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Abstract. Gender is one of the essential characteristics of personal iden-
tity but is often misused by online impostors for malicious purposes.
However, men and women differ in their natural aiming movements of a
hand held object in two-dimensional space due to anthropometric, biome-
chanical, and perceptual-motor control differences between the genders.
Exploiting these natural gender differences, this paper proposes a nat-
uralistic approach for gender classification based on mouse biometrics.
Although some previous research has been done on gender classification
using behavioral biometrics, most of them focuses on keystroke dynamics
and, more importantly, none of them provides a comprehensive guideline
for which metrics (features) of movements are actually relevant to gender
classification. In this paper, we present a method for choosing metrics
based on empirical evidence of natural difference in the genders. In par-
ticular, we develop a novel gender classification model and evaluate the
model’s accuracy based on the data collected from a group of 94 users.
Temporal, spatial, and accuracy metrics are recorded from kinematic
and spatial analyses of 256 mouse movements performed by each user.
A mouse signature for each user is created using least-squares regression
weights determined by the influence movement target parameters (size
of the target, horizontal and vertical distances moved). The efficacy of
our model is validated through the use of binary logistic regressions.

1 Introduction

The popularity of online social networks, online forums, and various online dating
sites has significantly increased the visibility of online users’ personal informa-
tion. However, these online sites also allow a great deal of anonymity in the
sense that a user’s identity is tied to the user’s account but not personally to the
user. This anonymity has been exploited by impostors, such as sexual predators,
who lie about their gender or age for malicious purposes, while a victim user
has little way of verifying that the provided information is valid. To date, very
little has been done to address this problem of fake online personal identity. A
strict registration policy, such as providing legal documents, is just not feasible
for regulating this problem.

One promising alternative involves the use of physical or behavioral biomet-
rics, such as keystroke dynamics or mouse dynamics, to enhance user authenti-
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Fig. 1. Illustration of the major anatomical measurements relevant to using a computer
mouse from a seated position. Graph of gender differences in upper limb length (data
taken from Anthropometric Reference Data for Children and Adults : Unites States,
2007-2010; U.S. Department of Health and Human Services) [1].

cation. These biometrics are non-invasive and can be used actively as a confir-
mation step or passively through continuous re-authentication to determine the
demographic characteristics of a user. However, previous soft biometric systems
tend to take a very data driven approach based on simple aggregate measures
(e.g., averages) of behavioral metrics. In this paper, we present a new natu-
ralistic approach to using behavioral biometrics for verifying an online user’s
demographics. We will illustrate the advantages of this approach by applying
mouse biometrics to discriminate a user’s gender. Our approach takes advantage
of intra-user variability in mouse movements, and has the potential to overcome
generalizability issues when using mouse biometrics for user verification.

The proposed approach is mainly based on two important assumptions re-
garding naturally occurring mouse movements: (1) Gender differences naturally
exist when performing two-dimensional aiming movements of a hand held de-
vice. The support for this assumption comes from a variety of basic and applied
research domains, which include occupational health, physical therapy, public
health, ergonomics, human anatomy, and perceptual-motor control theory. (2)
The gender differences alluded to in the first assumption can be further elabo-
rated by tracking the changes to naturally occurring mouse movements that are
imposed by different target parameters. These target parameters are defined by
the horizontal and vertical distances between the start and endpoint target loca-
tions, and by the size of the endpoint target. All three task parameters are known
to affect aiming movements [11,25,28] while recent research in perceptual-motor
control has highlighted that gender can also mediate these effects [4, 23,24].

As a result of these two assumptions, this approach incorporates a much
wider array of mouse movement metrics than those used in previous security ap-
plications of mouse biometrics. Consequently, the data analysis of these metrics
required a different statistical approach from that used in traditional investiga-
tions of mouse biometrics. Twenty one different mouse movement metrics (tem-
poral, spatial, and accuracy) were extracted from the movements recorded, and
then each metric was expressed as a vector of four variables. The four variables
correspond to the intercept and three unstandardized regression coefficients that
are obtained from a multiple regression equation formulated to predict each met-
ric using the three target parameters (vertical distance, horizontal distance, and
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target size). Binary logistic regressions were then employed to predict each par-
ticipant’s gender using an optimal subset of the multiple regression coefficients.

The proposed model was validated with mouse movement data collected from
94 participants (45 male and 49 female) who each performed 256 movement
trials. Our user data collection has been filed and approved by the Institutional
Review Board (IRB) to ensure participants are treated ethically. The model’s
accuracy was tested on both labeled and unlabeled data. The labeled data is
used as a verification step to test our method’s ability to accurately fit the
model to the real data and identify a user that has uncommon mouse movement
characteristics as an outlier, while the unlabeled data is used to test the ability
to accurately classify a user who has not yet been sighted before. Based on the
evaluation results in both labeled and unlabeled data, an analysis of the outliers’
impact was further performed to test the impacts that outliers, i.e., those users
with mouse movement characteristics greatly different from the average, would
have on the model. The achieved maximum accuracy is 89.4% for the full labeled
data set and 100% after removing outliers, while 72.4% for the unlabeled data
set and 75.9% after removing outliers.

