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Abstract—Smartphone users have their own unique behavioral
patterns when tapping on the touch screens. These personal
patterns are reflected on the different rhythm, strength, and
angle preferences of the applied force. Since smartphones are
equipped with various sensors like accelerometer, gyroscope,
and touch screen sensors, capturing a user’s tapping behaviors
can be done seamlessly. Exploiting the combination of four
features (acceleration, pressure, size, and time) extracted from
smartphone sensors, we propose a non-intrusive user verification
mechanism to substantiate whether an authenticating user is the
true owner of the smartphone or an impostor who happens to
know the passcode. Based on the tapping data collected from
over 80 users, we conduct a series of experiments to validate the
efficacy of our proposed system. Our experimental results show
that our verification system achieves high accuracy with averaged
equal error rates of down to 3.65%. As our verification system
can be seamlessly integrated with the existing user authentication
mechanisms on smartphones, its deployment and usage are
transparent to users and do not require any extra hardware
support.

I. INTRODUCTION

Smartphones have become ubiquitous computing platforms
allowing users anytime access to the Internet and many online
services. On one hand, as a personal device, a smartphone
contains important private information, such as text messages,
always-logged-in emails, and contact list. On the other hand,
as a portable device, a smartphone is much easier to get lost
or stolen than conventional computing platforms. Therefore,
to prevent the private information stored in smartphones from
falling into the hands of adversaries, user authentication mech-
anisms have been integrated into mobile OSes like Android
and iOS.

Due to having a much smaller screen and keyboard on
a smartphone than the traditional user input/output devices,
PIN-based and pattern-based passcode systems have been
widely used in smartphones for user authentication. However,
many people tend to choose weak passcodes for ease of
memorization. A recent survey on iPhone 4-digit passcode
reveals that the ten most popular passcodes represent 15%
of all 204,508 passcodes and the top three are 1234, 0000,
and 2580 [1]. Moreover, recent studies show that an attacker
can detect the location of screen taps on smartphones based
on accelerometer and gyroscope readings and then derive the
letters or numbers on the screen [2], [3], [4], [5]. An attacker

could even exploit the oily residues left on the screen of a
smartphone to derive the passcode [6]. Therefore, it is highly
desirable to enhance the smartphone’s user authentication with
a non-intrusive user verification mechanism, which is user-
transparent and is able to further verify if the successfully
logged-in user is the true owner of a smartphone.

In this paper, we explore the feasibility of utilizing user
tapping behaviors for user verification in a passcode-enabled
smartphone. The rationale behind our work is that individual
human users have their own unique behavioral patterns while
tapping on the touch screen of a smartphone. In other words,
you are how you tap on the screen, just like you are how you
walk on the street. The rich variety of sensors equipped with
a smartphone including accelerometer, gyroscope, and touch
screen sensors, make it possible to accurately characterize an
individual user’s tapping behaviors in a fine-grained fashion.
With over 80 smartphone users participated in our study, we
quantify the user tapping behaviors in four different aspects:
acceleration, pressure, size, and time. Based on the behavioral
metrics extracted from these four features, we apply the one-
class learning technique for building an accurate classifier,
which is the core of our user verification system.

We evaluate the effectiveness of our system through a
series of experiments using the empirical data of both 4-digit
and 8-digit PINs. In terms of accuracy, our approach is able
to classify the legitimate user and impostors with averaged
equal error rates of down to 3.65%. Overall, our verification
system can significantly enhance the security of a smartphone
by accurately identifying impostors. Especially for practical
use, our tapping-behavior-based approach is user-transparent
and the usability of traditional passcodes on a smartphone
remains intact. As our approach is non-intrusive and does
not need additional hardware support from smartphones, it
can be seamlessly integrated with the existing passcode-based
authentication systems.

Unlike previous works [7], [8], [9] on touch-based user re-
authentication for smartphones, we choose one-class classifier
over two-class classifier. This is because two-class classifier
requires input data from impostors or non-target users at
the training phase, which is unrealistic and raises privacy
concerns. In contrast, one-class classifier conducts its training
purely based on the target user’s data, and thus is a much more
viable solution than the two-class approach./978-1-4799-6204-4/14$31.00 c©2014 IEEE



The remainder of the paper is structured as follows. Sec-
tion II reviews the background of this work. Section III
describes our data collection and measurement, including our
choice of metrics. Section IV details the proposed classifier for
user verification. Section V presents our experimental design
and results. Section VI discusses additional issues which arise
from the details of our approach. Section VII surveys related
work, and finally Section VIII concludes.

II. BACKGROUND

The tapping behaviors of individual users on touchscreen
vary from person to person due to differences in hand ge-
ometry and finger agility. Each user has a unique personal
tapping pattern, reflected on the different rhythm, strength,
and angle preferences of the applied force. As our tapping-
behavior-based approach verifies the owner of a smartphone
based on “who you are” – your physical and behavioral traits,
instead of “what you know”, it belongs to biometrics-based
user authentication. In general, a biometrics authentication
system authenticates users either by their physiological traits
like faces, voices and pulse-response signals [10], [11], [12]
or behavioral patterns like finger typing and hand move-
ments [13], [14].

