
ContainerLeaks: Emerging Security Threats of
Information Leakages in Container Clouds

Xing Gao1,2, Zhongshu Gu3, Mehmet Kayaalp3, Dimitrios Pendarakis3, Haining Wang1
1University of Delaware, 2College of William and Mary, 3IBM T.J. Watson Research Center

{xgao, hnw}@udel.edu, {zgu, mkayaal, dimitris}@us.ibm.com

Abstract—Container technology provides a lightweight oper-
ating system level virtual hosting environment. Its emergence
profoundly changes the development and deployment paradigms
of multi-tier distributed applications. However, due to the incom-
plete implementation of system resource isolation mechanisms in
the Linux kernel, some security concerns still exist for multiple
containers sharing an operating system kernel on a multi-tenancy
container cloud service. In this paper, we first present the
information leakage channels we discovered that are accessible
within the containers. Such channels expose a spectrum of
system-wide host information to the containers without proper
resource partitioning. By exploiting such leaked host information,
it becomes much easier for malicious adversaries (acting as
tenants in the container clouds) to launch advanced attacks that
might impact the reliability of cloud services. Additionally, we
discuss the root causes of the containers’ information leakages
and propose a two-stage defense approach. As demonstrated
in the evaluation, our solution is effective and incurs trivial
performance overhead.

I. INTRODUCTION

Cloud computing has been widely adopted to consolidate
computing resources. Multi-tenancy is the enabling feature
of cloud computing that allows computation instances from
different tenants running on a same physical server. Among
different types of cloud services, the multi-tenancy container
cloud has recently emerged as a lightweight alternative to
conventional virtual machine (VM) based cloud infrastructures.
Container is an operating system (OS) level virtualization
technology with multiple building blocks in the Linux kernel,
including resource isolation/control techniques (e.g., namespace
and cgroup) and security mechanisms (e.g., Capabilities,
SELinux, AppArmor, and seccomp). By avoiding the overhead
of additional abstraction layers, containers are able to achieve
near-native performance and outperform VM-based systems
in almost all aspects [2], [14], [30]. In addition, the advent
of container management and orchestration systems, such as
Docker and Kubernetes, have profoundly changed the ecosystem
of building, shipping, and deploying multi-tier distributed
applications in the cloud.

Despite the success of container services, there always exist
security and privacy concerns for running multiple containers,
presumably belonging to different tenants, on the same OS
kernel. To support multi-tenancy on container clouds, we
have observed on-going efforts in the Linux kernel to enforce
cross-container isolation and de-privilege user-level containers.
Existing container-enabling kernel features have greatly shrunk
the attack surface exposed to container tenants and could
restrain most existing malicious attacks. However, not all sub-
systems of the Linux kernel can distinguish execution contexts

between a container and a host, and thus they might expose
system-wide information to containerized applications. Some
subsystems are considered to be of low priority for container
adaptations. The rest are facing implementation difficulties
for transforming their code base, and their maintainers are
reluctant to accept drastic changes. In order to close these
loopholes, current container runtime software and container
cloud providers typically leverage access control policies to
mask the user-kernel interfaces of these container-oblivious
subsystems. However, such manual and temporary fixes could
only cover a small fraction of the exposed attack surfaces.

In this paper, we systematically explore and identify the
in-container leakage channels that may accidentally expose
information of host OSes and co-resident containers. Such
information leakages include host-system state information (e.g.,
power consumption, performance data, global kernel data, and
asynchronous kernel events) and individual process execution
information (e.g., process scheduling, cgroups, and process
running status). The distinguishing characteristic information
exposed at specific timings could help uniquely identify
a physical machine. Furthermore, a malicious tenant may
optimize attack strategies and maximize attack effects by
acquiring the system-wide knowledge in advance. We discover
these leakage channels in our local testbed on Docker and
LinuX Container (LXC) and verify their (partial) existence on
five public commercial multi-tenancy container cloud services.

In order to reveal the security risks of these leakage
channels, we design an advanced attack, denoted as synergistic
power attack, to exploit the seemingly innocuous information
leaked through these channels. We demonstrate that such
information exposure could greatly amplify the attack effects,
reduce the attack costs, and simplify the attack orchestration.
Power attacks have proved to be real threats to existing data
centers [26], [43]. With no information of the running status
of underlying cloud infrastructures, existing power attacks can
only launch power-intensive workloads blindly to generate
power spikes, with the hope that high spikes could trip branch
circuit breakers to cause power outages. Such attacks could
be costly and ineffective. However, by learning the system-
wide status information, attackers can (1) pick the best timing
to launch an attack, i.e., superimpose the power-intensive
workload on the existing power spikes triggered by benign
workloads, and (2) synchronize multiple power attacks on the
same physical machine/rack by detecting proximity-residence of
controlled containers. We conduct proof-of-concept experiments
on one real-world container cloud service and quantitatively
demonstrate that our attack is able to yield higher power spikes
at a lower cost.

We further analyze in depth the root causes of these leakage
channels and find that such exposures are due to the incomplete
coverage of container implementation in the Linux kernel.
We propose a two-stage defense mechanism to address this
problem in container clouds. In particular, to defend against
the synergistic power attacks, we design and implement a
power-based namespace in the Linux kernel to partition power
consumption at a finer-grained (container) level. We evaluate
our power-based namespace from the perspectives of accuracy,
security, and performance overhead. Our experimental results
show that our system can neutralize container-based power
attacks with trivial performance overhead.

Overall, the major contributions of this work are summa-
rized as follows:

• We systematically explore and identify information
leakages in container cloud environments. We further
analyze these information leakages in depth and trace
out their root causes.

• We demonstrate that adversaries can exploit these
identified information leakages to launch a new type of
advanced power attack, denoted as synergistic power
attack. Attackers can optimize their attack strategies
and maximize their attack effects. We prove that such
seemingly harmless information leakages may also
pose serious security threats to cloud infrastructures.

• We design and implement a power-based namespace
in the Linux kernel to enhance resource isolation
for containers. Our results show that the proposed
system can effectively defend against container-based
synergistic power attacks with trivial overhead.

The rest of this paper is organized as follows. Section II in-
troduces the background of container technology and describes
power attack threats on data centers. Section III presents the
in-container leakage channels discovered by us and their leaked
information. Section IV details the synergistic power attack
that leverages the leaked information through these channels.
Section V presents a general two-stage defense mechanism
and the specific design and implementation of our power-based
namespace in the Linux kernel. Section VI shows the evaluation
of our defense framework from different aspects. Section VII
discusses the limitations and future work. Section VIII surveys
related work, and we conclude in Section IX.

II. BACKGROUND

In this section, we briefly describe the background knowl-
edge of three topics: internals of Linux containers, multi-tenancy
container cloud services, and existing power attacks in data
centers.

A. Linux Kernel Support for Container Technology

Containers depend on multiple independent Linux kernel
components to enforce isolation among user-space instances.
Compared to VM-based virtualization approaches, multiple
containers share the same OS kernel, thus eliminating additional
performance overheads for starting and maintaining VMs.
Containers have received much attention from the industry
and have grown rapidly in recent years for boosting application

performance, enhancing developer efficiency, and facilitating
service deployment. Here we introduce two key techniques,
namespace and cgroup, that enable containerization on Linux.

1) Namespace: The first namespace was introduced in the
Linux kernel 2.4.19. The key idea of namespace is to isolate
and virtualize system resources for a group of processes, which
form a container. Each process can be associated with multiple
namespaces of different types. The kernel presents a customized
(based on namespace types) view of system resources to each
process. The modifications to any namespaced system resources
are confined within the associated namespaces, thus incurring
no system-wide changes.