The remainder of the paper is structured as follows. Section 2 describes the
logic behind the naturalistic approach, along with a summary of related work.
Section 3 details the methodology used to collect data, filter data, and extract
the metrics from the data to be used for gender classification. Section 4 presents
the two analysis steps used in building the statistical models for predicting the
gender of each participant. Section 5 reports the results of testing the statistical
models. Section 6 reviews the findings and limitation of the study, as well as
describing future directions for this naturalistic approach. Finally, Section 7
summarizes the paper.

2 Background

In this section, we first highlight the gender difference in anthropometrics, in-
cluding its induced differences in movement behaviors and grip postures. We then
present the background of using behavioral biometrics for user authentication.

2.1 Gender Difference in Anthropometrics

Men and women clearly differ in their physical dimensions as described by an-
thropometric data recorded in many countries for the purposes of monitoring
public health and designing ergonomically sound work environments. Figure 1
illustrates the important anthropometric attributes of an individual working
with a typical computer system. Maneuvering a computer mouse across a 2-
Dimensional work space requires the complex coordination of the upper and
lower arms in combination with the wrist and fingers. As shown in Figure 1, the
anthropometric data for the upper arm length (reported by the United States
Health Department [1]) reveals large consistent gender differences in the phys-
ical dimensions of a key limb component for moving a mouse on a table top.
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Fig. 2. Anatomical terms for motions of upper limb, wrist, and joints.

Physical differences like these arguably underlie many of the movement and grip
differences that will be described in the remainder of this section [17].

Moving a computer mouse is classified as an aiming movement by researchers
in the field of motor behavior, and aiming movements are generally composed of
consistent temporal and spatial characteristics. An aiming movement typically
includes a ballistic component (single phase of acceleration followed by decel-
eration) that corresponds to the main movement of the hand into the general
area of the target location. The ballistic component is followed by a sequence of
sub-movements (multiple phases of acceleration and deceleration) that consist
of small spatial corrections of the hand to reach the final target destination [20].
The field of motor behavior suggests that men and women differ in their aiming
movements with men tending to move faster than women and with less accu-
racy [4,6,9,23,27]. It was also reported that the location of the target in relation
to the hand being used affected the accuracy of movements made by men, but
showed no significant effect on women’s movements [23]. These results not only
highlight gender differences in movement behavior again, but also stress the
importance of incorporating target parameter effects when investigating these
gender differences. Here the target parameters include target size, horizontal
distance, and vertical distance.

Research in physical therapy that has examined the effects of mouse use on
wrist and arm pain in computer users has shown gender differences in hand and
arm postures when performing movements with a mouse. A study on the finger
postures of mouse users showed that men more frequently had a finger posture,
in which the finger used for mouse clicking had a lifted finger posture where the
middle portion of the finger was not in contact with the mouse [18]. Male partici-
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pants in this study were also more likely to show an extended finger posture with
a flexion angle of less than 15 degrees when gripping the mouse (refer to Figure
2 for an illustration of relevant movement terms). These different grip postures
may not only affect mouse movement characteristics, but also influence mouse
button presses that can also be an important component of mouse biometrics.
Johnson et al [16] found that women exerted more relative force on the mouse
when gripping it, while Wahlstrom et al [30] reported that women exerted more
force on the mouse button while pressing it. Johnson and colleagues also revealed
different wrist postures between men and women when moving the mouse with
women showing higher wrist extensions, larger ulnar deviations (refer to Figure
2), a larger range of motion in the wrist, and higher wrist velocities. A similar
study by Yang and Cho [32] reported larger elbow flexion angles in men as well
as different ulnar deviations, but in this study it was the men who exhibited the
larger ulnar deviation angles. All of these different grip postures have the poten-
tial to affect mouse movement characteristics, including mouse button presses
that can also be an important component of mouse biometrics. The results of
these studies suggest that mouse biometrics should not only consider movement
characteristics of aiming movements, but also consider movement characteristics
unique to the physical manipulation of gripping a computer mouse.

2.2 Behavioral Biometrics

The use of biometrics is an attractive option for user authentication since it
is inherently based on “who you are,” and unlike other conventional methods
cannot be lost, forgotten, or stolen. A large variety of user characteristics are
used in biometric identification with some involving physiological recording, such
as iris scanning, fingerprint scanning, facial recognition, and pulse recording
[22]3; and some involving behavioral recording, such as keystroke and mouse
dynamics [26,31]. The behavioral biometric systems, however, have the distinct
advantage of not requiring specialized hardware to record the user behaviors.
Research interest in behavioral biometrics started in the 1990s with the study
of keystroke dynamics [19] that eventually led to research involving keystroke
dynamics combined with mouse dynamics [2].