While physiological traits can achieve high accuracy in the
process of user authentication, they have not been widely used
in mobile devices. Recent studies have also shown that the
physiology-based mechanisms deployed in mobile devices are
sensitive to certain environmental factors, which could signif-
icantly diminish their accuracy and reliability. For example,
face recognition may fail due to a different viewing angle and
poor illumination [15], and voice recognition degrades due
to background noise [10]. However, given the same mobile
device, behavioral biometrics tend to be less sensitive to the
surrounding environmental factors like darkness or noise.

Exploiting the behavioral information captured by multiple
sensors on a smartphone, we can exclusively create a detailed
user profile for verifying the owner of the smartphone. Since
our approach works seamlessly with the existing passcode-
based user authentication mechanisms in mobile devices, it
plays a role of implicit authentication. In other words, our
approach can act as a second factor authentication method and
supplement the passcode systems for stronger authentication
in a cost-effective and user-transparent manner. More recently,
seminal works have been proposed to explore the feasibility of
user authentication employing the behaviors of pattern-based
passwords [16]. However, the false reject rate (FRR) of their
work is rather high, which means there is a high chance that
the owner of a mobile device would be mistakenly regarded
as an impostor and be blocked from accessing the device.

The newly launched iPhone 5S uses fingerprint recognition
as an optional unlock method [17]. However, on one hand, it
is possibly bypassable through a carefully printed fingerprint
image [18]. On the other hand, the fingerprint on current
iPhone must associate with a regular password. More specif-
ically, an attacker with knowledge of the password can still

(a) Application
Layout

(b) Two-Hand Typing

Fig. 1. Screen layout of our data collection application, and the two-hand
typing action.

enter the system after getting rejected five times by fingerprint
recognition.

III. MEASUREMENT AND CHARACTERIZATION

For data collection, we invite graduate and undergraduate
students in our institution to participate in this study. The
experiment has been filed and approved by the Institutional
Review Board (IRB) to ensure participants are treated ethi-
cally. The consent form can be found in the appendix. We
respect user privacy and conform to ethical standards, in
specific to make sure: (1) no data are being collected regarding
personal credentials, e.g., we do not ask for participants’
personal credentials; (2) the informed consent form indicates
that participation will take no more than 5 minutes. We will ask
each participant to be eligible for our study if he/she plans to
perform tasks on a smartphone for at least 5 minutes; (3) only
raw events from smartphone sensors will be collected, and no
user identities or any other user-related information will be
recorded. The trace data are further anonymized if necessary.
The collected data will be used for academic research only;
(4) participants are invited to take part in this tapping behavior
study. The consent form informs them why this research study
is being conducted, what will happen in the research study,
and possible risks and benefits to them. If there is anything
participants do not understand, they are welcomed to ask
questions. Then they can decide if they want to participate
or continue this study or not.

Over 80 participants are involved in our data collection. Five
different PINs are tested, in which three of them are 4-digit,
and two are 8-digit. Here we choose PINs 3-2-4-4, 1-2-5-9-7-
3-8-4, and 1-2-5-9-8-4-1-6 to represent these normal cases, but
PINs 1-1-1-1 and 5-5-5-5 to represent the two extreme cases,
one at the corner and the other at the center, respectively. Each
participant is asked to enter an error-free PIN for at least 25
times and we collect a total of 11,062 error-free actions. The
user’s timing and motion data are recorded during the process.
In this paper, we refer to an action (or user input action) as the
process of tapping one PIN, instead of individual digits. The
detailed information of the collected data is listed in Table I.

The timing information is in resolution of milliseconds.
Occasionally, some participants fail to make a smooth tapping
intentionally or unintentionally. Therefore, we employ a simple
outlier removal process to all the collected raw data. An outlier



TABLE I
COLLECTED DATA

PIN Users Actions Average Actions Per User Filtered-Out
3-2-4-4 53 1,751 33 0.80%
1-1-1-1 41 2,577 63 2.64%
5-5-5-5 42 2,756 66 3.70%

1-2-5-9-7-3-8-4 27 1,939 72 7.37%
1-2-5-9-8-4-1-6 25 2,039 82 4.76%

tapping action is often signaled by a markedly longer-than-
usual time interval, especially for a user who is very familiar
with its own PIN. In our data set, a smooth PIN tapping action
takes at most 600 milliseconds between subsequent keys for
all participants. As a result, an inter-key time of greater than
one second always signals such an outlier behavior. By this
standard, a small amount of raw data is filtered out, as listed
in the right-most column of Table I.

All the data are collected on a Samsung Galaxy Nexus.
Its fastest sampling rate on motion sensor readings is about
100Hz. Figure 1(a) shows the layout of our Android ap-
plication for the data collection. In the experiments, all the
participants are asked to hold the phone with their left hands,
and tap with their right hand index fingers, as shown in
Figure 1(b).

We make use of the Android APIs to detect the touch
event, including both key-press and key-release. Between each
key-press and key-release, we record raw data of times-
tamps, acceleration, angular acceleration, touched-size, and
pressure. Acceleration and angular acceleration are from API
SensorEvent, while touched-size and pressure are from
API MotionEvent.

A. Feature Extraction

Based on the raw data, we compute four sets of features
for each PIN typing action: acceleration, pressure, size, and
time. We describe each of them in the following:

• Acceleration: For each digit d in a PIN action, we
calculate the five acceleration values:

– Ad,1: the magnitude of acceleration when the digit
d is pressed down;

– Ad,2: the magnitude of acceleration when the digit
d is released;

– Ad,3: the maximum value of magnitude of accelera-
tion during digit d key-press to key-release;

– Ad,4: the minimum value of magnitude of accelera-
tion during digit d key-press to key-release;

– Ad,5: the average value of magnitude of acceleration
during digit d key-press to key-release.

