
Enhancing Cache Robustness for Content-Centric

Networking

Mengjun Xie

University of Arkansas at Little Rock

Email: mxxie@ualr.edu

Indra Widjaja

Bell Labs, Alcatel-Lucent

Email: iwidjaja@research.bell-labs.com

Haining Wang

College of William and Mary

Email: hnw@cs.wm.edu

Abstract—With the advent of content-centric networking
(CCN) where contents can be cached on each CCN router,
cache robustness will soon emerge as a serious concern for CCN
deployment. Previous studies on cache pollution attacks only
focus on a single cache server. The question of how caching
will behave over a general caching network such as CCN under
cache pollution attacks has never been answered. In this paper, we
propose a novel scheme called CacheShield for enhancing cache
robustness. CacheShield is simple, easy-to-deploy, and applicable
to any popular cache replacement policy. CacheShield can effec-
tively improve cache performance under normal circumstances,
and more importantly, shield CCN routers from cache pollution
attacks. Extensive simulations including trace-driven simulations
demonstrate that CacheShield is effective for both CCN and
today’s cache servers. We also study the impact of cache pollution
attacks on CCN and reveal several new observations on how
different attack scenarios can affect cache hit ratios unexpectedly.

I. INTRODUCTION

The performance and robustness of cache servers are ex-

tremely important for today’s and future Internet. Numerous

research efforts have been devoted to improve Web caching

and media caching (e.g., [1], [2], [3]). Recently, with the

appearance of frequent large-scale network attacks launched

from botnets, the robustness of Internet cache servers under

pollution attacks has also gained attention and been investi-

gated [4], [5]. These studies show that the performance of a

cache server (e.g., a Web proxy) can be seriously degraded

when malicious requests do not follow normal Zipf-like dis-

tribution, but use uniform random access pattern.

Different from conventional DoS (Denial of Service) at-

tacks, a cache pollution attack does not need to inject a large

number of malicious requests to overload the victim server.

The request flow of a cache pollution attack may appear as

normal traffic; however, this low-profile malicious flow intends

to violate the content locality in the server cache and can cause

a flurry of cache misses, voiding the usefulness of caching

at the victim server. There are primarily two types of cache

pollution attacks: locality-disruption attack and false-locality

attack [4]. The objective of locality-disruption attack is to

request unpopular content objects to weaken content locality

in a cache, while the objective of false-locality attack is to

fill up a cache with unpopular content objects by repeatedly

requesting those objects. A stealthy cache pollution attack

can significantly degrade cache performance, posing a serious

threat to a server cache system. Therefore, it is challenging but

highly desirable for a large-scale distributed system to enhance

cache robustness against cache pollution attacks.

Cache robustness becomes more crucial for content-centric

networking (CCN). CCN, as a new network architecture that

departs from the IP-based Internet, has been proposed to pro-

vide better security and much improved content delivery [6].

One critical mechanism of CCN for efficient content delivery

is the use of caching. In CCN, every CCN router (node) is able

to cache content objects, which essentially turns CCN into a

caching network. The universal caching design makes CCN

more flexible and efficient in handling a massive amount of

user-generated contents, especially multimedia contents, than

today’s IP networking.

Our goal is to make caching in CCN more robust, espe-

cially against hard-to-detect locality-disruption pollution at-

tacks. There are several principles that guide our exploration.

First, we want the scheme to be generic, applicable to not only

CCN but also other large-scale distributed systems, in par-

ticular, today’s IP-based Internet. This network-architecture-

independent feature is critical for incremental deployment.

Second, we want the scheme to be effective, capable of

working with different cache replacement policies. Third, we

want the scheme to be simple, easy to be implemented and

deployed. With these principles, we propose CacheShield, a

generic mechanism that can effectively improve cache perfor-

mance for both a single cache server and a caching network

such as CCN, especially under cache pollution attacks.

CacheShield is a proactive mechanism. It aims to make

caching in CCN remain robust in the first place under cache

pollution attacks without performing detection a priori, while

previous research focuses on detecting attacks and provid-

ing countermeasures after the attackers have been identified.

Therefore, CacheShield is fully compatible with existing attack

detection techniques. Moreover, CacheShield does not require

coordination among different administration domains, which

usually is the biggest obstacle for deployment of new net-

work technologies. CacheShield does not require coordination

among different CCN routers in the same domain either.

Therefore, deployment can be targeted to the selected routers

that may be more vulnerable to pollution attacks, for example,

edge routers than core routers.

Intuitively, a cache pollution attack on CCN may seem to

be similar to that on a single cache server. Surprisingly, our

investigation reveals that this is not the case. For example,

attacks on a given path may cause other CCN routers not on

the path to be affected. Unlike content distribution network

(CDN) where caches are strategically placed near the end users

to reduce congestion in the backbone network, CCN nodes

will likely be widespread during incremental deployment and

gradually grow into complex topologies resembling those in

IP networks. Because of complex transformation due to merg-

ing and splitting of requests for content objects at different

locations, the behavior of caches in CCN cannot be easily

predicted under pollution attack.

We investigate the impact of cache pollution attacks on

CCN. To our best knowledge, cache pollution attack has only

been studied for single isolated nodes but not at a network

level where attack on one node can impact other nodes in

an unpredictable manner. To understand how CCN is affected

by pollution attacks and how effectively CacheShield performs

over CCN, we conduct extensive simulations using three basic

network scenarios including merging scenario, splitting sce-

nario, and complex network scenario. The simulation results

yield several interesting yet insightful observations.