The current kernel has seven types of namespaces: mount
(MNT) namespace, UNIX timesharing system (UTS) namespace,
PID namespace, network (NET) namespace, inter-process
communications (IPC) namespace, USER namespace, and
CGROUP namespace. The MNT namespace isolates a set
of file system mount points. In different MNT namespaces,
processes have different views of the file system hierarchy.
The UTS namespace allows each container to have its own
host name and domain name, and thus a container could be
treated as an independent node. The PID namespace virtualizes
the process identifiers (pids). Each process has two pids:
one pid within its PID namespace and one (globally unique)
pid on the host. Processes in one container could only view
processes within the same PID namespace. A NET namespace
contains separate virtual network devices, IP addresses, ports,
and IP routing tables. The IPC namespace isolates inter-
process communication resources, including signals, pipes, and
shared memory. The USER namespace was recently introduced
to isolate the user and group ID number spaces. It creates
a mapping between a root user inside a container to an
unprivileged user on the host. Thus, a process may have full
privileges inside a user namespace, but it is de-privileged on the
host. The CGROUP namespace virtualizes the cgroup resources,
and each process can only have a containerized cgroup view
via cgroupfs mount and the /proc/self/cgroup file.

2) Cgroup: In the Linux kernel, cgroup (i.e., control group)
provides a mechanism for partitioning groups of processes
(and all their children) into hierarchical groups with controlled
behaviors. Containers leverage the cgroup functionality to apply
per-cgroup resource limits to each container instance, thus
preventing a single container from draining host resources.
Such controlled resources include CPU, memory, block IO,
network, etc. For the billing model in cloud computing, cgroup
can also be used for assigning corresponding resources to
each container and accounting for their usage. Each cgroup
subsystem provides a unified sysfs interface to simplify the
cgroup operations from the user space.

B. Container Cloud

With these kernel features available for resource isolation
and management, the Linux kernel can provide the lightweight
virtualization functionality at the OS level. More namespace
and cgroup subsystems are expected to be merged into the
upstream Linux kernel in the future to enhance the container
security. Containerization has become a popular choice for
virtual hosting in recent years with the maturity of container
runtime software. LXC is the first complete implementation

2

of the Linux container manager built in 2008. Docker, which
was built upon LXC (now with libcontainer), has become
the most popular container management tool in recent years.
Docker can wrap applications and their dependencies (e.g., code,
runtime, system tools, and system libraries) into an image, thus
guaranteeing that application behaviors are consistent across
different platforms.

A large number of cloud service providers, including Ama-
zon ECS, IBM Bluemix, Microsoft Azure, and Google Compute
Engine, have already provided container cloud services. For
multi-tenancy container cloud services, containers can either
run on a bare metal physical machine or a virtual machine.
In both situations, containers from different tenants share the
same Linux kernel with the host OS.

C. Power Attacks on Data Centers

Power attacks have been demonstrated to be realistic threats
to existing cloud infrastructures [26], [43]. Considering the
cost of upgrading power facilities, current data centers widely
adopt power oversubscription to host the maximum number
of servers within the existing power supply capabilities. The
safety guarantees are based on the assumption that multiple
adjacent servers have a low chance of reaching peaks of power
consumption simultaneously. While power oversubscription
allows deploying more servers without increasing power
capacity, the reduction of power redundancy increases the
possibility of power outages, which might lead to forced
shutdowns for servers on the same rack or on the same power
distribution unit (PDU). Even normal workloads may generate
power spikes that cause power outages. Facebook recently
reported that it prevented 18 potential power outages within
six months in 2016 [37]. The situation would have been worse
if malicious adversaries intentionally drop power viruses to
launch power attacks [15], [16]. The consequence of a power
outage could be devastating, e.g., Delta Airlines encountered a
shutdown of a power source in its data center in August 2016,
which caused large-scale delays and cancellations of flights
[8]. Recent research efforts [26], [43] have demonstrated that
it is feasible to mount power attacks on both traditional and
battery-backed data centers.

Launching a successful power attack requires three key
factors: (1) gaining access to servers in the target data center by
legitimately subscribing services, (2) steadily running moderate
workloads to increase the power consumption of servers to
their capping limits, (3) abruptly switching to power-intensive
workloads to trigger power spikes. By causing a power spike
in a short time window, a circuit breaker could be tripped to
protect servers from physical damages caused by overcurrent
or overload.

The tripping condition of a circuit breaker depends on the
strength and duration of a power spike. In order to maximize
the attack effects, adversaries need to run malicious workloads
on a group of servers belonging to the same rack or PDU.
In addition, the timing of launching attacks is also critical.
If a specific set of servers (e.g., on the same rack) in a data
center have already run at their peak power state, the chance
of launching a successful power attack will be higher [43].

The techniques of power capping [25] have been designed
to defend against power attacks. At the rack and PDU level, by

monitoring the power consumption, a data center can restrict the
power consumption of servers through a power-based feedback
loop. At the host level, Running Average Power Limit (RAPL) is
a technique for monitoring and limiting the power consumption
for a single server. RAPL has been introduced by Intel since
Sandy Bridge microarchitecture. It provides fine-grained CPU-
level energy accounting at the microsecond level and can be
used to limit the power consumption for one package.

Power capping mechanisms significantly narrow down the
power attack surface, but it cannot address the problem of
power oversubscription, which is the root cause of power
outages in data centers. Although host-level power capping for
a single server could respond immediately to power surges,
the power capping mechanisms at the rack or PDU level still
suffer from minute-level delays. Assuming attackers could
deploy power viruses into physically adjacent servers, even
if each server consumes power lower than its power capping
limit, the aggregated power consumption of controlled servers
altogether can still exceed the power supply capacity and trip
the circuit breaker. We demonstrate in the following sections
that malicious container tenants can launch synergistic power
attacks by controlling the deployment of their power-intensive
workloads and leveraging benign workloads in the background
to amplify their power attacks.

III. INFORMATION LEAKAGES IN CONTAINER CLOUDS

As we mentioned in Section II, the Linux kernel provides a
multitude of supports to enforce resource isolation and control
for the container abstraction. Such kernel mechanisms are
the enabling techniques for running containers on the multi-
tenancy cloud. Due to priority and difficulty levels, some
components of the Linux kernel have not yet transformed to
support containerization. We intend to systematically explore
which parts of the kernel are left uncovered, what the root
causes are, and how potential adversaries can exploit them.

A. Container Information Leakages

We first conduct experiments on our local Linux machines
with Docker and LXC containers installed. Linux provides two
types of controlled interfaces from userspace processes to the
kernel, system calls, and memory-based pseudo file systems.
System calls are mainly designed for user processes to request
kernel services. The system calls have strict definitions for
their public interfaces and are typically backward compatible.
However, memory-based pseudo file systems are more flexible
for extending kernel functionalities (e.g., ioctl), accessing kernel
data (e.g., procfs), and adjusting kernel parameters (e.g., sysctl).
In addition, such pseudo file systems enable manipulating kernel
data via normal file I/O operations. Linux has a number of
memory-based pseudo file systems (e.g., procfs, sysfs, devfs,
securityfs, debugfs, etc.) that serve the different purposes of
kernel operations. We are more interested in procfs and sysfs,
which are by default mounted by container runtime software.

As illustrated in the left part of Figure 1, we design a cross-
validation tool to automatically discover these memory-based
pseudo files that expose host information to containers. The
key idea is to recursively explore all pseudo files under procfs
and sysfs in two execution contexts, one running within an
unprivileged container and the other running on the host. We

3

Local Container
Testbed

Differential
Analysis

Containerized Process
Pseudo File System

Host Process
Pseudo File System

OS Kernel

Kernel Data
Space

Multi-Tenancy
Container Cloud Testbed

Performance
Inference

Co-residence
Verification

Synergistic
Power AttackNon-namespaced data

Namespaced data

❶ ❶
❷ ❷

Fig. 1: The framework for information leakage detection and
cloud inspection.

align and reorder the files based on their file paths and then
conduct pair-wise differential analysis on the contents of the
same file between these two contexts. If the system resources
accessed from a specific pseudo file has not been namespaced
in the Linux kernel, the host and container reach the same piece
of kernel data (as the case of · in Figure 1). Otherwise, if
properly namespaced, the container can retrieve its own private
and customized kernel data (as the case of ¶ in Figure 1).
Using this cross-validation tool, we can quickly identify the
pseudo files (and their internal kernel data structures) that may
expose system-wide host information to the container.