All above values are the magnitude of acceleration
‖~a‖ =

√
a2x + a2y + a2z . We choose not to use individual

components, because the phone coordinate system is

TABLE II
FEATURES OF TOUCHSCREEN TAPPING BEHAVIORS

# of Dimensions

Feature Set Description 4-digit 8-digit

Acceleration At TouchDown 8 16
(linear & At TouchUp 8 16
angular) Min in key-hold 8 16

Max in key-hold 8 16
Mean in key-hold 8 16

Pressure At TouchDown 4 8
At TouchUp 4 8

Touched Size At TouchDown 4 8
At TouchUp 4 8

Time Key hold time 4 8
Inter-key time 3 7

Total All features 63 127

sensitive to location change. A similar procedure is ap-
plied to calculate the features from angular accelerations.
Combining both acceleration- and angular-acceleration-
related features, there are total of 40 in a 4-digit PIN
action and 80 in an 8-digit PIN action.

• Pressure: We obtain the pressure readings through An-
droid API MotionEvent.getpressure(). The re-
turned pressure measurements are of an abstract unit,
ranging from 0 (no pressure at all) to 1 (normal pressure),
however the values higher than 1 could occur depending
on the calibration of the input device (according to
Android API documents). In the feature set, we include
pressure readings at both key-press and key-release.
There are 8 pressure-related features for a 4-digit PIN,
and 16 for an 8-digit PIN.

• Size: Similar to pressure readings, another Android API
call MotionEvent.getsize() measures the touched
size, associated with each touch event. According to
Android document, it returns a scaled value of the ap-
proximate size for the given pointer index. This represents
the approximation of the screen area being pressed. The
actual value in pixels corresponding to the touch is
normalized with the device’s specific range and is scaled
to a value between 0 and 1. For each key-press and key-
release, we record the size readings and include in the
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Fig. 2. An illustration of two-feature space of a target user and many others.
X1 and X2 are the two features. The dashed lines define the boundary of
the target user’s behavior. Because the target user’s behavior is limited to a
concentrated area, the boundary blocks the majority of potential impostors.

feature set. A 4-digit PIN contains 8 size-related features,
and an 8-digit PIN contains 16.

• Time: key-hold times and inter-key time intervals be-
tween two nearby keys. They are measured from the
TouchEvent timestamps, of both TouchUps and
TouchDowns. Overall, a 4-digit PIN action contains 7
time-related features, while 8-digit PIN contains 15.

For a 4-digit PIN, each action results in a total of 63
features; for an 8-digit PIN, the number of features for one
action is 127. Table II summarizes the description of the above
four feature sets.

B. Touchscreen Tapping Characterization

Our underlying assumption is that a user’s feature dis-
tribution should be clustered within a reliably small range
compared with many others. As a result, those metrics can
be exploited to block the majority of impostors, as illustrated
in Figure 2.

1) Uniqueness of User Pattern: As described above, we
define four sets of features in order to characterize a user’s
tapping behaviors on smartphones: acceleration (both linear
and angular), pressure, size, and time. All these features can
be easily obtained from a smartphone’s on-board sensors, and
can accurately characterize a user’s unique tapping behaviors.
Based on the feature data, we observe that each user demon-
strates consistent and unique tapping behaviors, which can be
utilized for differentiating itself from other users.

Figure 4 shows the timestamps of entering the same PIN
3-2-4-4 from three different users, including the moments of
each key-press and key-release. Each individual’s timing pat-
terns clearly differ, but are very consistent within themselves.
This is similar to the observations on a regular computer
keyboard [19].

In addition to timing information, motion data such as pres-
sure, touched size, and acceleration also reveal user-specific
patterns. Generally speaking, acceleration is proportional to
the tapping force applied to the touchscreen, while angular
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Fig. 4. Timing of tapping on the smartphone from three different users,
shown in three vertical panels. Each user typed 20 times of the number string
“3244”. The solid dots represent key-press time, and the open dots are key-
release time. Different colors represent the timestamps of different digits.

acceleration represents the moment of force. Touched size is
related to both user finger size and tapping force. Figure 3
shows the tapping pressure from three different users. We
can see that three different users’ tapping pressure form
distinguishable individual patterns, with Subject #1 taps the
hardest, Subject #2 taps much more gently, and Subject #3 is
gentlest. Meanwhile, the level of tapping pressure is relatively
consistent within one subject.

2) Dissimilarity Measures: We represent each user action
as n-dimensional feature vectors, where n is the number of
feature dimensions. Using the dissimilarity score between two
feature vectors, we further verify if our extracted features of
a user remain relatively stable over multiple repetitions, in
comparison with those of the other participants.

As the first step, we compute a target user’s template as an
average feature vector over its N PIN tapping actions, where
N = 150 in our case. At the same time, each feature’s standard
deviation is computed based on these N actions.