The major contributions of this work include:

• We propose a novel mechanism, called CacheShield, to

protect CCN routers against cache pollution attacks.

• We perform extensive experiments on a single router and

show the robustness of CacheShield.

• We study the impact of pollution attack on CCN networks

and provide several insightful observations.

In the next section, we provide basic background on CCN

and survey related work. In Section III, we describe the

structure and operation of CacheShield. In Section IV, we

evaluate the effectiveness of CacheShield on a single router.

We study cache pollution attacks on CCN network in Section

V and conclude the paper in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we first provide an overview of CCN

that is pertinent to our investigation and then describe other

work related to our paper. For convenience, we will use the

terms router and node, user and client, interchangeably unless

otherwise noted.

A. Overview of CCN

At a high level, CCN routers can be viewed like IP routers

as they both run routing protocols and act as forwarders. One

difference is that CCN performs delivery service at a higher

content object (a content object, or content, consisting of two

parts: content name and content data.) level than IP does at

the IP-packet level. In addition, forwarding is name-based in

CCN rather than address-based in IP.

A CCN router employs three functional components for

content forwarding: (1) Forwarding Information Base (FIB),

(2) Pending Interest Table (PIT), and (3) Content Store (CS).

The structure of a CCN FIB is similar to an IP FIB except that

CCN allows a match with multiple outgoing links (represented

by “faces” in [6]). In addition, CCN performs a longest-prefix

match in FIB using the name of the content instead of the IP

address.

PIT is used to keep track of pending requests, termed

Interests. When a CCN router does not have the content object

being requested in its CS, the router will first record the

content name of the pending request and its arriving link in

PIT and then forward the request upstream toward the origin

server(s) hosting the content object. Any router, which has the

content object, along the path toward the server will terminate

the request and reply with the content object. Thereafter, the

content object travels back to the user following the chain

of requests recorded in the PITs along the path. When a

content object matches the request, the content object is said

to consume that request and the corresponding entry in PIT is

deleted. This ensures that duplicates are suppressed and loop

cannot exist. When there are multiple pending requests for the

same content object, the router only forwards one request (the

first one) upstream.

In each CCN router, CS plays a critical role in improving

network efficiency and enhancing user experience. When a

user requests a content object, the router closest to the user

along the path to the original source of content will terminate

the request and deliver the content object to the user if it

has the content object. After the delivery, a CCN router may

keep the content in CS to maximize content sharing for future

requests. CS may utilize any cache replacement algorithm.

In terms of how matching is functionally executed among

the components, a CCN router first tries to match a given

arriving request against the content name in CS. If there is

a match, the router will discard the request and deliver the

content to the user. Otherwise, the router will perform a match

in PIT as explained above. If there is no match in PIT, the

router will perform a match in FIB and forward the request to

the next-hop router.

B. Related Work

Content-centric network [6] is the basis of the network ar-

chitecture this paper focuses on. Other name-based routing ar-

chitectures related to CCN include TRIAD [7] and DONA [8].

There have been studies on CCN or general caching networks

in the context of performance measurement [9], analytical

models [10], and energy impacts [11]. However, the impacts of

pollution attacks on CCN have not been previously explored.

There are two existing studies on cache pollution attacks.

In [4], Gao et al. propose and study two types of pollution at-

tacks: locality-disruption attack and false-locality attack. They

propose a reactive approach to detect such attacks. For false-

locality attacks, the authors characterize false locality when

the same IP client repeatedly requests the same unpopular

files. For locality-disruption attacks, they use low hit ratio and

short average life time of all cached files as metrics to detect

such attack. They then identify the IP clients that request a

very large number of unpopular files as the attackers. In [5],

Manivel et al. only focus on false-locality attack. They use

history of hits and misses of each IP client for detection. If

the hit rate is below a certain threshold, the IP client is deemed

to be an attacker; otherwise, the IP client is legitimate. While

these studies only focus on a single proxy cache, we also

investigate the impact at the network level in this paper and

uncover new observations.

Our proposed mechanism, called CacheShield, is primarily

intended to maintain cache robustness (i.e., hit ratio unaf-

fected) under locality-disruption pollution attack. In the con-

text of CCN, client IP addresses may no longer be visible.

Contrary to the existing approach using IP-based detection,

CacheShield adopts a proactive approach, which circumvents

the need to identify the IP addresses of attackers.

The survey in [12] and [13] provide a wealth of information

on many different cache replacement algorithms. We evalu-

ate three representatives (recency-based, frequency-based, and

function-based strategies) in our experiments.

III. CACHESHIELD

Unlike packet buffers in an IP router, Content Store (CS) in

a CCN router is essentially a cache. Its design purpose is to

maximize the sharing of popular content objects among dif-

ferent users and make it as close as possible to the sources of

requests. CS can employ any caching replacement algorithm.

In this paper, we consider representative caching replacement

algorithms including recency-based scheme such as Least-

Recently Used (LRU), frequency-based scheme such as Least-

Frequently Used (LFU), and function-based scheme such as

Greedy Dual-Size Frequency (GDSF).

To counter stealthy cache pollution attacks to the CS of

CCN, CacheShield exploits the distinction of characteristics

between normal requests and malicious requests. While normal

web requests follow Zipf-like distributions [1], [14], mali-

cious requests usually follow uniform distributions due to

the random access attack strategy taken by attackers for the

ease of implementation and significance of damage. With

random requests, attackers can render unpopular objects to be

cached and popular objects to be evicted, which significantly

degrades the hit ratio of normal requests. Thus, retaining

popular contents in CS is critical to ensure cache robustness.