B. Leakage Channel Analysis

We list all pseudo files that may leak host information in
Table I. Those leakage channels contain different aspects of host
information. Container users can retrieve kernel data structures
(e.g., /proc/modules shows the list of loaded modules), kernel
events (e.g., /proc/interrupts shows the number of interrupts
per IRQ), and hardware information (e.g., /proc/cpuinfo and
/proc/meminfo show the specification of CPU and memory,
respectively). In addition, container users are able to retrieve
performance statistics data through some channels. For example,
containers can obtain hardware sensor data (if these sensors are
available in the physical machine), such as power consumption
for each package, cores, and DRAM through the RAPL sysfs
interface, and the temperature for each core through the
Digital Temperature Sensor (DTS) sysfs interface. Moreover,
the usage of processors, memory, and disk I/O is also exposed
to containers. While leaking such information seems harmless
at first glance, it could be exploited by malicious adversaries to
launch attacks. More detailed discussion is given in Section IV.

We further investigate the root causes of these information
leakages by inspecting the kernel code (in the Linux kernel
version 4.7). Generally, the leakage problems are caused by the
incomplete implementation of namespaces in the kernel. To be
more specific, we summarize the two main causes as follows:
(1) Context checks are missing for existing namespaces, and (2)
some Linux subsystems are not (fully) namespaced. We give
two case studies on net prio.ifpriomap and RAPL in containers
to reveal the origins of leakages.

1) Case study I — net prio.ifpriomap: The pseudo file
net prio.ifpriomap (under /sys/fs/cgroup/net prio) contains
a map of the priorities assigned to traffic starting from
processes in a cgroup and leaving the system on various

interfaces. The data format is in the form of [ifname pri-
ority]. We find that the kernel handler function hooked at
net prio.ifpriomap is not aware of the NET namespace, and
thus it discloses all network interfaces on the physical machine
to the containerized applications. To be more specific, the read
operation of net prio.ifpriomap is handled by the function
read_priomap. Tracing from this function, we find that it
invokes for_each_netdev_rcu and sets the first parameter
as the address of init_net. It iterates all network devices of
the host, regardless of the NET namespace. Thus, from the view
of a container, it can read the names of all network devices of
the host.

2) Case study II — RAPL in containers: RAPL was recently
introduced by Intel for setting power limits for processor pack-
ages and DRAM of a single server, which can respond at the
millisecond level [19]. In the container cloud, the sysfs interface
of RAPL, which locates under /sys/class/powercap/intel-rapl, is
accessible to containers. Therefore, it is possible for container
tenants to obtain the system-wide power status of the host,
including the core, DRAM, and package, through this sysfs
interface. For example, container users can read the current
energy counter in micro joules from the pseudo file energy uj.
The function handler of energy uj in the Intel RAPL Linux
driver is get_energy_counter. This function retrieves the
raw energy data from the RAPL MSR. As namespace has
not been implemented for the power data, the energy_raw
pointer refers to the host’s energy consumption data.

We further investigate the information leakage problems on
container cloud services that adopt the Docker/LXC container
engine. We choose five commercial public multi-tenancy
container cloud services for leakage checking and present the
results in Table I. We anonymize the names (CCi stands for
ith Container Cloud) of these container cloud services before
the cloud providers patch the channels. The indicates that the
channel exists in the cloud, while the # indicates the opposite.
We find that most of the leakage channels on local machines
are also available in the container cloud services. Some of
them are unavailable due to the lack of support for specific
hardware (e.g., Intel processor before Sandy Bridge or AMD
processors that do not support RAPL). For cloud CC5, we find
that the information of some channels is different from our local
testbed, which means that the cloud vendor has customized
some additional restrictions. For example, only the information
about the cores and memory belonging to a tenant is available.
However, those channels partially leak the host information
and could still be exploited by advanced attackers. We mark
them as G#.

C. Inference of Co-resident Container

We further look in depth into specific cases to see whether
they could be exploited to detect co-resident containers.

1) Co-residence problems in cloud settings: Co-residence
is a well-known research problem in cloud security. In order
to extract a victim’s information, adversaries tend to move
malicious instances to the same physical host with the victim.
Zhang et al. have shown that it is possible for an attacker
to hijack user accounts [47] and extract private keys [46]
with co-resident instances. In addition, the cost of achieving
co-residence is rather low [36]. Co-residence still remains a

4

TABLE I: LEAKAGE CHANNELS IN COMMERCIAL CONTAINER CLOUD SERVICES.

Leakage Channels Leakage Information Potential Vulnerability Container Cloud Services1

Co-re DoS Info leak CC1 CC2 CC3 CC4 CC5

/proc/locks Files locked by the kernel # G#
/proc/zoneinfo Physical RAM information # G#
/proc/modules Loaded kernel modules information # #
/proc/timer_list Configured clocks and timers # #
/proc/sched_debug Task scheduler behavior # # # #
/proc/softirqs Number of invoked softirq handler
/proc/uptime Up and idle time # G#
/proc/version Kernel, gcc, distribution version # #
/proc/stat Kernel activities G#
/proc/meminfo Memory information #
/proc/loadavg CPU and IO utilization over time # G#
/proc/interrupts Number of interrupts per IRQ #
/proc/cpuinfo CPU information # #
/proc/schedstat Schedule statistics # G#
/proc/sys/fs/* File system information # #
/proc/sys/kernel/random/* Random number generation info #
/proc/sys/kernel/sched_domain/* Schedule domain info #
/proc/fs/ext4/* Ext4 file system info #
/sys/fs/cgroup/net_prio/* Priorities assigned to traffic # # # # #
/sys/devices/* System device information # #
/sys/class/* System device information # # #

problem in existing clouds, due to the intention of consolidating
server resources and reducing cost. Traditional methods to verify
co-residence are based on cache [44] or memory-based leakage
channels [38]. The accuracy of those methods may downgrade
due to the high noise in cloud settings.

2) Approaches and results of checking co-resident contain-
ers: Since containers can read the host information through the
leakage channels we discovered, we tend to measure whether
some channels can be used for checking container co-residence.
We define three metrics, namely uniqueness (U), variation (V),
and manipulation (M) to quantitatively assess each channel’s
capability of inferring co-residence.

The metric U indicates whether this channel bestows
characteristic data that can uniquely identify a host machine.
It is the most important and accurate factor for determining
whether two containers locate on the same host. We have found
17 leakage channels (ranked top 17 in Table II) that satisfy
this metric. Generally we can classify these channels into three
groups:

1) Channels containing unique static identifiers. For exam-
ple, boot id under /proc/sys/kernel/random is a random string
generated at boot time and is unique for each running kernel.
If two containers can read the same boot id, this is a clear
sign that they are running on the same host kernel. The data
for channels in this group are both static and unique.

2) Channels into which container tenants can dy-
namically implant unique signatures. For example, from
/proc/sched debug, container users can retrieve all active
process information of the host through this interface. A tenant
can launch a process with a uniquely crafted task name inside
the container. From the other containers, they can verify co-
residence by searching this task name in their own sched debug.
Similar situations apply to timer list and locks.

3) Channels containing unique dynamic identifiers. For
example, /proc/uptime has two data fields: system up time and
system idle time in seconds since booting. They are accumulated

1The most recent check on the leakage channels was made on November
28, 2016.

values and are unique for every host machine. Similarly,
energy uj in the RAPL sysfs interface is the accumulated energy
counter in micro joules. The data read from channels in this
group change at real time, but are still unique to represent
a host. We rank the channels in this group based on their
growth rates. A faster growth rate indicates a lower chance of
duplication.

