modern Linux kernel versions.

VII. CONCLUSION

Memory page sharing, or memory deduplication, is an
important feature in modern hypervisors, and even in op-
erating systems. Whereas this feature is originally designed
for improving performance, it can be exploited for security
purposes and induce unexpected implications on system
security. In this paper, we have demonstrated that attackers
can build a new covert channel and detect virtual machine

monitors based on memory deduplication. Meanwhile, we
have also showed that defenders can take advantage of this
feature to monitor kernel integrity. We have developed pro-
totypes of the proposed mechanisms and conducted a series
of experiments on Linux/KVM to validate their feasibility
and effectiveness. In our future work, we plan to investigate
effective defense approaches to thwarting information leak-
age and other potential security threats posed by memory
deduplication.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
insightful feedback. This work was partially supported by
NSF grant 0901537 and ONR grant N00014-13-1-0088.

REFERENCES

[1] K. Suzaki, K. Iijima, T. Yagi, and C. Artho, “Software side
channel attack on memory deduplication,” SOSP’11 POSTER
Session, 2011.

[2] K. Suzaki, K. Lijima, T. Yagi, and C. Artho, “Memory
deduplication as a threat to the guest os,” in Proceedings of
the Fourth European Workshop on System Security, 2011, pp.
1–6.

[3] T. Garfinkel and M. Rosenblum, “A virtual machine
introspection-based architecture for intrusion detection,” in
Proceedings of the Network and Distributed Systems Security
Symposium, 2003, pp. 191–206.

[4] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection
through vmm-based ”out-of-the-box” semantic view recon-
struction,” in Proceedings of the 14th ACM conference on
Computer and communications security (CCS’07), 2007, pp.
128–138.

[5] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee,
“Virtuoso: Narrowing the semantic gap in virtual machine
introspection,” in Proceedings of the IEEE Symposium on
Security and Privacy (S&P’11), 2011, pp. 297–312.

[6] C. Waldspurger, “Memory resource management in vmware
esx server,” in Proceedings of the 5th Symposium on Operat-
ing systems design and implementation (OSDI’02). USENIX,
2002, pp. 181–194.

[7] “New features of xen 4.0,” http://wiki.xen.org/xenwiki/Xen4.
0.

[8] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey,
you, get off of my cloud: exploring information leakage
in third-party compute clouds,” in Proceedings of the 16th
ACM conference on Computer and communications security
(CCS’09), 2009, pp. 199–212.

[9] B. Lampson, “A note on the confinement problem,” Commu-
nications of the ACM, vol. 16, no. 10, pp. 613–615, 1973.

[10] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and
R. Schlichting, “An exploration of l2 cache covert channels
in virtualized environments,” in Proceedings of the 3rd ACM
workshop on Cloud computing security, 2011, pp. 29–40.

[11] “Cuadro cpu benchmark,” http://sourceforge.net/projects/
cuadrocpubenchm.

[12] “Lmbench,” http://www.bitmover.com/lmbench/.

[13] Halflife, “Abuse of the linux kernel for fun and profit,” http:
//biblio.l0t3k.net/rootkit/en/P50-05.txt.

[14] M. Jakobsson and Z. Ramzan, Crimeware: understanding new
attacks and defenses. Addison-Wesley Professional, 2008,
p. 261.

[15] Plaguez, “Weakening the linux kernel,” http://www.phrack.
org/issues.html?issue=52&id=18.

[16] Pragmatic, “Complete linux loadable kernel modules,” http:
//www.thc.org/papers/LKM HACKING.html.

[17] R. Riley, X. Jiang, and D. Xu, “Guest-transparent prevention
of kernel rootkits with vmm-based memory shadowing,”
in Proceedings of the 11th Recent Advances in Intrusion
Detection (RAID’08), 2008, pp. 1–20.

[18] Z. Lin, R. Riley, and D. Xu, “Polymorphing software by
randomizing data structure layout,” in Detection of Intrusions
and Malware, and Vulnerability Assessment. Springer, 2009,
pp. 107–126.

[19] Z. Wang, X. Jiang, W. Cui, and X. Wang, “Countering
persistent kernel rootkits through systematic hook discovery,”
in Proceedings of the 11th Recent Advances in Intrusion
Detection (RAID’08), 2008, pp. 21–38.