Based on this principle, instead of unconditionally caching

requested content objects, CacheShield favors those objects

that are more frequently requested for caching. CacheShield

employs a shielding function to identify relatively popular

content objects and filter out unpopular ones. As unpopular

content objects are more likely to be kept out of CS, the impact

of pollution attack can be greatly reduced. More importantly,

the performance of caching can also be improved under normal

circumstances due to the denial of entrance of unpopular

content objects into the cache.

A. Structure of CacheShield

CacheShield can be seen as an add-on to the CS and is

compatible with any cache replacement algorithm. There are

two essential components in CacheShield: a shielding function

and a record of content names, as shown in Figure 1. While

the shielding function is located at the front-end of a cache,

content names reside in the same place as content objects.

Content Store

Shield

Function

Content

provider

Contents

Hit

Miss

Fetch

Content

names

Cache

Not Cache

Request

Response

Client

Fig. 1. CacheShield Structure.

Content

Content

Content

Content

Content Name

Content

(a) (b)

Content Name

Fig. 2. CS (a) without CacheShield and (b) with CacheShield.

As can be seen from the figure, when there is a content

hit upon request, the requested content object is returned

immediately and the shielding function is not executed. In

this case, CacheShield and normal caching operate identically.

CacheShield operates differently only when there is a miss and

the requested content object has to be fetched remotely (from

either another CCN router or the original content provider).

When there is a miss, the shielding function determines

whether to cache a new content object or not. If content object

Ci is not to be cached, the associated content name CNi, if

not present yet, will be cached. Content names are used to

keep track of content objects that are not in the cache so as to

help the shielding function make a decision. We will explain

the function of content names by comparing normal caching

with CacheShield in the next section.

B. Operation of CacheShield

To help understand the working mechanism of CacheShield,

we use LRU as the replacement algorithm in this section. CS

using LRU can be viewed as a stack, as shown in Fig. 2a. A

content object that is most recently requested is placed at the

top of the stack. If a content object is already in the stack prior

to the request, it is simply moved to the top. Other content

objects above the newly requested one are moved down by

one position. If a new content object being brought into the

stack causes an overflow, some existing content objects need

to be evicted in order to make room for the new content object.

Cache replacement algorithms deal with different methods of

eviction. In LRU, existing content object(s) starting from the

bottom of the stack will be evicted until the new content object

can be accommodated.

Fig. 2b shows that content objects (Note that a content

object includes its content name and payload data.) and content

names can reside in the same storage with CacheShield. A

content name is placed in a position of the stack exactly

like a content object according to the caching algorithm.

For example, the content name of a newly requested content

object will be placed at the top of the stack if CacheShield

decides not to cache the content object. Although content

names consume additional storage, they are much smaller

than typical content objects. When a request finds a matching

content name but CacheShield decides not to cache the content

object, it will record the number of attempted requests attached

to the content name. CacheShield uses this information to

make future decision. When a request finds a matching content

name and CacheShield decides to cache the content object,

the content name will be replaced by the content object.

Different replacement algorithms use different policies for

eviction. When a replacement algorithm evicts a given content

object, it will also evict all the content names with key values

less than that of the content object being evicted. Therefore,

when content object x in LRU is to be evicted, any content

name residing closer to the bottom than x will also be evicted.

Algorithm 1 lists the pseudo-code of CacheShield. The input

is a requestReq(C) from a client. When a CCN router receives

such a request, it will look up content object C in the cache.

If C is in the cache, then C will be directly returned (lines

2–5). Otherwise, the router will forward the request and fetch

the content object from either the original content provider or

another router (line 6). What differentiates CacheShield from

normal caching lies in the operations after the new content

object is obtained. With CacheShield, the cache does not

always accept and store new content, which may incur cache

replacement. Instead, the cache uses the shielding function ψ
to determine whether to store the content object or not (line 7).

If the function decides to cache the content object, C will be

stored and the internal cache data structure will be updated. At

this moment, some content objects and content names will be

evicted to make room for the new content object if the cache

is full (lines 8–10). If the content object is not to be stored,

CacheShield will either store the content name or update the

number of requests associated with the content name in the

cache (lines 12–16).

Algorithm 1 CacheShield Algorithm

1: INPUT: Req(C) (Request for content object C)
2: if C is in Cache then

3: adjust cache internal structure

4: return C to the client

5: end if

6: forward request ... and get content object C
7: search content name of C and use its # of requests (if

exists) and shielding function ψ to decide whether to cache

8: if ψ decides to cache C then

9: store C and adjust internal cache structure

10: evict content objects (and content names) if necessary

11: else

12: if content name of C exists then

13: update # of requests

14: else

15: insert content name of C into cache store

16: end if

17: end if

18: return C to the client

C. Shielding Function

CacheShield is envisioned to deal more effectively with

locality-disruption attack and intended to work with a variety

of cache replacement algorithms. When a request arrives at CS

and receives a hit (i.e., the requested content object is already

in CS), CS uses the original caching algorithm. Otherwise,

CacheShield runs a shielding function.

The primary purpose of the shielding function is to dis-

courage unpopular content objects from being cached in CS.