Behavioral biometrics have been used in the past to predict the gender of a
user, but these studies have primarily focused on keystroke dynamics. Fairhurst
and Da Costa-Abreu [10] conducted a study using a multiclassifier system on the
GREYC-keystroke database [12], and achieved an accuracy for gender prediction
of 95%. Giot et al [13] conducted a similar study using fixed-text input for
gender prediction and reported an accuracy of 91%. They also reported that
traditional keystroke authentication systems had an accuracy increase of 20%
when combined with the user’s gender prediction model. These studies achieve
impressive accuracy for gender classification, but further research is required to
determine if these results can be generalized to different sets of keyboard data

3 It records the response at the palm of the hand while sending a low voltage electrical
current through the body from the other palm.
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that are not fixed, as well as to different types of keyboard interfaces. In addition,
authentication systems based on keyboard dynamics may not be suited to new
graphical password interfaces (see Biddle et al for a survey of these interfaces [5]).

Mouse dynamics have been employed as a means of reauthentication to dis-
criminate the identities of web browser users [21]. Ahmed et al [3] used neural
networks to learn a user’s mouse dynamics in a specific environment while per-
forming continuous identity authentication. Hamdy and Traore [14] combined
mouse dynamics with cognitive measures of visual search capability and short
term memory to create a static user verification system. These studies highlight
the utility of using mouse biometrics in user re-authentication; however their
findings are limited to identity authentication and have not been generalized to
other purposes. To the best of our knowledge, no previous studies have reported
the use of mouse biometrics to classify users’ gender.

3 Methodology

This section describes the apparatus and method used for data collection. The
data analysis procedures used to calculate and evaluate movement metrics are
also described in this section.

3.1 Data Collection

There are 94 participants (45 men and 49 women) aged between 17 and 48 years
participated in this study. The participants consist of students, faculty, and staff
who were all experienced computer mouse users. The male and female partici-
pants did not differ statistically with respect to prior computer use experience
or age.

All participants were seated in a static non-reclining chair in front of a com-
puter monitor with the right hand resting comfortably on the same mouse and
table surface used by all participants. Participants were instructed to find a seat-
ing location and arm posture in which moving the mouse would feel the most
natural to them. They were requested to maintain this posture while conducting
all experiment trials.

Raw mouse movement data were collected using an application implemented
with the processing programing language. The same home (starting point) target
was used on all trials and was displayed within an application window. Once a
participant positioned the cursor on the home target and clicked the mouse
button, this target was hidden and a new endpoint target was displayed. The
screen position of the mouse was recorded at a rate of approximately 100Hz
with each data point consisting of a timestamp, the x screen coordinate, the y
screen coordinate, and a tag that identified what type of a movement event was
recorded. The movement events consisted of a standard movement event (mouse
stationary or in motion without the left button being depressed), a target click
event (left mouse button depressed while the mouse cursor is located inside
the target area), a click event (left mouse button depressed while the cursor is
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Fig. 3. Illustration of screen target positions for movements of mouse cursor. Home
target located in center of window. All endpoint target positions are displayed in this
diagram.

outside of the target area), and a new target event (a new target displayed and
the location and size of the target are recorded, instead of the mouse location).

The display window consisted of a rectangular frame (1680 px × 1050 px)
displayed on a 45 × 30 cm computer monitor. As Figure 3 shows, the home
target consisted of a blue 30 px radius circle located in the center of the display
window. All endpoint targets were displayed as red circles and consisted of one
of two possible target sizes (30 px or 60 px radius) located at one of 16 possible
locations. The endpoint target locations varied in their direction of approach
and in their distance from the starting target position.

Each participant was instructed to move the mouse cursor from the home
target to the endpoint target . Once the participants had located the cursor in
the home target circle, they were requested to click the mouse button to start
the trial. The participants were instructed to only pick up the mouse when read-
justing the starting position of their hands on the table, during which they were
moving the screen cursor back to the home target. Each participant conducted
a sequence of 32 practice trials that consisted of all 32 possible combinations
of target size, target distance, and angle of approach as describe above. After
successfully completing the practice trials, each participant then performed four
blocks of 64 movement trials with each block of trials consisting of a random se-
quence of two trials for each combination of the 16 target locations and 2 target
sizes. The participants were allowed to take a short rest after completing each
block of movement trials.