The metric V demonstrates whether the data change with
time. With this feature available, two containers can make
snapshots of this pseudo file periodically at the same time.
Then they can determine co-residence by checking whether
two data snapshot traces match with each other. For example,
starting from the same time, we can record MemFree in
/proc/meminfo from two containers every second for one minute.
If these two 60-point data traces match with each other, we
are confident that these two containers run on the same host.
Each channel contains a different capacity of information for
inferring co-residence, which can be naturally measured via the
joint Shannon entropy. We define the entropy H in Formula (1).
Each channel C contains multiple independent data fields Xi,
and n represents the number of independent data fields. Each Xi

has possible values {xi1, · · · , xim}. We rank the capability of
revealing co-residence for the nine channels (for which U=False
and V=True) based on their entropy results in Table II.

H[C(X1, · · · , Xn)] =

n∑
i=1

[−
m∑

j=1

p(xij) log p(xij)]. (1)

The metric M indicates whether the container tenants can
manipulate the data. We mark a channel if tenants can
directly implant specially-crafted data into it. For example, we
can create a timer in a program with a special task name inside
a container. This task name and its associated timer will appear
in /proc/timer list. Another container can search for this special
task name in the timer list to verify co-residence. We mark a
channel G# if tenants can only indirectly influence the data in
this channel. For example, an attacker can use taskset command
to bond a computing-intensive workload to a specific core, and
check the CPU utilization, power consumption, or temperature

5

TABLE II: LEAKAGE CHANNELS FOR CO-RESIDENCE VERIFICATION.

Leakage Channels U V M Rank

/proc/sys/kernel/random/boot_id # #

/sys/fs/cgroup/net_prio/net_prio.ifpriomap # #

/proc/sched_debug

/proc/timer_list

/proc/locks

/proc/uptime G#

/proc/stat G#

/proc/schedstat G#

/proc/softirqs G#

/proc/interrupts G#

/sys/devices/system/node/node#/numastat G#

/sys/class/powercap/.../energy_uj2 G#

/sys/devices/system/.../usage3 G#

/sys/devices/system/.../time4 G#

/proc/sys/fs/dentry-state G#

/proc/sys/fs/inode-nr G#

/proc/sys/fs/file-nr G#

/proc/zoneinfo # G#

/proc/meminfo # G#

/proc/fs/ext4/sda#/mb_groups # G#

/sys/devices/system/node/node#/vmstat # G#

/sys/devices/system/node/node#/meminfo # G#

/sys/devices/platform/.../temp#_input5 # G#

/proc/loadavg # G#

/proc/sys/kernel/random/entropy_avail # G#

/proc/sys/kernel/.../max_newidle_lb_cost6 # #

/proc/modules # # #

/proc/cpuinfo # # #

/proc/version # # #

Low High

from another container. Those entries could be exploited by
advanced attackers as covert channels to transmit signals.

For those channels that do not have these U V M properties,
we consider them hard to be exploited. For example, most
servers in a cloud data center probably install the same OS
distribution with the same module list. Although /proc/modules
leaks the information of loaded modules on the host, it is
difficult to use this channel to infer co-resident containers.

IV. SYNERGISTIC POWER ATTACK

At first glance, the leaked information discovered in
Section III seems difficult to exploit. Because both procfs and
sysfs are mounted read-only inside the containers, malicious
tenants can only read such information, but modification is not
allowed. We argue that attackers can make better decisions by
learning the runtime status of the host machine.

In this section, we present a potential synergistic power
attack in the scope of power outage threats that may impact the

2/sys/class/powercap/intel-rapl:#/intel-rapl:#/energy uj
3/sys/devices/system/cpu/cpu#/cpuidle/state#/usage
4/sys/devices/system/cpu/cpu#/cpuidle/state#/time
5/sys/devices/platform/coretemp.#/hwmon/hwmon#/temp# input
6/proc/sys/kernel/sched domain/cpu#/domain#/max newidle lb cost

0 1 2 3 4 5 6 7
950

1000

1050

1100

1150

Time (day)

Po
w

er
 (W

)

Sampling interval:30s

0 50 100 150 200
1000

1050

1100

1150

1200

Time (s)

Po
w

er
 (W

)

Sampling interval:1s

0 50 100 150 200
1000

1050

1100

1150

1200

Time (s)

Po
w

er
 (W

)

Sampling interval:1s

Fig. 2: The power consumption for 8 servers in one week.

reliability of data centers. We demonstrate that adversaries can
exploit these information leakages discovered by us to amplify
the attack effects, reduce the attack costs, and facilitate attack
orchestration. All experiments are conducted in a real-world
container cloud.

A. Attack Amplification

The key to launching a successful power attack is to
generate a short-time high power spike that can surpass the
power facility’s supply capacity. As we mentioned in II-C,
the root cause of power attacks is the wide adoption of
power oversubscription, which makes it possible for power
spikes to surpass the safe threshold. In addition, a rack-level
power capping mechanism can only react in minute-level time
granularity, leaving space for the occurrence of a short-time
high power spike. In the most critical situation, the overcharging
of power may trip the branch circuit breaker, cause a power
outage, and finally bring down the servers. The heights of power
spikes are predominantly determined by the resources that are
controlled by attackers. Existing power attacks maximize the
power consumption by customizing power-intensive workloads,
denoted as power viruses. For example, Ganesan et al. [15],
[16] leveraged genetic algorithms to automatically generate
power viruses that consume more power than normal stress
benchmarks. However, launching a power attack from scratch
or being agnostic about the surrounding environment wastes
unnecessary attacking resources.

In a real-world data center, the average utilization is around
20% to 30%, as reported by Barroso et al. [9]. With such
low utilization, the chance of tripping the circuit breaker by
indiscriminately launching power attacks is extremely low.
However, although the average utilization is low, data centers
still encounter power outage threats under peak demands [37].
This indicates that the power consumption of physical servers
fluctuates enormously with the changing workloads. To confirm
this assumption, we conduct an experiment to monitor the
whole-system power consumption (via the RAPL leakage
channel in case study II of Section III) of eight physical servers
in a container cloud for one week. We present the result in
Figure 2. We first average the power data with a 30-second
interval and observe drastic power changes on both Day 2
and Day 5. Furthermore, we pick a high power consumption
region in Day 2 and average the data at the interval of one
second (which is a typical time window for generating a power
spike). The peak power consumption could reach 1,199 Watts
(W). In total, there was a 34.72% (899W ∼ 1,199W) power
difference in this one-week range. We anticipate that the power
consumption difference would be even larger if we could

6

Synergistic
Periodical

Fig. 3: The power consumption of 8 servers under attack.

0 200 400 600 800 1000
0

50

100

150

200

250

Time (s)

P
o
w

e
r

(W
)

No attack

1 Container

2 Containers

3 Containers

Fig. 4: The power consumption of a server under attack.

monitor it for a longer time period, such as on a holiday
like Black Friday, when online shopping websites hosted on a
cloud may incur a huge power surge.

For a synergistic power attack in a container cloud, instead
of indiscriminately starting a power-intensive workload, the
adversaries can monitor the whole-system power consumption
through the RAPL channel and learn the crests and troughs of
the power consumption pattern at real time. Therefore, they
can leverage the background power consumption (generated
by benign workloads from other tenants on the same host)
and superimpose their power attacks when the servers are at
their peak running time. This is similar to the phenomenon
of insider trading in the financial market—the one with more
insider information can always trade at the right time. The
adversaries can boost their power spikes, by adding on already-
high power consumption, to a higher level with the “insider”
power consumption information leaked through the RAPL
channel.