To thwart attackers from predicting the decision, we decide

to use a probabilistic function as the shielding function. The

function computes a caching probability for each requested

content object. The more requests a content object receives, the

higher the corresponding probability will be. In other words,

the content object is more likely to be cached. One example

shielding function is given by the following logistic function:

ψ(t) =
1

1 + e(p−t)/q
, t = 1, 2, · · · (1)

where t denotes the tth request for a given content object

in CS, and p and q are the parameters of the function. With

probability ψ, a new content object will be fetched into CS

for possible future use. Otherwise, the content object will not

be placed in CS. Instead, the associated content name and its

number of requests (i.e., value t) will be recorded in CS.

As the ψ value of requests for unpopular content objects is

small, unpopular content objects are less likely to be cached

and cause relatively popular content objects in the cache to

be evicted. Therefore, the use of the logistic function can

effectively shield CS from pollution attacks in which requests

are for very unpopular content objects. The parameters p
and q provide each deployment site with fine control of

the probability for popular requests. The setting of p and

q will be further discussed in Section IV-D. Note that a

shielding function is not necessarily to be the logistic function.

Any function that can effectively differentiate requests for

unpopular content objects from those for relatively popular

content objects is a good candidate of the shielding function.

Identifying such functions is subject to future research.

IV. EVALUATION ON A SINGLE NODE

In this section, we evaluate CacheShield as a single CCN

router in isolation.

A. Methodology

We use both synthetic traffic and real traffic traces in our

simulation experiments. To pursue an extensive investigation,

we use synthetic traffic for the evaluation in the first part,

due to limited publicly available empirical traces that contain

a very large number of requests. It is necessary to have a

large number of requests to deal with hit-ratio distribution as

a function of content IDs. Later on, we provide verification

with empirical traces.

It is well known that web request streams are highly

influenced by content popularity and can be characterized by

Zipf-like distributions [1][14], which is of the form Pr{Ck} ∝

k−α, where Pr{Ck} is the probability of requesting the kth

most popular content object and 0 < α < 1. With synthetic

traffic, legitimate users request content objects over a given

content object space C = {C1, ..., CK} according to a Zipf-

like distribution, while the attackers attempt to disrupt locality

by choosing a uniform distribution over the same space.

Although other distributions are certainly possible, they are

less typical and more difficult to implement by attackers.

Due to the space limit, our evaluation focuses on uniform

distribution based attacks. We assume that requests from

legitimate users or attackers follow the Independent Reference

Model (IRM) [15]. Unless otherwise stated, we assume that

K = 106 and cache size B = 104. We also assume that

all content objects have the same size, which is set to 1, in
synthetic traffic traces.

With empirical traces, legitimate users request content ob-

jects using the information from trace files of real-world traffic,

which contains a list of 3-tuple items (request index, object ID,

object size). The attackers request content objects according

to a uniform distribution over the same content object space

provided by the trace. Upon requesting a given content object,

the attackers will use the object size specified in the trace.

Locality-disruption attackers pollute a cache by requesting

content objects following a uniform distribution. To make the

worst-case impact, the attackers may request bogus content

objects belonging to a content space that differs from the

space used by legitimate users, as assumed in [4]. This scheme

boosts cache pollution as the attackers will never accidentally

improve the hit rate of content objects requested by legitimate

users. However, the scheme requires the attackers to first

identify the bogus content objects that are rarely requested

by legitimate users, which may not be easy in practice.

Moreover, using bogus files belonging to a content space

that is never accessed by legitimate users could also lead to

easier detection. Therefore, we take a different assumption,

in which the attackers access the same content space as

legitimate users. We believe our assumption is more flexible

and realistic. For example, the flat video id space of YouTube

[16] makes it very easy to launch a cache pollution attack by

randomly requesting YouTube videos. Obviously, the impact

of attack is less powerful in our experiments. Nevertheless,

our experiments equivalently reveal the effectiveness of such

attacks.

Since content names (or their hashed values) are much

smaller than content objects, we do not take into account the

storage for content names in the evaluation. Our measurements

confirm that the overhead due to content names is very small.

To study the characteristics of CacheShield in multiple di-

mensions, we first use LRU for the CCN Content Store. Later,

we provide comparison of LRU with other cache replacement

algorithms.

B. Hit Ratio

To accurately reflect the impact of pollution attack on the

users that matter (i.e., legitimate users), the hit ratio in this

paper refers to the hit ratio for legitimate users, instead of

the hit ratio for both malicious and legitimate users that is

used in [4]. The hit ratio is measured when the cache is in a

steady state, i.e., the cache has been fully warmed up. Fig. 3

plots the overall content hit ratio for legitimate users vs. the

ratio of attack rate to legitimate-user rate, ra. The results are

based on synthetic traffic using Zipf-like distributions (with

α = 0.8 and α = 0.9). We set p = 20 and q = 1. As
can be seen, the hit ratio for legitimate users decreases as ra
increases using normal LRU, making CCN router less efficient.

Meanwhile, the efficiency of CCN router with CacheShield is

almost unaffected by the attackers. We consistently observe

that CacheShield not only improves the robustness of Content

Store under attack, but generally also increases the caching

effectiveness as indicated by its higher hit ratio even without

attack.