In our approach, given a new biometric data sample, we
evaluate its dissimilarity score from the target user’s template
as follows. Suppose the new data sample’s feature vector is
X = {X1, X2, ..., Xi, ..., Xn}, where Xi represents the ith
feature dimension; and the target user’s template is represented
similarly as T = {T 1, T 2, ..., Tn}. The dissimilarity score
is the accumulated deviation from the two vectors over all
normalized features:

D(X,T) =
∑
i

∥∥∥∥Xi − T i

σi

∥∥∥∥ , (1)

where σi denotes the standard deviation of the ith feature
over the N trials in obtaining the target user’s template. By
dividing σi, we give higher weights to those features that
have smaller variation within the target user, because they
more reliably reflect the target user’s specific pattern. This
is a standard procedure mostly seen in outlier removal (also
known as standard score or z-score in statistics [20]).

Figures 5, 6, and 7 show the distributions of dissimilarity
scores, calculated from a target user’s template entering three
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Fig. 3. Users’ tapping pressure on smartphone touchscreen, while entering an 8-digit PIN 1-2-5-9-7-3-8-4. Each figure shows pressure readings on a 3×3
smartphone number pad. Darker color indicates a larger tapping pressure. Note that number “6” has no pressure because it is not in the PIN. Figures in the
same row are from a same user while typing the PIN for three times.

different PINs, respectively, to both the target user itself and
the rest of other users. It is clear that in all three PINs,
the dissimilarity scores to the target user itself is highly
concentrated on the lower end, indicating a high similarity
to its own behavioral template. Meanwhile, the dissimilarity
scores of other users are dispersed and located on the higher
end. For the 4-digit PIN 3-2-4-4 (Figure 5), there is a small
overlap of the target user itself with others. It implies that only
few members among the other 52 users behave similarly to the
target user, and may be misclassified. For the two 8-digit PINs
(Figures 6 and 7), the target user’s and others’ distribution
curves are completely separated with a clear gap in between.
Likely this is because an 8-digit PIN action contains more
cognitive information that is user-specific than a 4-digit PIN
action.

IV. CLASSIFICATION

The system architecture of our approach consists of a feature
module, a classifier module, and a decision maker module as
shown in Figure 8. Firstly, raw data are recorded during user’s
tapping actions. Then, four sets of features are calculated and
fed into the classifier, which derives a decision score featuring
its similarity to the target user’s template. The decision score
is used by the decision maker to make a final decision, with
respect to a predefined threshold value. The final decision is
to label whether an user tapping action is originated from the
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Fig. 5. Distribution of dissimilarity score of typing 3-2-4-4 from a target
user’s template, to both the target user itself and other 52 users.

target user or an impostor.
User behavioral pattern can be derived from either one-

class or two-class learning. In one-class learning, only the
target user’s data is needed in training phase; but the learned
model can be applied to classify both the target user or
an unknown impostor. Additionally, if other users’ data are
available, together with the target user’s own data, we can
conduct a two-class learning. One-class learning is straight-
forward and more practical because it does not involve other
users’ data, but with slightly lower authentication accuracy.
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Fig. 6. Distribution of dissimilarity score of typing the 8-digit PIN 1-2-5-9-
7-3-8-4 from a target user’s template, to both the target user itself and other
users.

For a two-class classifier, device manufacturers could pre-load
some anonymized user data into smartphones before shipping
them to their customers. With the pre-load anonymized user
data, two-class classification is also feasible to perform in
practice and can achieve higher authentication accuracy. Due
to page limit, here we only present one-class learning and its
evaluation results in Section V.

Our one-class learning process consists of the enrollment
and testing phases. In the enrollment of a target user I , taking
its N input actions, we calculate the standard deviations of
every feature as σj for the jth feature. In the testing phase,
given an unknown sample as n-dimensional feature vector
XQ, its distance from each of the N feature vectors in the
enrollment phase is calculated as:

d(XQ, Xi) =

n∑
j=1

‖XQ,j −Xi,j‖
σj

, i = 1, ..., N, (2)

where XQ,j is the jth feature of feature vector XQ, and Xi,j

is the jth feature of the ith feature vector in the enrollment
phase. Following this, the distance of XQ’s nearest neighbor
dmin(XQ, I) will be chosen as the dissimilarity measurement
to the target user’s template. The underlying assumption is
that if XQ belongs to the target user, it should have a short
distance to its nearest neighbor in the target user’s data. And
if dmin(XQ, I) is below a pre-defined threshold value, it is
labeled as from the target user; otherwise, it is labeled as from
impostors. Implementation wise, setting a large threshold value
means a higher probability of recognizing the target user, but
allowing more impostors to slip through. A small threshold
value strictly blocks out impostors, but may falsely reject the
target user.

In short, our classification approach is based on a simple
notion of nearest neighbor distance to the training data. A
larger distance indicates higher likelihood of being an impos-
tor. Furthermore, each feature dimension is normalized by its
standard deviation in the training data, so that features with
large variation are given small weights.
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Fig. 7. Distribution of dissimilarity score of typing another 8-digit PIN 1-
2-5-9-8-4-1-6 from a target user’s template, to both the target user itself and
other users.

V. EXPERIMENTAL EVALUATION

Generally, the accuracy of a biometrics-based authentication
is evaluated by the following error rates:

• False Reject Rate (FRR) — the probability that a user is
wrongly identified as an impostor;

• False Accept Rate (FAR) — the probability that an
impostor is incorrectly identified as a legitimate user.

The point at which both FAR and FFR are equal is denoted as
the Equal Error Rate (EER). The value of EER can be obtained
by tuning a certain threshold until FAR and FAR are equal.