3.2 Movement Metrics

The profiles of distance and velocity were extracted from the raw data of each
movement trial. These profiles were used to calculate ten temporal metrics that
distinguish aiming movements and button presses. The spatial trace of each
movement was smoothed, and then six spatial metrics were calculated to high-
light differences in the trajectory of each movement. Five accuracy metrics were
also calculated for each mouse movement. Following the naturalistic approach,
the choices of these metrics were guided by previous empirical research on gen-
der differences in aiming movements that have used the same or similar met-
rics [4, 6, 9, 15, 23, 24, 27]. For example, researchers have reported that men are
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quicker at perceiving object location, faster in their movements, rely less on vi-
sual guidance of the ballistic omponent of the movement, perform less visual
corrections towards the endpoint of the movement, and are less accurate when
they reach the endpoint of the movement. Some additional metrics were calcu-
lated, because prior empirical research would imply gender differences are possi-
ble for these mouse metrics even if they were not reported in the actual studies.
For example, males and females differ in their grip postures of the mouse and
positioning of the finger over the mouse button [16,18,32], implying that gender
differences could exist for metrics influenced by these grip postures.

3.2.1 Profiles The distance profile was calculated from the Euclidean dis-
tance traveled between consecutive movement events, and smoothed using a
Kolmogorov-Zurbenko (KZ) filter. The KZ filter belongs to the low pass filter
class, and is a series of k iterations of a moving average filter with a window size
of m, where m is a positive odd integer. In other words, the KZ filter repeatedly
runs a moving average filter with the initial input being the original data and
the result of the previous run of the moving averages as the subsequent inputs.
With this in mind, the first iteration of a KZ filter over a process X(t) can be
defined as:

KZm,k=1 [X(t)] =

2(m−1)/2∑
s=−2(m−1)/2

X(t+ s)
1

m
,

the second iteration as:

KZm,k=2 [X(t)] =

2(m−1)/2∑
s=−2(m−1)/2

KZm,k=1 [X(t+ s)]
1

m
,

and so on. In this study, we set m to 11 and k to 3, respectively. The value of
m = 11 was chosen such that the window over which the data is averaged would
correspond to 100 milliseconds or more. Thus, the window can cover a period of
time with an intentional movement since smaller ones are likely to be just jitters.
The value 11 was chosen, instead of 10, because the value of m needs to be odd.
The value k = 3 was chosen because 3 was the smallest value that produced a
smooth curve.

The velocity profile was then calculated from sets of pairs (t,vt), where vt
is the average velocity in pixels per millisecond (px/ms) over the time interval
between t and the time at which the previous data point was recorded.

Aiming movements generally produce velocity profiles that are composed of
one large peak (peak velocity) called the ballistic component that is followed
by zero or more smaller peaks that reflect sub-movements used to position the
cursor over the final target position (refer to Figure 4). The velocity profile
was used to calculate some of the 10 temporal features of the mouse dynamics
recorded from each participant.
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Fig. 4. Example of a velocity profile with various temporal metrics illustrated.

3.2.2 Temporal movement and button press metrics

– Reaction time (RT): the time interval from the moment the endpoint target
appears on the screen until the participant initiates a movement towards
it. The onset of the movement was determined to begin at the point when
movement velocity exceeded 7% of the peak velocity for the ballistic com-
ponent (refer to Figure 4). Various methods were tested for determining the
beginning point of movements, including measuring the slope of the velocity
profile, pixels moved during consecutive time steps, and the percentage of
peak velocity exceeded. All methods were tested using a visual inspection of
a randomly selected group of trials and a set of known edge cases. Through
this testing, we found that using the percentage of peak velocity exceeded
with a value of 7% was the most effective solution.

– Peak velocity (PV): the maximum velocity value found for the ballistic com-
ponent of the movement (refer to Figure 4).

– Time to peak velocity (TPV): the time interval from the beginning of the
movement until the peak velocity was reached (refer to Figure 4).

– Duration of ballistic component (DB): the time interval from the beginning
of the movement until the first local minima on the velocity profile following
the peak velocity (refer to Figure 4).

– Shape of the velocity profile (SV): a measure of the symmetry of the ballistic
component, which is calculated by dividing the time to the peak velocity by
the duration of the ballistic component (refer to Figure 4).

– Proportion of the ballistic component (PB): the proportion of the movement
time taken up by the ballistic component, which is calculated by dividing
the ballistic component duration by the movement time (refer to Figure 4).

– Number of movement corrections (NC): the total number of observed lo-
cal maxima in the velocity profile after the ballistic component has been
completed (refer to Figure 4).
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– Time to click (TC): the time interval between the arrival at the endpoint of
the movement and the pressing of the mouse button.

– Hold time (HT): the amount of time the user held the mouse button down
after the endpoint of the movement was reached.

– Movement time (MT): the time interval from the beginning of the movement
until the endpoint of the movement.

Fig. 5. Example of a mouse trajectory to illustrate differences between three movement
change metrics with task axis drawn in a dashed line.

3.2.3 Spatial movement metrics These metrics are calculated from the
spatial trajectory traveled by the mouse cursor for reaching the endpoint of the
movement.

– Path length (PL): the total distance traveled by the mouse cursor during the
trial. It is calculated as follows:

T∑
t=1

∆dt

where T is the total number of the trial, and ∆dt represents the distance
traveled between time t and time t-1.

– Path length to best path ratio (PLR): the value of the path length divided
by the length of the shortest path between the start and endpoints of the
movement.