To gain better understanding of the behavior of CacheShield

compared to normal caching, we measure the hit ratio on

each content object and plot the hit ratio as a function of

content ID in Fig. 4. With normal caching, the hit ratios over

most content objects decrease appreciably when a pollution

attack (with ra = 1) is present. In contrast, the hit ratios

remain essentially unchanged with CacheShield as the two

curves for CacheShield at the top are basically identical. The

robustness of CacheShield against locality-disruption attacks

lies in that it prevents many unpopular content objects re-

quested by attackers from being cached. The figure confirms

this effect for the least-popular content objects (with content

IDs approximately larger than 10,000). The hit ratios for these

content objects with CacheShield are lower than those with

normal caching. This, in turn, enables semi-popular content

objects (with IDs approximately 100-10,000) to be more likely

cached, as exhibited by the higher hit ratios with CacheShield

than normal caching. Since the least-popular content objects

have significantly lower hit ratios than the more popular ones,

the overall hit ratio with CacheShield increases as a result.

Note that the very-popular content objects (with IDs 1-10)

are also affected positively by CacheShield albeit in a more

limited degree.

C. Effect of Cache Size

To further explore the robustness of CacheShield, we exper-

iment with different cache sizes. Obviously, the performance

of CacheShield and that of normal caching become identical

in the extreme case where a cache can accommodate every

content object. We explore cases where a cache can become

large but is still dictated by economic or practical reasons.

Fig. 5 plots the overall hit ratio versus cache size. The cases

under attack (ra = 1) and no attack (ra = 0) are compared.

Focusing first on normal caching (the lower two curves),

observe that the hit ratio under pollution attack degrades

meaningfully even as the cache size is increased. This indicates

that increasing cache size will not help in mitigating the

cache performance when CCN router is under pollution attack.

Now turning to the top two curves when CacheShield is

deployed, we observe that the hit ratios with and without attack

are almost identical, indicating that CacheShield maintains

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 1 2 3 4 5

H
it
 r

a
ti
o
 f
o
r

le
g
it
im

a
te

 u
s
e
rs

Ratio of attack rate to legitimate-user rate

Normal (α=0.9)
CacheShield (α=0.9)

Normal (α=0.8)
CacheShield (α=0.8)

Fig. 3. Comparison of hit ratios.

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

H
it
 r

a
ti
o

Content ID

Normal (no attack)
CacheShield (no attack)

Normal (under attack)
CacheShield (under attack)

Fig. 4. Hit ratio for each content object.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 20000 40000 60000 80000 100000

H
it
 r

a
ti
o
 f
o
r

le
g
it
im

a
te

 u
s
e
rs

Cache size

Normal (no attack)
CacheShield (no attack)

Normal (under attack)
CacheShield (under attack)

Fig. 5. Hit ratio as a function of cache size.

robustness across a wide operating range of cache sizes. Note

that there is a slight difference in hit ratios when the cache is

very large. This is because the least-popular content objects

have higher chances of being cached in the Content Store. But

these objects are vulnerable as they are also more likely to be

evicted by the attackers.

D. Parameters for Logistic Function

We now examine how the parameters in the logistic func-

tion, namely p and q, affect cache performance. As the value

of q increases, ψ(t) increases more rapidly near the inflection

point at p = t, and hence, CacheShield becomes more

deterministic. In the limit, CacheShield will not cache a new

content object if t < p and will cache it with the probability

close to 1 if t > p. At the inflection point, CacheShield will

cache a new content object with the probability of 0.5.
Intuitively, we expect that the filtering of content objects

by malicious users becomes more effective as p increases,

because CacheShield will increasingly block less-popular con-

tent objects from being cached. This behavior without attack

is depicted in Fig. 6, and the behavior under attack behaves

similarly. Regardless of the value of q, the hit ratio with

CacheShield converges to the same maximum attainable value

as p increases. Although it seems desirable to set p to a high

value to ensure the optimal hit ratio, this might slow the

adaptation of CacheShield to dynamic changes in popularity.

Thus, proper setting in a dynamic environment needs to be

further studied.

E. Validation with Real Traces

We perform an experiment using real traces to validate

the behavior of CacheShield. As opposed to synthetic traf-

fic where requests follow IRM, real traces usually contain

temporal correlation [17]. Fig 7 shows the hit ratios based

on two different traces of web traffic workloads (trace 1 =

worldcup [18] and trace 2 = rtp [19]). Trace 1 has a higher α
value than trace 2, and its most-popular content objects have

been requested several hundred-thousand times in comparison

to about ten-thousand times in trace 2. As shown in the figure,

CacheShield under pollution attack remains robust while the

performance of normal caching deteriorates remarkably. We

also find out that resetting all content sizes to a fix value does

not change the qualitative results. To check whether there is

any meaningful effect of temporal correlation on CacheShield,

we scramble the traces by randomly permuting the request

indices to break up temporal correlation that might exist in

the original traces. We observe reduced hit ratios with both

scrambled traces, verifying that the original traces contain

temporal correlation. We also observe that the advantage of

CacheShield over normal caching remains under IRM or

otherwise. Lastly, we measure the byte hit ratio, which can

be used as an alternative metric. As the attack rate varies,

there is no qualitative distinguishable differences between the

two metrics in normal caching and CacheShield.

F. Different Replacement Algorithms

To test CacheShield with different cache replacement al-

gorithms (e.g., see [12][13]), we perform an experiment us-

ing representatives from recency-based, frequency-based, and

function-based replacement algorithms as represented by LRU,

LFU, and GDSF, respectively, and their variations.