B. Reduction of Attack Costs

From the attackers’ perspective, they always intend to
maximize attack outcomes with the lowest costs. Running
power-intensive workloads continuously could definitely catch
all the crests of benign power consumption. However, it may
not be practical for real-world attacks for several reasons.
First, it is not stealthy. To launch a power attack, the attacker
needs to run power-intensive workloads. Such behavior has
obvious patterns and could be easily detected by cloud providers.
Second, utilization-based billing models are now becoming
more popular. More cloud services provide finer-grained prices
based on CPU/memory utilization and the volume of network
traffic. For instance, Elastic Container provides containers with
CPU metering-based billing for customers [3]. IBM Cloud
provides billing metrics for computing resources in the cloud
[4]. Amazon EC2 [1] offers Burstable Performance Instances
that could occasionally burst but do not fully run most of the
time. The VMware OnDemand Pricing Calculator [5] even
gives an estimate for different utilization levels. For example,
it charges $2.87 per month for an instance with 16 VCPUs
with an average of 1% utilization, and $167.25 for the same
server with full utilization. Under these cloud billing models,
continuous power attacks may finally lead to an expensive bill.

For synergistic power attacks, monitoring power consump-
tion through RAPL has almost zero CPU utilization. To achieve
the same effects (the height of power spikes), synergistic power
attacks can significantly reduce the attack costs compared to

continuous and periodic attacks. In Figure 3, we compare the
attack effects of a synergistic power attack with a periodic attack
(launching power attacks every 300 seconds). Synergistic power
attacks can achieve a 1,359W power spike with only two trials
in 3,000 seconds, whereas periodic attacks were launched nine
times and could only reach 1,280W at most.

C. Attack Orchestration

Different from traditional power attacks, another unique
characteristic of synergistic power attack is its attack orches-
tration. Assume an attacker is already controlling a number
of container instances. If these containers scatter in different
locations within a data center, their power additions on multiple
physical servers put no pressure on power facilities. Existing
power-capping mechanisms can tolerate multiple small power
surges from different locations with no difficulty. The only
way to launch a practical power attack is to aggregate all
“ammunition” into adjacent locations and attack a single power
supply simultaneously. Here we discuss in depth on the
orchestration of attacking container instances.

As we mentioned in Section III, by exploiting multiple
leakage channels7, attackers can aggregate multiple container
instances into one physical server. Specifically in our experiment
on CC1, we choose to use timer list to verify the co-residence
of multiple containers. The detailed verification method is
explained in Section III-C. We repeatedly create container
instances and terminate instances that are not on the same
physical server. By doing this, we succeed in deploying three
containers on the same server with trivial effort. We run four
copies of Prime [7] benchmark within each container to fully
utilize the four allocated cores. The results are illustrated
in Figure 4. As we can see, each container can contribute
approximately 40W power. With three containers, an attacker
can easily raise the power consumption to almost 230W, which
is about 100W more than the average power consumption for
a single server.

We also find /proc/uptime to be another interesting leakage
channel. The uptime includes two data entries, the booting time
of the physical server and the idle time of all cores. In our
experiment, we find that some servers have similar booting
times but different idle times. Typically servers in data centers
do not reboot once being installed and turned on. A different
idle time indicates that they are not the same physical server,

7Typically, if a channel is a strong co-residence indicator, leveraging this
one channel only should be enough.

7

cpuacct
cgroup

(a) Data Collection (b) Power Modeling (c) On-the-fly Calibration

perf_event
cgroup

RAPL
Value

Retired
Instructions

Cache Misses

Branch Misses

CPU Cycles

perf_event

Core Modeling

Calibration

cgroup
Initialization Container

Collected Data

Host
Collected Data

DRAM Modeling

Package Modeling

Host
Power

Container
Power

Fig. 5: The workflow of power-based namespace.

while a similar booting time demonstrates that they have a
high probability of being installed and turned on at the same
time period. This is strong evidence that they might also be in
close proximity and share the same circuit breaker. Attackers
can exploit this channel to aggregate their attack container
instances into adjacent physical servers. This greatly increases
their chances of tripping circuit breakers to cause power outages.

V. DEFENSE APPROACH

A. A Two-Stage Defense Mechanism

Intuitively, the solution should eliminate all the leakages
so that no leaked information could be retrieved through those
channels. We divide the defense mechanism into two stages to
close the loopholes: (1) masking the channels and (2) enhancing
the container’s resource isolation model.

In the first stage, the system administrators can explicitly
deny the read access to the channels within the container, e.g.,
through security policies in AppArmor or mounting the pseudo
file “unreadable”. This does not require any change to the kernel
code (merging into the upstream Linux kernel might take some
time) and can immediately eliminate information leakages. This
solution depends on whether legitimate applications running
inside the container use these channels. If such information
is orthogonal to the containerized applications, masking it
will not have a negative impact on the container tenants. We
have reported our results to Docker and all the cloud vendors
listed in Table I, and we have received active responses. We
are working together with container cloud vendors to fix this
information leakage problem and minimize the impact upon
applications hosted in containers. This masking approach is a
quick fix, but it may add restrictions for the functionality of
containerized applications, which contradicts the container’s
concept of providing a generalized computation platform.

In the second stage, the defense approach involves fixing
missing namespace context checks and virtualizing more system
resources (i.e., the implementation of new namespaces) to
enhance the container’s isolation model. We first reported
information disclosure bugs related to existing namespaces
to Linux kernel maintainers, and they quickly released a new
patch for one of the problems ([CVE-2017-5967]). For the other
channels with no namespace isolation protection, we need to
change the kernel code to enforce a finer-grained partition
of system resources. Such an approach could involve non-
trivial efforts since each channel needs to be fixed separately.
Virtualizing a specific kernel component might affect multiple
kernel subsystems. In addition, some system resources are not

easy to be precisely partitioned to each container. However, we
consider this to be a fundamental solution to the problem.
In particular, to defend against synergistic power attacks,
we design and implement a proof-of-concept power-based
namespace in the Linux kernel to present the partitioned power
usage to each container.

B. Power-based Namespace

We propose a power-based namespace to present per-
container power usage through the unchanged RAPL interface
to each container. Without leaking the system-wide power
consumption information, attackers cannot infer the power state
of the host, thus eliminating their chance of superimposing
power-intensive workloads on benign power peaks. Moreover,
with per-container power usage statistics at hand, we can
dynamically throttle the computing power (or increase the
usage fee) of containers that exceed their predefined power
thresholds. It is possible for container cloud administrators to
design a finer-grained billing model based on this power-based
namespace.

There are three goals for our design. (1) Accuracy: as there
is no hardware support for per-container power partitioning, our
software-based power modeling needs to reflect the accurate
power usage for each container. (2) Transparency: applications
inside a container should be unaware of the power variations
outside this namespace, and the interface of power subsystem
should remain unchanged. (3) Efficiency: power partitioning
should not incur non-trivial performance overhead in or out of
containers.

We illustrate the workflow of our system in Figure 5. Our
power-based namespace consists of three major components:
data collection, power modeling, and on-the-fly calibration.
We maintain the same Intel RAPL interface within containers,
but change the implementation of handling read operations
on energy usages. Once a read operation of energy usage is
detected, the modified RAPL driver retrieves the per-container
performance data (data collection), uses the retrieved data to
model the energy usage (power modeling), and finally calibrates
the modeled energy usage (on-the-fly calibration). We discuss
each component in detail below.

1) Data collection: In order to model per-container power
consumption, we need to obtain the fine-grained performance
data for each container. Each container is associated with
a cpuacct cgroup. A cpuacct cgroup accounts for the CPU
cycles on a processor core for a container. The CPU cycles are
accumulated. We only use CPU cycles to compute the rate of

8

1 2 3 4 5 6 7 8
x 109

0

5

10

15

Number of instructions

En
er

gy
 (J

)

prime
stress−4M
loop
stress−32M
stress−128M
libquantum

Fig. 6: Power modeling: the
relation between core energy
and the number of retired in-
structions.