– Task axis crossings (TXC): the number of times that the movement path
crossed the task axis. The task axis is defined as a straight line between the
home target and the endpoint target (refer to Figure 5).

– Movement direction changes (MDC): the number of times the movement
changed direction perpendicular to the task axis (refer to Figure 5).

– Orthogonal movement changes (OMC): the number of times the movement
changed direction parallel to the task axis (refer to Figure 5).
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Fig. 6. Graphical depiction of movement accuracy metrics.

– Movement variability (MV): the standard deviation of the distance of the
movement path to the task axis. This metric measures the spatial consistency
of the movement path.

3.2.4 Movement accuracy metrics These metrics represent how closely a
participant came to clicking the center of the endpoint target.

– Absolute error (AE): absolute error corresponds to the Euclidean distance
between the endpoint of the movement and the center of the endpoint target.

– Horizontal error (HE): the difference in the horizontal (x) coordinates be-
tween the endpoint of the movement and the center of the endpoint target.
Negative errors reflect undershooting the target location whereas positive
errors reflect overshooting the target location.

– Vertical error (VE): the difference in the vertical (y) coordinates between
the endpoint of the movement and the center of the end position target.
Negative errors reflect undershooting the target location whereas positive
errors reflect overshooting the target location.

– Absolute horizontal error (AHE): the absolute value of the difference in the
horizontal coordinates between the endpoint of the movement and the center
of the endpoint target.

– Absolute vertical error (AVE): the absolute value of the difference in the
vertical coordinates between the endpoint of the movement and the center
of the endpoint target.

These defined errors are illustrated in Figure 6, where an absolute error
consists of Euclidean distance between the end of a movement and the center of
an endpoint target. The horizontal error corresponds to the difference in the x
coordinates of the movement endpoint and the center of the endpoint target. The
vertical error corresponds to the difference in the y coordinates of the movement
endpoint and the center of the endpoint target. In both cases, a negative value
depicts undershooting and a positive value depicts overshooting.

3.3 Data filtering

Before calculating the movement metrics for each participant as described above,
the movement data were filtered to remove invalid trials where mouse movements
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did not fall within the acceptable criteria for successful movement recording. The
trials in which mouse movements clearly left the designated screen window were
rejected, as well as the trials where the reaction times were less than 150 ms.
This value of 150 ms was chosen, because the lower end of human reaction time
is 100 ms. However, the method of determining the start of the movement is not
perfect and causes some false positives. The same visual testing for determining
the movement onset was used here, and we found that the value of 150 ms made
a good balance between the false positive ratio and the false negative ratio while
determining if the reaction time value was realistic. Only 4% of data points were
rejected for these reasons across those more than 24,000 trials recorded.

4 Model design

The gender classification model results from a two-step procedure of statistical
analyses. The first step involves conducting least-squares multiple regressions
to determine the effects of target parameters (target size, horizontal distance,
and vertical distance) on movement metrics for each participant. The resulting
unstandardized regression coefficients provide a movement signature for each
participant, which will be used to distinguish the corresponding participant’s
gender. The second step involves conducting logistic regressions to select the
statistical model that most accurately classifies participants by gender.

4.1 Mouse signatures

Traditional analyses of mouse biometrics usually rely on a single aggregate indi-
cator (e.g., average) for each metric. Unfortunately, previous studies have shown
that this approach may be ineffective. For example, in the study conducted by
Rohr [23], men were shown to have their accuracy reduced as a target was made
smaller and placed further away, whereas women were more consistent with their
accuracy. By simply taking the average accuracy, the gender difference would be
be diminished or lost since the lower values counteract the higher values. Thus,
it is imperative to find a new way to produce features that capture not only
the actual values observed in the data, but also the amount of changes caused
by the target parameters. Our approach involves a more detailed analysis that
incorporates the effects of target parameters on these mouse metrics. The effects
of target parameters on the mouse metrics were quantified by unstandardized
regression coefficients obtained from a multiple linear regression analysis with
least squares fitting conducted for each metric. Multiple regression analyses pre-
dict the scores of a dependent variable y by fitting a straight line defined by
a set of independent variables {x1, x2, x3, ...} to a set of known data points
(yi, x1,i, x2,i, ...) such that it satisfies the equation:

yi = a+ b1x1,i + b2x2,i + ...+ bnxn,i + εi,

where a and bk are unknown constants that are estimated, and εi is the residual
defined as the vertical deviation of the known data to the estimated line. If the
estimated line is a perfect fit, all values of ε are zero.
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The least squares fitting method estimates the values of a and bk by reducing
the squares of the residuals such that the following equation is minimized:

r∑
i=1

ε2
i =

r∑
i=1

[yi − (a+ β1x1,i + b2x2,i + ...+ bnxn,i)]
2
.