For LFU, we use a variation with an aging mechanism so

that the key value,Ki, of a newly requested content object, Ci,

will be set to Ki = fi + L, where fi is the frequency value

of Ci and L is the key value of the most recently evicted

content object. The content object with the smallest Ki-value

is selected for eviction. Multiple objects may be evicted to

make room for a new object. The value of L is initially set to

0.
For GDSF, we use the key value that is computed as Ki =

fa1

i /sa2

i + L, where si is the size of content object Ci. The

values of a1 and a2 are used to weigh the importance of fi
and si, respectively. The value of L is set the same way as in

LFU and content objects are also evicted the same way as in

LFU.

We perform an experiment using trace-based simulation.

Fig. 8 shows how the different replacement algorithms behave

in terms of hit ratio under normal caching and CacheShield.

Whereas the rankings under different cache replacement al-

gorithms may not always be the same with different traces,

we consistently observed the superior and robust performance

of CacheShield against attacks. We also measured the byte

hit ratios and and the results qualitatively reveal the same

behavior.

V. EXPERIMENTS ON CCN

To understand the impact of cache pollution attacks on

CCN and the effectiveness of CacheShield over CCN, we

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0 10 20 30 40 50 60 70 80 90 100

H
it
 R

a
ti
o

p

normal
CacheShield, q=1
CacheShield, q=2
CacheShield, q=5

Fig. 6. Hit ratio as a function of p (with given
q).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1 2 3 4 5

H
it
 r

a
ti
o
 f
o
r

le
g
it
im

a
te

 u
s
e
rs

Ratio of attack rate to legitimate-user rate

Normal (worldcup)
CacheShield (worldcup)

Normal (rtp)
CacheShield (rtp)

Fig. 7. Hit ratios with real traces.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 1 2 3 4 5

H
it
 r

a
ti
o
 f
o
r

le
g
it
im

a
te

 u
s
e
rs

Ratio of attack rate to legitimate-user rate

Normal-LRU
Normal-LFU

Normal-GDSF
CacheShield-LRU
CacheShield-LFU

CacheShield-GDSF

Fig. 8. Behaviors under different cache replace-
ment algorithms.

Content

Server 1
Aggregate

Attacker 1

Router 1 (edge) Router 2 (edge) Router 4 (edge)Router 3 (core)

Aggregate

User 1

Aggregate

User 2

Aggregate

User 3

Fig. 9. Merging Scenario

conduct extensive simulations for the following three network

scenarios. They are (1) merging scenario, (2) splitting scenario,

and (3) complex network scenario. The merging scenario is

designed to study how CCN caching behaves when normal

requests are merged at intermediate routers towards the same

destination. The splitting scenario focuses on studying the

behavior of CCN caching when requests from the same source

are split at intermediate routers. The complex network scenario

consists of both merging and splitting with a more complex

network topology.

As CacheShield is independent of specific cache replace-

ment algorithm, and the performance comparison with and

without CacheShield is very similar for different cache re-

placement algorithms, we only evaluate CacheShield with

LRU in the experiments for CCN. Our simulation does not

take content object size into consideration. In other words, the

size of each object is fixed to one. In the simulation, all content

servers (if multiple servers are used) host the same amount of

content objects (100,000) and their Zipf parameter α is fixed

to 0.9. The cache size of each router is also the same in each

configuration and is 1% of total number of content objects.

A. Merging

We first consider a Merging scenario as depicted in Fig. 9.

We define a CCN router as an edge router when there are

users (clients) attached to it. A CCN router that acts only as a

transit router with no users attached to it, is defined as a core

router. As shown in the figure, there are four CCN routers

connected in tandem. Three of them are edge routers and one

router (Router 3) is a core router. There is also one content

server attached to Router 4. The Content Store in each CCN

router implements LRU cache replacement

We investigate the content hit ratios of each router with

normal caching and CacheShield, first with no attack present.

Then, we add the attacker that are connected to Edge Router

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

Router-1 Router-2 Router-3 Router-4

Normal-LRU-NoAttack
Normal-LRU-Attack

CacheShield-LRU-NoAttack
CacheShield-LRU-Attack

Fig. 10. Hit ratio of each router for merging scenario

1, as shown in the figure. The sending rate of the attacker

equals the aggregate sending rate of normal/legitimate users.

It is important to note that in CCN, the attacker cannot

selectively choose to pollute a particular router. This is because

content objects are referred to by names, instead of addresses.

Attackers can only inflict the router directly attached and other

routers along the path toward the content server.

In Fig. 10, we show the hit ratios for legitimate users in

each router with normal caching and CacheShield for the cases

with no attack and under attack. Notice that the performance

with CacheShield essentially remains unchanged when there

is an attack, while the performance with normal caching under

attack deteriorates. From the figure, we can state the following

observation: The hit ratio generally decreases as the request

stream travels downstream toward the content server. This

is attributed to the “filter effect” [20], which eliminates the

popular content objects downstream. If a router along the

path is an edge router, the reduction in hit ratio is somewhat

marginal since new (unfiltered) requests are injected by users

attached to it. Meanwhile, we can see that the hit ratio at

the core router is significantly reduced. Second, It is also

interesting to observe that the hit ratio with CacheShield is

higher than with normal caching at the core router. This is

because CCN router behaves as a low-pass filter with a cutoff

frequency of τ−1, where τ is the characteristic time of a

cache [2]. In other words, requests with inter-arrival time

higher than τ (or frequency lower than τ−1) has a high chance

to have a miss and will go to the next-hop router. Since the

shielding function increases the value of τ , there are higher

misses with less popular (low frequency) content objects with

CacheShield than with normal caching at an edge router. The

higher miss rate with CacheShield translates to a higher hit

ratio of less popular content objects in Router 3.