0 1 2 3 4 5
x 109

0.5

1

1.5

2

2.5

3

3.5

4

Number of Cache Misses

En
er

gy
 (J

)

prime
stress−4M
loop
stress−32M
stress−128M
libquantum

Almost no
cache misses

Fig. 7: Power modeling: the
relation between DRAM en-
ergy and the number of cache
misses.

the cache miss rate and branch miss rate later. The Linux kernel
also has a perf event subsystem, which supports accounting
for different types of performance events. The granularity of
performance accounting could be a single process or a group
of processes (considered as a perf event cgroup). By now, we
only retrieve the data for retired instructions, cache misses,
and branch misses (which are needed in the following power
modeling component) for each perf event cgroup. Our current
implementation is extensible to collect more performance event
types corresponding to the changes of power modeling in the
future.

We monitor the performance events from the initialization
of a power-based namespace and create multiple perf events,
each associated with a specific performance event type and
a specific CPU core. Then we connect the perf cgroup of
this container with these perf events to start accounting. In
addition, we need to set the owner of all created perf events
as TASK TOMBSTONE, indicating that such performance
accounting is decoupled from any user process.

2) Power modeling: To implement a power-based names-
pace, we need to attribute the power consumption to each
container. Instead of providing transient power consumption,
RAPL offers accumulated energy usages for package, core, and
DRAM, respectively. The power consumption can be calculated
by measuring the energy consumption over a time unit window.
Our power-based namespace also provides accumulative per-
container energy data, in the same format as in the original
RAPL interface.

We first attribute the power consumption for the core.
Traditional power modeling leverages CPU utilization [29] to
attribute the power consumption for cores. However, Xu et al.
[43] demonstrated that the power consumption could vary signif-
icantly with the same CPU utilization. The underlying pipeline
and data dependence could lead to CPU stalls and idling of
function units. The actual numbers of retired instructions [24],
[33] under the same CPU utilization are different. Figure 6
reveals the relation between retired instructions and energy.
We test on four different benchmarks: the idle loop written in
C, prime, 462.libquantum in SPECCPU2006, and stress with
different memory configurations. We run the benchmarks on
a host and use Perf [6] to collect performance statistics data.
We can see that for each benchmark, the energy consumption
is almost strictly linear to the number of retired instructions.
However, the gradients of fitted lines change correspondingly

with application types. To make our model more accurate, we
further include the cache miss rate [24] and branch miss rate
to build a multi-degree polynomial model to fit the slope.

For the DRAM, we use the number of cache misses to
profile the energy. Figure 7 presents the energy consumption
for the same benchmarks with the same configurations in the
core experiment. It clearly indicates that the number of cache
misses is approximately linear to the DRAM energy. Based on
this, we use the linear regression of cache misses to model the
DRAM energy.

For the power consumption of package, we sum the values
of core, DRAM, and an extra constant. The specific models
are illustrated in Formula (2), where M represents the modeled
energy; CM, BM, C indicate the number of cache misses,
branch misses, and CPU cycles, respectively; and F is the
function derived through multiple linear regressions to fit the
slope. I is the number of retired instructions. α, β, γ, and λ
are the constants derived from the experiment data in Figures 6
and 7.

Mcore = F(
CM

C
,

BM

C
) · I + α,

Mdram = β · CM + γ,

Mpackage = Mcore + Mdram + λ.

(2)

Here we discuss the influence of floating point instructions
for power modeling. While an individual floating point instruc-
tion might consume more energy than an integer operation,
workloads with high ratios of floating point instructions might
actually result in lower power consumption overall, since the
functional units might be forced to be idle in different stages of
the pipeline. It is necessary to take the micro-architecture into
consideration to build a more refined model. We plan to pursue
this direction in our future work. Furthermore, the choices of
parameters α, β, γ are also affected by the architecture. Such
a problem could be mitigated in the following calibration step.

3) On-the-fly calibration: Our system also models the
energy data for the host and cross-validates it with the actual
energy data acquired through RAPL. To minimize the error of
modeling data, we use the following Formula (3) to calibrate
the modeled energy data for each container. The Econtainer

represents the energy value returned to each container. This
on-the-fly calibration is conducted for each read operation to
the RAPL interface and can effectively reduce the number of
errors in the previous step.

Econtainer =
Mcontainer

Mhost
· ERAPL. (3)

VI. DEFENSE EVALUATION

In this section, we evaluate our power-based namespace
on a local machine in three aspects: accuracy, security, and
performance. Our testbed is equipped with Intel i7-6700
3.40GHz CPU with 8 cores, 16GB of RAM, and running
Ubuntu Linux 16.04 with kernel version 4.7.0.

A. Accuracy

We use the SPECCPU2006 benchmark to measure the
accuracy of the power modeling. We compare the modeled

9

Fig. 8: The accuracy of our
energy modeling approach to
estimate the active power for
the container from aggregate
event usage and RAPL.

Fig. 9: Transparency: a ma-
licious container (Container
2) is unaware of the power
condition for the host.

power usage with the ground truth obtained through RAPL.
The power consumption is equal to the energy consumption
per second. Due to the restriction of the security policy of
the Docker container, we select a subset of SPECCPU2006
benchmarks that are feasible to run inside the container and
have no overlap with the benchmarks used for power modeling.
The error ξ is defined as follows:

ξ =
|(ERAPL −∆diff)−Mcontainer|

ERAPL −∆diff
, (4)

where ERAPL is the power usage read from RAPL on the
host, and Mcontainer is the modeled power usage for the same
workload read within the container. Note that both the host
and container consume power at an idle state with trivial
differences. We use a constant ∆diff as the modifier reflecting
the difference in power consumption at an idle state for a host
and a container. The results, illustrated in Figure 8, show that
our power modeling is accurate as the error values of all the
tested benchmarks are lower than 0.05.

B. Security

We also evaluate our system from the security perspective.
With the power-based namespace enabled, the container should
only retrieve the power consumed within the container and be
unaware of the host’s power status. We launch two containers
in our testbed for comparison. We run the SPECCPU2006
benchmark in one container and leave the other one idle. We
record the power usage per second of both containers and the
host. We show the results of 401.bzip2 in Figure 9. All other
benchmarks exhibit similar patterns.

When both containers have no workload, their power
consumption is at the same level as that of the host, e.g., from
0s to 10s. Once container 1 starts a workload at 10s, we can find
that the power consumption of container 1 and the host surges
simultaneously. From 10s to 60s, container 1 and the host have
a similar power usage pattern, whereas container 2 is still at a
low power consumption level. Container 2 is unaware of the
power fluctuation on the whole system because of the isolation
enforced by the power-based namespace. This indicates that
our system is effective for isolating and partitioning power
consumption for multiple containers, and thus it can neutralize
the synergistic power attacks.

TABLE III: PERFORMANCE RESULTS OF UNIX BENCHMARKS.
1 Parallel Copy 8 Parallel Copies

Benchmarks Original Modified Overhead Original Modified Overhead

Dhrystone 2 using register variables 3,788.9 3,759.2 0.78% 19,132.9 19,149.2 0.08%
Double-Precision Whetstone 926.8 918.0 0.94% 6,630.7 6,620.6 0.15%
Execl Throughput 290.9 271.9 6.53% 7,975.2 7,298.1 8.49%
File Copy 1024 bufsize 2000 maxblocks 3,495.1 3,469.3 0.73% 3,104.9 2,659.7 14.33%
File Copy 256 bufsize 500 maxblocks 2,208.5 2,175.1 0.04% 1,982.9 1,622.2 18.19%
File Copy 4096 bufsize 8000 maxblocks 5,695.1 5,829.9 -2.34% 6,641.3 5,822.7 12.32%
Pipe Throughput 1,899.4 1,878.4 1.1% 9,507.2 9,491.1 0.16%
Pipe-based Context Switching 653.0 251.2 61.53% 5,266.7 5,180.7 1.63%
Process Creation 1416.5 1289.7 8.95% 6618.5 6063.8 8.38%
Shell Scripts (1 concurrent) 3,660.4 3,548.0 3.07% 16,909.7 16,404.2 2.98%
Shell Scripts (8 concurrent) 11,621.0 11,249.1 3.2% 15,721.1 15,589.2 0.83%
System Call Overhead 1,226.6 1,212.2 1.17% 5,689.4 5,648.1 0.72%
System Benchmarks Index Score 2,000.8 1,807.4 9.66% 7,239.8 6,813.5 7.03%

C. Performance

We use UnixBench to compare the performance overhead
before and after enabling our system. Table III lists all results.