Three target parameters were chosen as predictor variables for these mul-
tiple regressions: the size of the endpoint target, the vertical distance between
the home and endpoint targets, and the horizontal distance between the home
and endpoint targets. The target distance was measured in separate horizontal
and vertical components, because prior research suggests that these components
should be the most influential on aiming movements rather than more complex
combinations of the angle of approach and distance moved [29]. Absolute values
were used for the distances traversed because previous research also suggests that
the direction of movement (left vs. right and up vs. down) does not affect move-
ment metrics as much as whether it is just a vertical movement or a horizontal
movement [7,8]. Consequently, the size and sign of the regression coefficients for
the distance variables simply represent how much of an effect, moving vertically
or moving horizontally, had on the predictability of a metric.

For each metric recorded, three regression coefficients and the intercept value
were provided to highlight the effect of these target parameters on the metric. For
example, if the peak velocity (PV ) was used as the dependent variable, four val-
ues were provided for this metric (intercept value PVconst, regression coefficient
for horizontal distance moved PVhorz, regression coefficient for vertical distance
moved PVvert, and regression coefficient for target size PVsize). This results in
a metric vector for the peak velocity that specifies the following equation:

PV = PVconst + PVsize(size) + PVvertD(vertD) + PVhorzD(horzD).

It was expected that these regression variables would better reveal gender
differences in the metrics. This assumption is supported by 4-way ANOVAs
(gender × target size × distance × angle of approach) that were conducted for
each metric. The significant results of these ANOVAs are summarized in Table
1. These results clearly show that many of the metrics revealed consistent target
parameter effects, and these effects could be mediated by gender.

4.2 Gender prediction model

The second step in developing a gender prediction model involves with the input
of the metric variables obtained from each participant in a logistic regression
to predict the gender of a participant. The logistic regression is often used for
classification when dependent variables have binary values. The curve used in
this type of regression is an S shaped curve asymptotically tapered between 0
and 1 and is derived from the following linear relation:

logit(P ) = α+ β1x1 + β2x2 + ...,
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Variable Significant effects
Reaction time Gender, Distance, Size, Angle, Distance × Angle,

Gender × Distance × Size × Angle
Movement time Distance, Size, Angle
Hold time Gender, Size, Angle
Time to Peak V Distance, Size, Angle, Distance × Angle, Gender × Size × Angle
Peak velocity Distance, Size, Angle, Distance × Angle
T ballistic comp Distance, Angle
Shape of velocity profile Distance, Angle, Distance × Angle
Ballistic prop Distance, Size, Angle, Gender × Size, Distance × Size, Distance × Angle,

Size × Angle
N of corrections Distance, Size, Angle, Distance × Size, Distance × Angle, Size × Angle
Time to press Size, Angle
Path length Distance, Size, Angle, Gender × Size, Distance × Angle,

Gender × Size × Angle
Path L best ratio Distance, Size, Angle, Size × Angle
Axis crossings Distance, Angle, Distance × Angle
Direction changes Distance, Size, Angle
Orthog changes Distance, Size, Angle, Distance × Angle, Size × Angle
Movement var Distance, Angle, Distance × Gender, Distance × Angle,

Gender × Distance × Angle
Index of DIff Distance, Size, Angle, Distance × Size, Distance × Angle, Size × Angle,

Distance × Size × Angle
Index of Performance Distance, Size, Angle, Size × Angle
Horizontal error Size, Angle, Size × Angle, Gender × Distance × Angle
Vertical error Size, Angle, Size × Angle
Absolute error Distance, Size, Angle, Size × Angle

Table 1. Significant main effects and interactions found for 4-way ANOVAs (Gender
× Distance × Angle of approach × Target size) conducted for each metric.

where logit(P ) refers to the natural logarithm of the odds function defined as
follows:

logit(p) = ln(odds) = ln

(
P

1− P

)
.

This function can then be substituted into the original linear relation and be
solved for P giving the formula:

P =
eα+β1x1+β2x2+...

1 + eα+β1x1+β2x2+...
,

where P is the probability that the dependent variable has the outcome coded
as 1 given the values of xi.

The values of constant α and coefficients βi are determined by maximizing
the conditional probability of the observed data, given the parameters used as
predictors. An initial model is constructed with arbitrary values for the coef-
ficients, and the conditional probability is evaluated. The coefficients are then
modified in order to increase this probability, and the procedure is repeated until
the model converges or a maximum number of iterations are reached. A max-
imum of 20 iterations were allowed to determine the values of the coefficients,
and the results lead to a threshold value of 0.5 (i.e., whose values above 0.5
were considered as male and whose values no larger than 0.5 were considered as
female).
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Full set Outliers removed

Set Labeled Labeled 70% Unlabeled 30% Labeled Labeled 70% Unlabeled 30%

Male 91.1% 83.9% 57.1% 100% 100% 71.4%

Female 87.8 % 91.2% 86.7% 100% 100% 80.0%

Total 89.4% 87.7% 72.4% 100% 100% 75.9%
Table 2. Accuracy of predicted results. Labeled set refers to the full data set used in
Section 4.1. Labeled 70% and unlabeled 30% refer to the training set and test set used
in Section 4.2, respectively.