B. Splitting

Content

Server 1

Aggregate

Attacker 1

Router 1 (edge) Router 2 (edge) Router 4 (edge)Router 3 (core)

Aggregate

User 1

Aggregate

User 2

Aggregate

User 3

Content

Server 2

Fig. 11. Splitting Scenario

The second case we consider is the Splitting scenario with

an example depicted in Fig. 11. In this scenario, another

content server (Content Server 2) is added and attached to

Router 1. The users request content objects from both of the

servers, thus allowing requests to split in edge routers. We

assume that users request objects from both servers equally.

The attackers are attached to Router 2 in this scenario. The

attackers target a victim by sending requests for content

objects hosted only on Server 1. In the experiment, we assume

that the attack rate is equal to the aggregate legitimate-user

rate. If Server 2 is not present, it is easily deduced that the hit

ratio of Router 1 will not be affected by the attack. In general,

when requests are not split in the network, the hit ratio of a

router upstream from an attack path will not be affected.

Fig. 12 displays the hit ratios of legitimate users for vari-

ous cases (normal caching vs. CacheShield and with/without

attack) in the splitting scenario. First, the results of Routers 2,

3, and 4 (the left two bars of each cluster) confirm our previous

observation that the hit ratio of the router on an attacking

path will degrade under attack. However, the performance with

CacheShield for the corresponding router (the right two bars of

each cluster) is much better (30% higher in terms of hit ratio)

than that with normal caching and is also hardly degraded by

the attack.

Next, the hit ratios of Routers 1, 2, and 4 (the first bar

of each cluster) for normal LRU are similar when there is

no attack. This behavior is different from that observed in

the merging scenario. This is because the users have equal

likelihood to send requests to either of the two content servers

and the majority of their requests are cached by the local

router.

As expected, we find that the hit ratios of routers, e.g.,

Router 1 in Fig. 12 not on the attacking path, do not degrade

under attack. Surprisingly, we see that in the splitting scenario,

the hit ratio with normal LRU of Router 1 actually improves

under attack. This is quite distinct from those experienced by

Routers 2, 3, and 4. This can be explained by examining the

hit ratio of content objects on Router 1. Focusing on content

objects from Server 1 that are cached in Router 1, we see

in Fig. 13(a) that the difference of hit ratios of these objects

with or without attack is very minor. Turning our attention to

the content objects from Server 2 that are cached in Router

TABLE I
OVERALL HIT RATIO OF FOUR CASES

No-Attack A-4 A-9 A-6 A-7

Normal 23.10% 21.61% 20.87% 19.57% 19.52%
CacheShield 34.99% 34.19% 32.96% 32.52% 32.81%

1, we see in Fig. 13(b) that the hit ratios for popular objects

from Server 2 increase under attack. This is because the attack

causes request streams from users 2 and 3 to experience higher

miss ratios in Router 2 and Router 4. This results in higher

request rate for popular content objects from Server 2 directed

to Router 1, which evicts the least popular content objects. We

add another observation: When requests are split, the hit ratio

of a router attached to an attack path may be affected but in

a positive way.

C. Complex Network

Content

Server 1

Router 1

Router 2

Router 4

Router 3

Aggregate

User 1

Aggregate

User 2

Aggregate

User 4

Content

Server 2

Router 5

Router 6

Router 7

Router 8

Router 9

Content

Server 3

Aggregate

User 3
Aggregate

User 5

Aggregate

User 6

Fig. 14. Network Scenario

In this scenario, we construct a network with nine CCN

routers, three as core routers and six as edge routers. Three

content servers and six pools of users are attached to edge

routers, as shown in Fig. 14. This scenario captures the essen-

tial components of a network and helps to better understand the

overall impact on the network. Using this topology, we want

to answer a key question: Given a specific aggregate attack

rate, what is the best strategy for an attacker to degrade the

caching performance of the network? We confine our study to

the case where the attacker is is attached to an edge router. We

believe this study serves as a first step toward understanding

a better picture of cache pollution attack on CCN.

Due to the symmetry of network topology, Routers 4, 5,

and 6 play the same role when the request rates from all users

are the same without attack. This is also true for Routers 7,

8, and 9. Therefore, there are four cases to consider. Assume

that the targeted server is Content Server 1. Then the attacker

may be annexed to one of Routers 4, 7, 5/6, and 8/9.

We use the overall hit ratio of the six edge routers as the

metric to measure the damage caused by pollution attack. This

is because hit ratios of core routers are orders of magnitude

lower than those of edge routers. Therefore, the impact of the

attack on core routers can be safely ignored.

The overall hit ratio with no attack and the ratios of the

four cases under attack are shown in Table I. The symbol

’A-4’ in the table refers to the attacker attached to Router

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

Router-1 Router-2 Router-3 Router-4

Normal-LRU-NoAttack
Normal-LRU-Attack

CacheShield-LRU-NoAttack
CacheShield-LRU-Attack

Fig. 12. Hit ratio of each router for splitting scenario

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
o

n
te

n
t

H
it
 R

a
ti
o

Content ID on server 1

Attack
No Attack

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
o

n
te

n
t

H
it
 R

a
ti
o

Content ID on server 2

Attack
No Attack

(a) (b)

Fig. 13. Hit-ratio of content objects on Router 1.

4. With normal caching, we can see that the reduction in hit

ratio is maximized when the attacker is attached to Router

7, and minimized when the attacker is attached to Router 4.