As the results show, CPU benchmarks such as Dhrystone
(testing integer and string operations) and Whetstone (testing
float point arithmetic performance) incur negligible overhead.
Other benchmarks like shell scripts, pipe throughput, and
system call also trigger little overhead. The pipe-based context
switching does incur a 61.53% overhead in the case of one
parallel copy, but it decreases to 1.63% for 8 parallel copies.
We anticipate that inter-cgroup context switching involves
enabling/disabling the performance event monitor, whereas
intra-cgroup context switching does not involve any such
overhead. This could explain why 8 parallel copies can maintain
a similar performance level with the power-based namespace
disabled. In addition, context switching only contributes to a
very small portion of the whole-system performance overhead,
so there is trivial impact for the normal use. As demonstrated
in the last row of Table III, the overall performance overheads
for the UnixBench are 9.66% for one parallel copy and 7.03%
for 8 parallel copies, respectively. Our system’s performance
depends heavily on the implementation of perf event cgroup
and could improve with the advancement of a performance
monitoring subsystem.

VII. DISCUSSION

A. Synergistic Power Attacks without the RAPL Channel

We also notice that servers in some container clouds are not
equipped with RAPL or other similar embedded power meters.
Those servers might still face power attacks. Without power-
capping tools like RAPL, those servers might be vulnerable to
host-level power attacks on a single machine. In addition, if
power data is not directly available, advanced attackers will try
to approximate the power status based on the resource utilization
information, such as the CPU and memory utilization, which is
still available in the identified information leakages. It would be
better to make system-wide performance statistics unavailable
to container tenants.

B. Complete Container Implementation

The root cause for information leakage and synergistic
power attack is the incomplete implementation of the isolation
mechanisms in the Linux kernel. It would be better to introduce
more security features, such as implementing more namespaces
and control groups. However, some system resources are
still difficult to be partitioned, e.g., interrupts, scheduling

10

information, and temperature. People also argue that the
complete container implementation is no different from a virtual
machine, and loses all the container’s advantages. It is a trade-
off for containers to deal with. The question of how to balance
security, performance, and usability in container clouds needs
further investigation.

VIII. RELATED WORK

In this section, we list some research efforts that inspire
our work and highlight the differences between our work and
previous research. We mainly discuss research works in the
following three areas:

A. Performance and Security Research on Containers

Since containers have recently become popular, researchers
are curious about the performance comparison between con-
tainers and hardware virtualization. Felter et al. compared
the performance of Docker and KVM by using a set of
benchmarks covering CPU, memory, storage, and networking
resources [14]. Their results show that Docker can achieve
equal or better performance than KVM in all cases. Spoiala
et al. [34] used the Kurento Media Server to compare the
performance of WebRTC servers on both Docker and KVM.
They also demonstrated that Docker outperforms KVM and
could support real-time applications. Morabito et al. [30]
compared the performance between traditional hypervisor and
OS-level virtualization with respect to computing, storage,
memory, and networks. They conducted experiments on Docker,
LXC, and KVM and observed that Disk I/O is still the bottleneck
of the KVM hypervisor. All of these works demonstrate that
container-based OS-level virtualization can achieve a higher
performance than hardware virtualization. Besides performance,
the security of a container cloud is always an important research
area. Gupta [20] gave a brief overview of Docker security.
Bui [11] also performed an analysis on Docker containers,
including the isolation problem and corresponding kernel
security mechanisms. They claimed that Docker containers
are fairly secure with default configurations. Grattafiori et
al. [17] summarized a variety of potential vulnerabilities
of containers. They also mentioned several channels in the
memory-based pseudo file systems. Previous research efforts
on the performance and security of containers encourage us
to investigate more on how containers can achieve the same
security guarantees as hardware virtualization, but with trivial
performance trade-offs. We are among the first to systematically
identify the information leakage problem in containers and
investigate potential container-based power attack threats built
upon these leakage channels.

B. Cloud Security and Side/Covert Channel Attacks

Cloud security has received much attention from both
academia and industry. Co-residence detection in the cloud
settings is the most closely related research topic to our
work. Co-residence detection was first proposed by Ristenpart
et al. [31]. They demonstrated that an attacker can place a
malicious VM co-resident with a target VM on the same sever
and then launch side-channel and covert-channel attacks. Two
previous works [36], [42] show that it is still practical to achieve
co-residence in existing mainstream cloud services. To verify
co-residence on the same physical server, attackers typically

leverage side channels or covert channels, e.g., one widely
adopted approach is to use cache-based covert channels [22],
[35], [41]. Multiple instances locating on the same package
share the last-level caches. By using some dedicated opera-
tions, such as cflush [44], attackers can detect co-residence
by measuring the time of cache accessing. Liu et al. [27]
demonstrated that l3 cache side-channel attacks are practical
for cross-core and cross-VM attacks. Zhang et al. conducted
real side-channel attacks on the cloud [46], [47] and proposed
several defense mechanisms to mitigate those attacks [40], [45],
[48]. In particular, they demonstrated that cross-tenant side-
channel attacks can be successfully conducted in PaaS with co-
resident servers [47]. Besides the cache-based channel, memory
bus [38] and memory deduplication [39] have also proved to
be effective for covert-channel construction. Different from
existing research efforts on side/covert channels, we discover a
system-wide information leakage in the container cloud settings
and design a new methodology to quantitatively assess the
capacity of leakage channels for co-residence detection. In
addition, compared to the research on minimizing the kernel
attack surface for VMs [18], we proposed a two-stage defense
mechanism to minimize the space for information leakages and
power attacks on container clouds.

System status information, such as core temperature and
system power consumption, have also been used to build
side/covert channels. Thiele et al. [10], [28] proposed a thermal
covert channel based on the temperature of each core and tested
the capacity in a local testbed. Power consumption could also be
abused to break AES [23]. In our work, we do not use the power
consumption data as a covert channel to transfer information.
Instead, we demonstrate that adversaries may leverage the host
power consumption leakage to launch more advanced power
attacks.

C. Power Modeling

When hardware-based power meter is absent, power mod-
eling is the approach to approximating power consumption.
Russell et al. [32] and Chakrabarti et al. [12] proposed
instruction-level power modeling. Their works indicate that
the number of branches affects power consumption. There
are several works of approximating power consumption for
VMs. Both works [21], [24] demonstrate that VM-level power
consumption can be estimated by CPU utilization and last-level
cache miss. Mobius et al. [29] broke the power consumption
of VM into CPU, cache, memory, and disk. BITWATTS [13]
modeled the power consumption at a finer-grained process
level. Shen et al. [33] proposed a power container to account
for energy consumption of requests in multi-core systems.
Our defense against the synergistic power attack is mainly
inspired by the power modeling approach for VMs. We propose
a new power partitioning technique to approximate the per-
container power consumption and reuse the RAPL interface,
thus addressing the RAPL data leakage problem in the container
settings.

IX. CONCLUSION

Container cloud services have become popular for provid-
ing lightweight OS-level virtual hosting environments. The
emergence of container technology profoundly changes the eco-
system of developing and deploying distributed applications in

11

the cloud. However, due to the incomplete implementation
of system resource partitioning mechanisms in the Linux
kernel, there still exist some security concerns for multiple
container tenants sharing the same kernel. In this paper, we
first present a systematic approach to discovering information
leakage channels that may expose host information to containers.
By exploiting such leaked host information, malicious container
tenants can launch a new type of power attack that may
potentially jeopardize the dependability of power systems in
the data centers. Additionally, we discuss the root causes of
these information leakages and propose a two-stage defense
mechanism. Our evaluation demonstrates that the proposed
solution is effective and incurs trivial performance overhead.