A formal description of a biometric-based authentication
system is summarized as [21]: given an unknown sample to
be verified towards a target user I , its feature vector XQ is
compared with the target user’s template XI . A dissimilarity
score D(XQ, XI) is calculated, where D is a function that
evaluates the dissimilarity between two feature vectors. The
dissimilarity function D varies with different methods of
classification. Finally, a threshold value t is set to determine
if XQ is from the target user or an impostor:

(I,XQ) ∈

{
target user, if D(XQ, XI) ≤ t
impostor, otherwise

Tuning the threshold would give the classifier a preference
towards either the target user or the impostors, thus reducing
one error rate while increasing the other. Because our approach
acts as a second factor authentication, which supplements the
passcode-based mechanisms for higher assurance authentica-
tion in a cost-effective fashion, we focus more on being user-
transparent and user-friendly while enhancing the security of
PIN-based authentication.

In the following, we present the evaluation results of the
one-class based verification system, along with the effect of
threshold and number of actions in training, the comparison
with different combination of PINs, and the associated system
overhead.

A. Verification Accuracy

There are two parameters that affect the accuracy in one-
class learning: the number of actions in training, and the
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TABLE III
USER VERIFICATION ACCURACY

PIN Equal Error Rate (EER)a

3-2-4-4 3.65% (3.58%)
1-1-1-1 6.96% (6.01%)
5-5-5-5 7.34% (5.38%)

1-2-5-9-7-3-8-4 4.55% (6.23%)
1-2-5-9-8-4-1-6 4.45% (4.15%)
a with standard deviation in parenthesis
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threshold.
By increasing the number of actions in training, user be-

havioral patterns become more precise since more actions
yield a higher statistical significance. Figure 9 shows that the
averaged equal error rate (EER) decreases as more user actions
are included in training. All five PIN combinations present
similarly shaped curves, while the results of 1-1-1-1 and 5-5-
5-5 are less accurate than those of 3-2-4-4 and the two 8-digit
PINs. From lower accuracy of 1-1-1-1 and 5-5-5-5, it seems
that a PIN number with higher repetition of digits reduces the
difference in individual users’ tapping behaviors, leading to a
less accurate verification result. Moreover, for all five PINs,
the accuracy remains on a similar level after 20 user actions.
This implies, as more user actions are added in training, there
is a diminishing gain in accuracy. For example, increasing user
actions from 20 to 40 requires twice the time waiting for user
input, but only limited accuracy increase is seen.

Table III further lists the exact values of averaged EER, with
its standard deviation in parenthesis. In computing EERs, there
are 85 user actions included in the training process. As shown
in Figure 11, in all three PIN combinations, there is a trade-off
between FRR and FAR.

As mentioned earlier, four sets of features are included:
acceleration, pressure, size, and time. To measure how the
four sets of features contribute to the final accuracy, we make
four additional rounds of classification, solely based on each
feature set. Figure 10 shows the accuracy results for the four
individual feature sets, as well as those of combining them all
together.

It can be seen from Figure 10 that, the combination of
all four feature sets always outperforms individual feature
set, as it is always with the smallest EER in all different
scenarios. This is because the four feature sets capture the
different aspects of user tapping behaviors, and having them
all together should most precisely represent who the target
user is. Meanwhile, among the four individual feature sets,
acceleration, pressure, and time perform similarly well and
achieve more accurate results than size.

B. System Overhead

In our implementation, the verification system is entirely
built on a smartphone. As a stand-alone system, there is
only a single user present for verification at any given time.
There is no communication overhead associated with our user
verification.

We first estimate the memory overhead of the verification
process. The verification process is profiled using the Android
SDK tool DDMS, and we find out that it only consumes
11.195 MBytes of heap memory during a one-class testing
process and this memory consumption is a one-time cost.
The computational overhead is the sum of CPU costs in raw
data processing (calculating features) and detecting (including
classifying and decision making). The pre-processing on one
user input action of a 4-digit PIN takes only 0.022 seconds.
The detecting process takes another 0.474 seconds, where
the major part lies in finding the nearest neighbor from all
85 reference feature vectors. The CPU cost is measured on
a Samsung Galaxy Nexus, using two Date.getTime()
utility call at the beginning and end of the running time.
Overall, the induced computational overhead is minor on the
smartphone. In terms of disk space for storing user template,
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the signature of a single user profile generated by the training
process consumes only 150.67KBytes. It is very affordable on
an entry-level smartphone, let alone high-end models.

VI. ADDITIONAL ISSUES IN REALITY

In this section, we will discuss four additional issues in real-
ity: multiple positions, mimic attacks, user behavior changes,
and passcode changes. They all stem from the complexity
of human behaviors and environmental factors in smartphone
usage, and in turn affect our user verification performance in
various ways. However, there exist viable solutions to deal
with each of the issues.

A. Multiple Positions

So far we only measure the user tapping behaviors in a
given position. However, it is quite possible that a user types
in a passcode under different positions (e.g., single handed
using the thumb). To handle different input positions, we can
measure and store multiple behavioral patterns for different
positions during the training period. The rich sensors equipped
with smartphones allow us to easily detect the physical po-
sition of the device and choose the appropriate behavioral
pattern for verification. For example, accelerometer readings
straightforwardly signal if a user is in a moving or non-moving
status. And gyroscope readings can even infer the user’s hand
position (one-handed vs. two-handed) when tapping on the
smartphone, as shown in a recent study [22].