[20] “How to improve kvm performance by adjusting
ksm,” http://searchenterpriselinux.techtarget.com/tip/
How-to-improve-KVM-performance-by-adjusting-KSM.

[21] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-
space: high-speed covert channel attacks in the cloud,” in
Proceedings of the 21st USENIX Security Symposium, 2012,
pp. 159–173.

[22] G. Miłós, D. Murray, S. Hand, and M. Fetterman, “Satori:
Enlightened page sharing,” in Proceedings of the USENIX
Annual Technical Conference (ATC’09), 2009, pp. 1–14.

[23] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian,
P. Strzelczak, J. Szczepkowski, C. Ungureanu, and M. Wel-
nicki, “Hydrastor: A scalable secondary storage,” in Proc-
cedings of the 7th USENIX Conference on File and Storage
Technologies (FAST’09), 2009, pp. 197–210.

[24] L. You, K. Pollack, and D. Long, “Deep store: An archival
storage system architecture,” in Proceedings of the IEEE
International Conference on Data Engineering (ICDE’05),
2005, pp. 804–815.

[25] K. Suzaki, T. Yagi, K. Iijima, N. Quynh, C. Artho, and
Y. Watanebe, “Moving from logical sharing of guest os to
physical sharing of deduplication on virtual machine,” in
Proceedings of the 5th USENIX Workshop on Hot Topics in
Security (HotSec’10), 2010.

[26] “Dropbox,” http://www.dropbox.com/.

[27] D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels
in cloud services: Deduplication in cloud storage,” in Pro-
ceedings of the IEEE Symposium on Security and Privacy
(S&P’10), 2010, pp. 40–47.

[28] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, and
E. Weippl, “Dark clouds on the horizon: Using cloud storage
as attack vector and online slack space,” in Proceedings of
the 20th USENIX Security Symposium, 2011, pp. 65–75.

[29] J. Rutkowska, “Redpill,” http://invisiblethings.org/papers/
redpill.html.

[30] T. Klein, “Scooby doo,” http://www.trapkit.de/research/vmm/
scoopydoo/index.html.

[31] D. Quist, V. Smith, and O. Computing, “Detecting the pres-
ence of virtual machines using the local data table,” http:
//www.offensivecomputing.net/files/active/0/vm.pdf, 2006.

[32] C. Thompson, M. Huntley, and C. Link, “Virtualization
detection: New strategies and their effectiveness,” http:
//www-users.cs.umn.edu/∼cthomp/papers/vmm-detect-2010.
pdf.

[33] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin, “Com-
patibility is not transparency: Vmm detection myths and
realities,” in Proceedings of the 11th USENIX workshop on
Hot topics in operating systems, 2007, pp. 1–6.

[34] J. Franklin, M. Luk, M. Jonathan, A. Seshadri, A. Perrig,
and L. van Doorn, “Towards sound detection of virtual ma-
chines,” Advances in Information Security, Botnet Detection:
Countering the Largest Security Threat, 2008.

[35] M. Athreya, “Subverting linux on-the-fly using hardware
virtualization technology,” Master’s thesis, Georgia Institute
of Technology, 2010.

[36] N. L.Petroni Jr., T. Fraser, J. Molina, and W. A.Arbaugh,
“Copilot - a coprocessor-based kernel runtime integrity mon-
itor,” in Proceedings of the 13th USENIX Security Symposium,
2004, pp. 179–194.

[37] A. Baliga, V. Ganapathy, and L. Iftode, “Detecting kernel-
level rootkits using data structure invariants,” IEEE Transac-
tions on Dependable and Secure Computing, pp. 670–684,
2011.

[38] J. Rutkowska, “Beyond the cpu: Defeating hardware based
ram acquisition,” http://www.blackhat.com/presentations/
bh-dc-07/Rutkowska/Presentation/bh-dc-07-Rutkowska-up.
pdf.

[39] A. M.Azab, P. Ning, E. C.Sezer, and X. Zhang, “Hima: A
hypervisor-based integrity measurement agent,” in Proceed-
ings of the 18th ACM Symposium on Operating Systems
Principles (SOSP’09), 2009, pp. 461–470.