REFERENCES

[1] Burstable Performance Instances. https://aws.amazon.com/ec2/instance-
types/#burst.

[2] Containers Not Virtual Machines Are the Future Cloud.
http://www.linuxjournal.com/content/containers.

[3] ElasticHosts: Linux container virtualisation allows us to beat AWS on
price. http://www.computerworlduk.com/news/it-leadership/elastichosts-
linux-container-virtualisation-allows-us-beat-aws-on-price-3510973/.

[4] IBM Cloud metering and billing. https://www.ibm.com/developerworks/c-
loud/library/cl-cloudmetering/.

[5] OnDemand Pricing Calculator. http://vcloud.vmware.com/service-
offering/pricing-calculator/on-demand.

[6] Perf Wiki. https://perf.wiki.kernel.org/index.php/Main Page.
[7] Prime95 Version 28.9. http://www.mersenne.org/download/ .
[8] Travel nightmare for fliers after power outage grounds Delta.

http://money.cnn.com/2016/08/08/news/companies/delta-system-outage-
flights/.

[9] L. A. Barroso and U. Hölzle. The Case for Energy-Proportional
Computing. Computer, 2007.

[10] D. B. Bartolini, P. Miedl, and L. Thiele. On the Capacity of Thermal
Covert Channels in Multicores. In ACM EuroSys, 2016.

[11] T. Bui. Analysis of Docker Security. arXiv preprint arXiv:1501.02967,
2015.

[12] C. Chakrabarti and D. Gaitonde. Instruction Level Power Model of
Microcontrollers. In IEEE ISCAS, 1999.

[13] M. Colmant, M. Kurpicz, P. Felber, L. Huertas, R. Rouvoy, and A. Sobe.
Process-level Power Estimation in VM-based Systems. In ACM EuroSys,
2015.

[14] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An Updated
Performance Comparison of Virtual Machines and Linux Containers. In
IEEE ISPASS, 2015.

[15] K. Ganesan, J. Jo, W. L. Bircher, D. Kaseridis, Z. Yu, and L. K. John.
System-level Max Power (SYMPO) - A Systematic Approach for Esca-
lating System-level Power Consumption using Synthetic Benchmarks.
In ACM PACT, 2010.

[16] K. Ganesan and L. K. John. MAximum Multicore POwer (MAMPO)
- An Automatic Multithreaded Synthetic Power Virus Generation
Framework for Multicore Systems. In ACM SC, 2011.

[17] A. Grattafiori. NCC Group Whitepaper: Understanding and Hardening
Linux Containers, 2016.

[18] Z. Gu, B. Saltaformaggio, X. Zhang, and D. Xu. FACE-CHANGE:
Application-Driven Dynamic Kernel View Switching in a Virtual
Machine. In IEEE/IFIP DSN, 2014.

[19] P. Guide. Intel R© 64 and IA-32 Architectures Software Developers
Manual, 2011.

[20] U. Gupta. Comparison between security majors in virtual machine and
linux containers. arXiv preprint arXiv:1507.07816, 2015.

[21] Z. Jiang, C. Lu, Y. Cai, Z. Jiang, and C. Ma. VPower: Metering Power
Consumption of VM. In IEEE ICSESS, 2013.

[22] M. Kayaalp, N. Abu-Ghazaleh, D. Ponomarev, and A. Jaleel. A High-
Resolution Side-Channel Attack on Last-Level Cache. In IEEE DAC,
2016.

[23] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Annual
International Cryptology Conference, 1999.

[24] B. Krishnan, H. Amur, A. Gavrilovska, and K. Schwan. VM Power
Metering: Feasibility and Challenges. ACM SIGMETRICS Performance
Evaluation Review, 2011.

[25] C. Lefurgy, X. Wang, and M. Ware. Power Capping: A Prelude to
Power Shifting. Cluster Computing, 2008.

[26] C. Li, Z. Wang, X. Hou, H. Chen, X. Liang, and M. Guo. Power Attack
Defense: Securing Battery-Backed Data Centers. In IEEE ISCA, 2016.

[27] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-Level Cache
Side-Channel Attacks are Practical. In IEEE S&P, 2015.

[28] R. J. Masti, D. Rai, A. Ranganathan, C. Müller, L. Thiele, and S. Capkun.
Thermal Covert Channels on Multi-core Platforms. In USENIX Security,
2015.

[29] C. Mobius, W. Dargie, and A. Schill. Power Consumption Estimation
Models for Processors, Virtual Machines, and Servers. IEEE Transactions
on Parallel and Distributed Systems, 2014.

[30] R. Morabito, J. Kjällman, and M. Komu. Hypervisors vs. Lightweight
Virtualization: A Performance Comparison. In IEEE IC2E, 2015.

[31] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, You, Get Off
of My Cloud: Exploring Information Leakage in Third-Party Compute
Clouds. In ACM CCS, 2009.

[32] J. T. Russell and M. F. Jacome. Software Power Estimation and
Optimization for High Performance, 32-bit Embedded Processors. In
IEEE ICCD, 1998.

[33] K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang, and Z. Chen.
Power Containers: An OS Facility for Fine-Grained Power and Energy
Management on Multicore Servers. ACM ASPLOS, 2013.

[34] C. C. Spoiala, A. Calinciuc, C. O. Turcu, and C. Filote. Performance
comparison of a WebRTC server on Docker versus Virtual Machine. In
IEEE DAS, 2016.

[35] E. Tromer, D. A. Osvik, and A. Shamir. Efficient Cache Attacks on
AES, and Countermeasures. Journal of Cryptology, 2010.

[36] V. Varadarajan, Y. Zhang, T. Ristenpart, and M. Swift. A Placement
Vulnerability Study in Multi-Tenant Public Clouds. In USENIX Security,
2015.

[37] Q. Wu, Q. Deng, L. Ganesh, C.-H. Hsu, Y. Jin, S. Kumar, B. Li,
J. Meza, and Y. J. Song. Dynamo: Facebooks Data Center-Wide Power
Management System. IEEE ISCA, 2016.

[38] Z. Wu, Z. Xu, and H. Wang. Whispers in the Hyper-space: High-speed
Covert Channel Attacks in the Cloud. In USENIX Security, 2012.

[39] J. Xiao, Z. Xu, H. Huang, and H. Wang. Security Implications of
Memory Deduplication in a Virtualized Environment. In IEEE/IFIP
DSN, 2013.

[40] Q. Xiao, M. K. Reiter, and Y. Zhang. Mitigating Storage Side Channels
Using Statistical Privacy Mechanisms. In ACM CCS, 2015.

[41] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R. Schlichting.
An Exploration of L2 Cache Covert Channels in Virtualized Environ-
ments. In ACM CCSW, 2011.

[42] Z. Xu, H. Wang, and Z. Wu. A Measurement Study on Co-residence
Threat inside the Cloud. In USENIX Security, 2015.

[43] Z. Xu, H. Wang, Z. Xu, and X. Wang. Power Attack: An Increasing
Threat to Data Centers. In NDSS, 2014.

[44] Y. Yarom and K. Falkner. FLUSH+ RELOAD: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack. In USENIX Security, 2014.

[45] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter. HomeAlone: Co-
residency Detection in the Cloud via Side-Channel Analysis. In IEEE
S&P, 2011.

[46] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-VM Side
Channels and Their Use to Extract Private Keys. In ACM CCS, 2012.

[47] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-Tenant
Side-Channel Attacks in PaaS Clouds. In ACM CCS, 2014.

[48] Y. Zhang and M. K. Reiter. Düppel: Retrofitting Commodity Operating
Systems to Mitigate Cache Side Channels in the Cloud. In ACM CCS,
2013.

12