To explore on multiple tapping positions, we further conduct
two more sets of empirical measurements. First, we collect
data with only one-handed tapping, which is in parallel with
the two-handed case in Section V. In one-handed tapping, the
phone is held in one hand, and tapped with the thumb finger
of the same hand. Due to the use of a different finger, the one-
handed tapping behavior is different from that of two-handed.
However, with the one-handed data set as the training data,
we perform the same evaluation process as in Section V and
achieve an average EER of 3.37% over all PINs in the on-
handed case, indicating the effectiveness of our approach just
like in two-handed tapping.

In addition to different hand positions, there are also various
body positions a user would switch from time to time. While
tapping a passcode, a user can be sitting, standing, lying on a

sofa/bed, or even walking. It is desirable to see how different
body positions affect a user’s tapping behavior. To answer this
question, we carry out an additional experiment with ten users,
who tap in PINs with four body positions: sitting, standing,
lying and walking. Every user is asked to type in a given PIN
number 20 times under each body position.

In order to better characterize the tapping behaviors under
multiple positions, we have made two slight adaptions in the
data analysis. First, acceleration features are disabled, due
to their over-sensitivity especially in the walking scenario.
Second, timing features are normalized with the total time
of entering a PIN. As a result, behavioral models of a given
user are more consistent among multiple positions but still
distinguishable from those of other users. Using the trained
model with one-handed tapping while sitting as the baseline,
Figure 12 shows the average dissimilarity scores to four
different body positions: sitting, standing, lying and walking,
as well as the average dissimilarity score to all the other
nine users while sitting with respect to each target user. Note
that in Figure 12 the dissimilarity scores under the same
tapping position in training (which is “sitting” in our case)
are not zero. This is because those biometric features cannot
be repeated exactly by human users every time. Therefore,
the dissimilarity associated with “sitting” (shown as red dash
lines in the figure) indicates the intrinsic noise level in tapping
behavior while sitting. From Figure 12, we can see that the
average dissimilarities in different body positions are only
slightly higher than the baseline, while still having a clear
gap from those of the other users.

To summarize, our approach will work well for different
input positions: sitting or walking, single-handed or two-
handed. The challenge is merely to increase the training period
and cover different input positions with more feature sets,
which will impose a larger memory and CPU overhead in
user verification. However, we could further reduce the system
overhead by optimizing the classifier implementation from
different aspects of mobile devices. Note that the current one-
class classifier has not been optimized. We will further explore
this direction in our future work.
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B. Mimic Attacks

Theoretically, our behavior-based verification system can
be bypassed if an impostor can precisely mimic the tapping
behaviors of the device’s owner. However, this is extremely
difficult if not impossible in practice. Intuitively, even if the
impostor has overseen how the device’s owner previously
entered the passcode, it might be able to mimic the timing
aspect. But the other features, such as pressure, acceleration,
and size, are much more difficult to observe and reproduce.

Figures 13 plots the dissimilarity scores from the target
user’s model to the two impostors before and after their mimic
trials. The subfigures from left to right correspond to all
features considered and four individual feature sets (accel-
eration, pressure, touched size, and time). Our experimental
results clearly show that there is no significant improvement
in mimicking given the behavior observation. Taking all four
features into account, it is evident that a mimic attack is very
hard to succeed. For each individual feature (acceleration,
pressure, size, and time) shown in Figure 13, we can see that
only the dissimilarity scores of acceleration are consistently
reduced (i.e., its score range shifts towards that of the target
user after observation). However, for the other three features
(including pressure, size, and time), out of the 10 mimic
attempts, just one or two trials may be slightly closer to
the target’s model, but their score ranges spread even wider.
Thus, the behavior mimicking does not increase the chance of
evasion with respect to these three features.

• There are multiple dimensions in the features we used and
most of them are independent from each other. Although
an impostor may mimic one dimension without much
difficulty, mimicking multiple dimensions simultaneously
is extremely difficult as small physical movements like
tapping are hard to observe and precisely reproduce. For
example, acceleration directly relates to tapping force
(F = m · a), so if the impostor intentionally manages
to tap in a gentler or harder fashion, its behavior can
get closer to that of the target user. However, pressure is
harder to mimic because it equals to tapping force divided
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by touched area. These two independent factors must be
adjusted at the same time, which is more challenging.
Timing (or tapping rhythm) is also hard to mimic, because
timing contains multiple dimensions in our approach:
7 in a 4-digit PIN, and 15 in a 8-digit PIN. Those
individual time intervals (especially key-to-key intervals)
are relatively independent. An impostor may mimic the
target user with a roughly fast or slow rhythm, but it is
hard to reproduce the specific key-to-key dynamics.

• The fine-grained measurement resolution makes our fea-
tures hard to mimic. For example, in our experiment,
timing is measured in order of millisecond. This time
resolution is much higher than human perception, and
hence it is very hard for an impostor to accurately and
consistently mimic tapping rhythm at such a low-level
resolution.

• The physiological differences from the target user set up
another barrier for mimic impostors. In our feature set,
the touched size is heavily affected by the finger size,
and the tapping rhythms also depend on hand agility
and geometric shape. In general, it is very difficult for a
person with bigger hand/fingers to mimic someone with
smaller hand/fingers, and vice versa.

As more sensors have been available on mobile devices,
more features will be included for more accurate user verifi-
cation, and hence mimic attacks will just become less likely
to succeed.