5 Evaluation

The accuracy of the proposed approach for classifying a user’ gender was evalu-
ated on both labeled and unlabeled data. The labeled data consisted of the full
data set, while the unlabeled data test was performed with 70% of the partic-
ipants used as the training set and the remaining 30% of participants used as
the test set.

5.1 Labeled data analysis

In this section, we verify how well a model may be fit the data and the accuracy
of such a model on users who have been sighted before. We also use this step to
identify any users with unusual characteristics as outliers. The logistic regression
model was tested on all 94 participants, but given the very large number of pre-
dictor variables (21 metrics × 4 metric features = 84 predictor variables) only
smaller sub-sets of predictor variables were actually tested. The first subset of
predictor variables was determined by testing each metric separately. The four
features of each metric were tested as a single group separate from the features
of the other metrics. The statistical significances (p < 0.05) of each metric’s
variables for predicting gender determined if these variables were included in
the first sub-set of predictor variables. The significant predictors included in this
subset were: {HTconst, PVhorz, PBsize, TCconst, TChorz, MDCconst, MDChorz,
MDCsize, AEconst}. To improve the overall accuracy of this model, additional
predictor variables were included while providing a moderate level of statisti-
cal significance (p < 0.1) in predicting gender when each metric was tested
separately. Two additional variables were included to this sub-set of predictor
variables: PBconst and PLRvert. The amount of explained variance in gender
classification using these two subsets of variables was 0.532 according to the
Nagelkerke pseudo r-squared measure, and the classification accuracy based on
this model was 75.5%.

The first subset of predictor variables was reduced from a total number of 84
to 9 by examining each metric’s predictive power one metric at a time. However,
a better subset of predictors may be possible if multiple metrics are included
in the initial logistic regression model. One way to reduce the number of tested
metrics is to only include those metrics that can characterize significant gender
effects from the previously conducted 4-way ANOVAs. These findings highlight
the metrics that show consistent gender differences or interactions of gender
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with target parameters. We also included those metrics published by other re-
searchers with significant gender effects. The logistic regression model was tested
again with a new subset of predictors that included the four variables for each
of these metrics: {RT , HT , TPV , PB, PL, MV , AE, HE, TC, PV , AHE,
AV E, V E}. The 52 predictor variables in this subset were added to the original
subset with a stepwise method, and the following 10 new variables were revealed
as significant predictors: {RTsize, RThorz, RTvert, TPVvert, MVconst, MVvert,
MVhorz, PVconst, PVvert, V Econst}. The amount of explained variance after
the addition of these variables to the final model was 0.676, and the resulting
classification accuracy was 89.4%.

We now test the effects that outliers had on the model. Five users were
identified as having scores that were more than two standard deviations away
from the mean. These are likely users with mouse movement characteristics that
do not entirely fit the average for their gender, since there can be an overlap
of physical characteristics between the two populations and such an overlap
affects the features being used. After the removal of these outliers, our model
can discriminate the gender of the remaining 89 participants with an accuracy of
100%. It is difficult to uncover the actual causes for these outliers, and they can
occur for a variety of reasons including, but not limited to, distraction or injury.
In a real application, one would likely test for outliers at input time, and if an
outlier is detected, the user would be asked to re-do the input trials in the case
of a one time authentication. However, identifying the best methods to handle
outliers is beyond the scope of this paper.

5.2 Unlabeled data analysis

To evaluate the accuracy of our approach on unlabeled data, the movement data
from 65 randomly selected participants were used as the training set to create
the logistic regression model. And the model was then tested on the movement
data from the remaining 29 participants who comprised the test set. The same
variable selection procedure was followed with the unlabeled data as the one used
for the labeled data, except that substantially fewer participants were involved
in these selections.

The statistically significant predictors determined for subset one were:HTconst,
TChorz,MDCconst,MDCsize,MDChorz,AEconst,AHEconst,AHEhorz,RTconst,
PBsize, and V Evert. Six of these predictor variables were consistent with the se-
lections based on the full data set (labeled data). The fit of this model was
tested on the training set and accounted for 0.449 of the explained variance in
predicting gender with a correct classification of 76.9% of the participants in
the set. The second subset included the following predictor variables: {PVconst,
PVvert, PVhorz, MVvert, RTsize, RTvert, RThorz}. All seven variables were in-
cluded in the subset of the predictors obtained previously with the full data set
(labeled data). This overlap shows that this feature selection method produces
a set of features close to what is expected based on research in other fields. On
the other hand, what can be observed over the entire set may still have sensi-
tivity to the training set, which one should be careful of when fitting the model.