The observations from the previous scenarios are helpful in

analyzing the differences between these four cases. For cases

A-4 and A-7, it is easy to see that only Router 4 is degraded

in A-4 while both Routers 4 and 7 are degraded in A-7 from

the observation in the Merging scenario. By examining the hit

ratio of each individual edge router, we find that the hit ratio of

Router 4 is degraded by almost the same mount (from 17.6%

to 10.3%) in all four cases. This explains why the overall

impact in case A-4 is minimal.

The impact on overall hit ratio in case A-9 should be similar

to that in case A-7 because Routers 7 and 9 play the same

role. However, careful examination of attack path will reveal

the difference between A-7 and A-9. Although Router 7 in

A-7 and Router 9 in A-9 are affected in a similar manner,

there is one more hop involved in A-9, which is due to

Router 3. As mentioned before, Router 3 can be ignored in

the analysis. However, its connection with Router 6, which is

linked to Content Server 3, essentially makes the difference.

In case A-9, when an attack is launched on Router 9, the hit

ratio of Router 6 will be improved due to the observation in

the Splitting scenario. When unaffected routers are removed

(Routers 2, 5, 7 and 8), case A-9 is essentially a variation of

the Splitting scenario.

VI. CONCLUSION

In this paper, we have proposed and presented a novel mech-

anism, called CacheShield, that enhances cache robustness

for content-centric networks. The performance of CacheShield

under a variety of scenarios has been investigated in the

context of CCN specifically, but applicable for a general

caching network. The robustness of CacheShield has been

demonstrated under pollution attack. Even without attack,

CacheShield achieves higher hit ratio compared to normal

caching. Furthermore, CacheShield is adaptable to different

cache replacement algorithms. We have studied attack scenar-

ios in several network topologies. In all cases, CacheShield

maintains its robustness under different attack scenarios. In

our study, we also discovered several revealing observations.

For example, we found that the performance of a CCN router

in terms of content hit ratio can actually improve if attacks

are done in a certain way.

REFERENCES

[1] L. Breslau, P. Cue, P. Cao, L. Fan, G. Phillips, and S. Shenker,
“Web caching and zipf-like distributions: Evidence and implications,”
in INFOCOM, 1999, pp. 126–134.

[2] H. Chee, Z. Wang, and Y. Tung, “Analysis and design of hierarchical
web caching systems,” in INFOCOM, 2001, pp. 1416–1424.

[3] S. Chen, B. Shen, S. Wee, and X. Zhang, “Sproxy: A caching infrastruc-
ture to support internet streaming,” IEEE Transactions on Multimedia,
vol. 9, no. 5, pp. 1062–1072, 2007.

[4] Y. Gao, L. Deng, A. Kuzmanovic, and Y. Chen, “Internet cache pollution
attacks and countermeasures,” in IEEE ICNP, 2006, pp. 54–64.

[5] V. Manivel, M. Ahamad, and H. Venkateswaran, “Attack resistant cache
replacement for survivable services,” in SSRS ’03: Proceedings of the

2003 ACM workshop on Survivable and self-regenerative systems, 2003,
pp. 64–71.

[6] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in ACM CoNEXT,
2009, pp. 1–12.

[7] D. Cheriton and M. Gritter, “Tria: A new next-generation internet
architecture,” in Stanford Technical Report, 2000.

[8] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” in SIGCOMM, 2007, pp. 181–192.

[9] V. Jacobson, D. K. Smetters, N. H. Briggs, M. F. Plass, P. Stewart, J. D.
Thornton, and R. L. Braynard, “Voice over-content-centric network,” in
ACM ReArch, 2009, pp. 1–6.

[10] E. J. Rosensweig, J. Kurose, and D. Towsley, “Approximate models for
general cache networks,” in INFOCOM, 2010.

[11] V. H. Uichin Lee, Ivica Rimac, “Greening the internet with content-
centric networking,” in Proceedings of the 1st Int’l Conf. on Energy-

Efficient Computing and Networking (e-Energy), 2010.
[12] S. Podlipnig and L. Böszörményi, “A survey of web cache replacement

strategies,” ACM Comput. Surv., vol. 35, no. 4, pp. 374–398, 2003.
[13] A. Balamash and M. Krunz, “An overview of web caching replacement

algorithms,” IEEE Comm. Surveys and Tutorials, vol. 6, no. 2, pp. 44–
56, 2004.

[14] A. Mahanti, C. Williamson, and D. Eager, “Traffic analysis of a web
proxy caching hierarchy,” IEEE Comm. Surveys and Tutorials, vol. 14,
no. 3, pp. 416–23, 2000.

[15] J. Edward G. Coffman and P. J. Denning, Operating System Theory.
Prentice-Hall, Inc., 1973.

[16] V. K. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang, “Reverse engineering
the youtube video delivery cloud,” in Hot Topics in Multimedia Delivery

(HotMD), 2011.
[17] R. C. Fonseca, V. Almeida, M. Crovella, and B. D. Abrahao, “On the

intrinsic locality properties of web reference streams,” in INFOCOM,
2003.

[18] “Ircache home,” http://ita.ee.lbl.gov/html/traces.html.
[19] “Internet traffic archive,” ftp://ftp.ircache.net/Traces/DITL-2007-01-09/.
[20] C. L. Williamson, “On filter effects in web caching hierarchies,” ACM

Trans. Internet Techn., vol. 2, no. 1, pp. 47–77, 2002.