C. User Behavior Changes

This work builds on the assumption that a user’s behavior is
consistent and no abrupt change happens over a short period
of time, but the assumption might not always be true, e.g.,
due to a physical injury. In such scenarios, the behavioral-
based verification mechanism should stay minimally intrusive
to the user. One feasible solution is to contact with the service
providers to disable the verification function remotely and
start the re-training. The purpose of our user verification is
to provide additional security in common day-to-day usage



while still allowing the user to disable it in rare cases. As we
have shown previously, the sensitivity to false positives and
negatives are controlled by various threshold values. Whether
or not exposing the sensitivity control, e.g., setting it to Low,
Medium, and High, can improve user experience is debatable.
On one hand, it allows users to make a conscience choice
to trade off between security and convenience. On the other
hand, it is no longer user-transparent.

D. Passcode Changes

In our approach, only the tapping features of the currently
active passcode are measured and recorded in a user’s smart-
phone. One might ask what happens when the user need
to change its passcode? Although people do not frequently
change their passcodes, updating passcode in a quarterly or
yearly basis is recommended or required by most passcode-
based systems. When this happens, our verification system
could automatically remain inactive for a while and start
another training session to build a new set of tapping features
based on the newly created passcode. The characterization
of tapping features are conducted in background till a stable
pattern has been successfully compiled after multiple trials.
Note that the methodology of our scheme is not bounded to
certain passcodes. In other words, our approach can be applied
to any passcode a user chosen in practice.

VII. RELATED WORKS

This section reviews related works from three different
aspects: keystroke dynamics and graphical passwords, in-
ferring tapped information from on-board motion sensors,
and user (re-)authentication by their finger movements on
touch screens, approximately in chronological order and with
increasing closeness to our work.

A. Keystroke Dynamics

Keystroke dynamics, as one of the behavioral biometrics,
has been extensively studied in distinguishing users by the
way they type on a computer keyboard [23], [24], [13], [25].
Monrose et al. [26], [27], [13] first developed the concept
of password hardening based on keystroke dynamics. It has
been found to be a practical solution to enhance the password
security in an unobtrusive way. Research done on the analysis
of keystroke dynamics for identifying users as they type on a
mobile phone can be found in [28], [29], [30]. Clarke et al.
[28] considered the dynamics of typing 4-digit PIN codes,
achieving an average Equal Error Rate (ERR) of 8.5% on
physical keyboard on a Nokia 5110 handset. Karatzouni et
al. [29] carried out another evaluation on a PDA phone with
physical keyboard, which yields an average EER of 12.2%.
Zahid et al. [30] examined this approach on touchscreen
keyboards and achieved, in one best scenario, a low Equal
Error Rate of approximately 2% with training set required a
minimum of 250 keystrokes.

Our work differs from the existing works above mainly in
two aspects. First, previous studies are all based on physical
keyboards (either in computers or mobile phones), while our

work studies user tapping behaviors with on-screen touch-
enabled keyboards, which are widely deployed in most smart-
phones today. Second, besides keystroke timings, we include
additional features (pressure, size, and acceleration) for user
verification by exploiting various on-board smartphone sen-
sors. This allows us to achieve a complete and fine-grained
characterization on user tapping behaviors.

B. Inferring Tapped Information from On-board Motion Sen-
sors

Several independent researches have found that simply by
using data acquired by smartphone motion sensors, it is
sufficient to infer which part of the screen users tap on [2],
[3], [4], [5]. The first effort was done by Cai et al. in 2011 [2].
They utilized features from device orientation data on an HTC
Evo 4G smartphone, and correctly inferred more than 70% of
the keys typed on a number-only soft keyboard. Very soon,
Xu et al. further exploited more sensor capabilities on smart-
phones, including accelerometer, gyroscope, and orientation
sensors [5]. Evaluation shows higher accuracies of greater
than 90% for inferring an 8-digit password within 3 trials.
Miluzzo et al. demonstrated another key inference method
on soft keyboard of both smartphones and tablets [3]. 90%
or higher accuracy is shown in identifying English letters on
smartphones, and 80% on tablets. Owusu et al. [4] infers taps
of keys and areas arranged in a 60-region grid, solely based
on accelerometer readings on smartphones. Result showed that
they are able to extract 6-character passwords in as few as 4.5
trials.

C. User Authentication by Their Finger Movements on Touch
Screens

Research has been done in exploring different biometric
approaches for providing an extra level of security for au-
thenticating users into their mobile devices. Guerra-Casanova
et al. [31] proposed a biometric technique based on the idea
of authenticating a person on a mobile device by gesture
recognition, and achieve Equal Error Rate (EER) between
2.01% and 4.82% on a 100-users base. Unobtrusive methods
for authentication on mobile smart phones have emerged as an
alternative to typed passwords, such as gait biometrics (achiev-
ing an EER of 20.1%) [32], [33], gesture-based scheme [34],
or the unique movement users perform when answering or
placing a phone call (EER being between 4.5% and 9.5%)
[35].

Recently De Luca et al. [16] introduced an implicit authen-
tication approach that enhances password patterns on android
phones, with an additional security layer, which is transparent
to user. The application recorded all data available from the
touchscreen: pressure (how hard the finger presses), size (area
of the finger touching the screen), x and y coordinates, and
time. Evaluation is based on 26 participants, with an average
accuracy of 77%.