A Behavioral Biometrics Based Approach to Online Gender Classification 17

The fitness of this model with the combined subsets was tested on the training
set and accounted for 0.579 of the explained variance in predicting gender. This
final model was tested on the test set and was able to achieve a gender classi-
fication accuracy of 72.4%. After removing the outliers identified previously in
the labeled data analysis, the test set was then classified with a 75.9% accuracy.
These results suggest that outliers have a visible effect on the classifier, but the
negative impact is relatively small.

6 Discussion

Men and women differ naturally, both physically and psychologically. The devel-
opment of computer security tools can take advantage of these natural differences
by focusing authentication procedures on these differences. This study used the
naturalistic approach to successfully classify male and female participants by
measuring the temporal, spatial, and accuracy characteristics of their mouse
movements while evaluating how these mouse metrics were affected by target
parameters.

The measurement of one such metric, movement accuracy, will be used to
exemplify this approach to the biometric analysis of mouse dynamics. Previous
research with aiming movements has revealed gender differences in the spatial
accuracy of these movements with women being on average more accurate than
men [4, 23]. However, this gender difference is actually more complicated than
one suggested by simply comparing average errors, because target parameters
(target size, distance moved, and direction of movement) can also differentially
affect the movement accuracy of men and women [23]. In support of this premise,
our study also found complex interaction effects of gender and target parameters
on spatial error. Consequently, rather than just recording the mean accuracy of
each participant’s movements, a multiple regression analysis was conducted to
predict spatial error using target parameters (size, horizontal distance, vertical
distance) as predictor variables.

This novel approach to biometric analysis comes with some cost, because
there are now four variables representing each metric’s potential contribution to
the prediction model. Given the relatively large number of movement features
already required by our approach, a large number of predictor variables could be
introduced to discriminate the gender of a participant using logistic regressions.
Therefore, two criteria were followed to reduce the set of predictor variables
for testing: (1) each metric was tested individually and only those variables
that were significant predictors of gender in these tests were included in the first
subset of predictors, (2) all the metrics that produced significant ANOVA gender
effects and those with gender effects suggested in prior research were included
in a second subset. Our logistic regressions produced correct classification of a
participant’s gender at a rate of 89.4 - 100% for the labeled data and 72.4 -
75.9% for the unlabeled data. These results are very promising given the limited
range of values provided for each target parameter in this study.
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The optimal classification accuracy was achieved after removing outliers from
the labeled data set and from the training data set for the analysis of unlabeled
data. It is unclear why a few participants had such discrepant mouse metrics,
and further research is needed to rule out the possibility of introducing user
behavioral outliers into data collection and evaluation. However, their effects on
the unlabeled data were minor, indicating that they do not have a large impact
on classifying previously unseen users.

Once the recording accuracies of the movement metrics have been estab-
lished, the current procedure has very low computational overheads because it
relies on simple statistical models for computing predictor variables and gender
classification. A client machine can collect the raw movement data and then
send it to a server for feature extraction and prediction of gender with minimal
overhead, and relatively low latency for the client. Consequently, static and con-
tinuous authentications are viable options with this approach. In fact, real-life
mouse movements that are not constrained to an experimental manipulation, as
was the case in the current study, should provide a larger range of target param-
eters and therefore better predictive accuracy. A larger, more diverse data set of
participants would also facilitate the testing of this approach, because the major-
ity of the participants in the current study were highly educated undergraduate
college students.

7 Future Work

A direct application of this method to be explored is the generalization of this
method across computer platforms with different hardware. One major advan-
tage of the naturalistic approach to biometric analysis is that predictive models
based on natural differences are assumed to have a universal, biological basis, and
therefore, should be more generalizable than traditional data driven approaches
to biometrics analysis. Accordingly, the gender classification model formulated
in the current paper should generalize to other populations of computer-users
(e.g., other countries, different education backgrounds), and also, be somewhat
independent of the computer-user environments where the mouse data are col-
lected (e.g., table height, table surface, type of mouse etc.). A comparison of
the classification success found in the current study for labeled and unlabeled
data provides some support for this assumption. When participants were clas-
sified using a model based on another group’s data (unlabeled data) there was
still a reasonable rate of classification success (72.4 - 75.9%) albeit with some
drop in performance from a completely labeled set of data (89.4 - 100%). Future
research could examine this generalization prediction using different computer
work stations and cross-cultural tests of classification success.

8 Conclusion

This paper proposes a naturalistic approach for gender classification of computer
users based solely on their mouse movements. The design rationale of our ap-
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proach lies in the observation that men and women differ naturally in how they
make mouse movements. We defined a series of temporal, spatial, and accuracy
metrics to quantify the mouse movement differences between male and female
users. In particular, we identified the metrics related to peak velocity, length of
the deceleration phase, target accuracy, finger posture, and reaction time are
relevant to gender classification. There were 94 volunteers participated in this
study, and a mouse signature was created for each participant. We evaluated the
efficacy of our approach for gender classification by conducting binary logistic
regression tests, and achieved promising results.
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