A concurrent work conducted by Sae-Bae et al. [36] makes
use of multi-touch screen sensor on iPad (not phone) to capture
the palm movement. They achieved a classification accuracy
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of over 90%. However, palm movements is not suitable for
smartphone screens, since the screen is typically too small
for palm movements. Citty et al. [37] presented an alternative
approach to inputting PINs on small touchscreen devices. It
uses a sequence of 4 partitions of a selection of 16 images,
instead of 4-digits PINs, to increase the possible combination
of authentication sequences. However, inputting the sequence
needs extra efforts in memorizing the images sequences. Kim
et al. [38] introduced and evaluated a number of novel tabletop
authentication schemes that exploit the features of multi-touch
interaction.

There are two recent works close to ours in re-authenticating
smartphone users by continuously monitoring their finger
movements on the touchscreen [7], [8]. Frank et al. con-
ducted a study on touch input analysis for smartphone user
authentication, which is referred to as touch biometrics [7].
Based on a set of 30 behavioral features, the authors built
proof-of-concept classifiers that can pinpoint a target user
among 41 users with very low equal error rate. Given the non-
trivial error rates, this kind of touch-based analysis is qualified
as a complementary authentication mechanism. Shortly after,
Li et al. conducted another detailed study aiming to pro-
vide continuous re-authentication based on user touchscreen
behaviors [8]. Their system monitors and analyzes user in-
teraction with touchscreens in background, and achieves a
high authentication accuracy of up to 95.78%. Our work
differs from these two studies in the following aspects. First
of all, we focus on studying tapping behaviors exclusively,
instead of sliding behaviors—the major gesture in the two
previous works. This is because in our study, users make a
constructed sequence of tappings in entering PINs at lock
screen, which convey rich personal information. By contrast,
Frank’s work solely focuses on sliding gestures; and in Li’s
work, their focus is on those random touch screen behaviors
after screen is unlocked. As random tappings do not provide
much user information, the sliding gestures play a dominate
role in Li’s work. Additionally, we focus on studying touch
biometrics in order to harden one-time static authentication
(more specifically, passcode-based screen unlock), rather than
for continuous re-authentication. In that sense, our system is
complementary to these two works and can be deployed in
parallel with them. Finally, unlike these works, we employ
one-class learning for user verification, which does not require

training data from other users, but purely relying on the
smartphone owner’s data.

Serwadda and Phoha [39] demonstrated a robot-arm-
executed attack to evade swipe-based continuous verification
by exploiting general population statistics. However, the robot
only mimics the simple swipe gesture. The work has not shown
any evidence on the mimicry of tapping behaviors for keying
a passcode (either 4 or 8 digits). Unlike swiping, tapping a
passcode on smartphones is a much less casual gesture. Given
a specific passcode, a user must perform tapping on a series of
touch positions with a certain order. Even if an attacker is able
to record the tapping behaviors using a high-speed camera and
the robot may accurately mimic the tapping behaviors in terms
of timing metrics (i.e., key hold time and key-interval time),
it would still be very challenging for the robot to accurately
mimic the tapping behaviors of individual users in terms of
size (i.e., touched area), pressure, and acceleration. This is
because the physical size of individual fingers and the physical
force applied on a touch position are quite different from
person to person. Therefore, we believe that our tap-based
approach is much more robust against such a mimicry attack
than swipe-based methods.

VIII. CONCLUSION

As mobile devices have been widely used, ensuring their
physical and data security has become a major challenge. A
simple peek over the shoulders of a device owner while a pass-
code is being entered and a few minutes of hiatus would allow
an attacker to access sensitive information stored on the device.
Using more complex passcodes and/or secondary passcodes
can reduce the chance of such attacks, but it brings significant
inconvenience to the users. We have found that a user’s tapping
signatures if used in conjunction with the passcode itself can
also achieve the same goal, and moreover, the added security
can be obtained in a completely user-transparent fashion.
Previous works have shown the feasibility of this approach, but
their high error rate makes these mechanisms impractical to
use as too many false positives will defeat the purpose of being
user-transparent. Having collected data of over 80 different
users, explored the one-class machine learning technique, and
utilized additional motion sensors on newest generation of
mobile devices, we are able to demonstrate accuracies with
equal error rates of down to 3.65%.
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APPENDIX: PARTICIPANT CONSENT FORM IN DATA
COLLECTION

The general nature of this study entitled “User Authenti-
cation on Smartphones via Tapping Behaviors” conducted by
Dr. (name masked) has been explained to me. I understand
that I will be asked to (1) conduct regular tasks with a
smartphone, like entering a designated 4-digit number; (2)
tapping on the touchscreen in a regular way during the study;
and (3) spend about 5 minutes for the entire process. No data
are being collected regarding personal credentials — e.g., no
tracking on my personal credentials, because I will be given a
designated number to enter. Only the physical input data from
the touchscreen sensor are recorded, including taping pressure,
contact size, acceleration of the phone, and timing information.
I understand that my responses will be anonymous and that
my name will not be associated with any results of this study. I
am aware that I am free to discontinue my participation at any
time and may report dissatisfactions with any aspect of this
experiment to the Chair of the Protection of Human Subjects
Committee, Dr. (name masked), (phone number masked) or
(email address masked). I am aware that I must be at least 18
years of age to participate. My signature below signifies my
voluntary participation in this project, and that I have received
a copy of this consent form.


