
TrustICE: Hardware-assisted Isolated Computing
Environments on Mobile Devices

He Sun∗†‡, Kun Sun‡, Yuewu Wang∗, Jiwu Jing∗ and Haining Wang§
∗State Key Laboratory of Information Security, Institute of Information Engineering, CAS, Beijing, China

Data Assurance and Communication Security Research Center, CAS, Beijing, China
{sunhe, wangyuewu, jingjiwu}@iie.ac.cn

†University of Chinese Academy of Sciences, Beijing, China
‡Department of Computer Science

College of William and Mary, Williamsburg, VA, USA
ksun@wm.edu

§Department of Electrical and Computer Engineering
University of Delaware, Newark, DE, USA

hnw@udel.edu

Abstract—Mobile devices have been widely used to process
sensitive data and perform important transactions. It is a chal-
lenge to protect secure code from a malicious mobile OS. ARM
TrustZone technology can protect secure code in a secure domain
from an untrusted normal domain. However, since the attack
surface of the secure domain will increase along with the size
of secure code, it becomes arduous to negotiate with OEMs to
get new secure code installed. We propose a novel TrustZone-
based isolation framework named TrustICE to create isolated
computing environments (ICEs) in the normal domain. TrustICE
securely isolates the secure code in an ICE from an untrusted
Rich OS in the normal domain. The trusted computing base
(TCB) of TrustICE remains small and unchanged regardless of
the amount of secure code being protected. Our prototype shows
that the switching time between an ICE and the Rich OS is less
than 12 ms.

Keywords—Computing Environment; Isolation; TrustZone.

I. INTRODUCTION

As we are rushing toward the post-PC era, the concept
of Bring Your Own Device (BYOD) is a growing trend for
allowing people to bring personally owned mobile devices
(e.g., smart phones and tablets) to workplace and use them to
access company’s sensitive data. It can reduce an enterprise’s
running cost and improve its employees’ productivity. How-
ever, it also brings the risks of potential information leakage
that could hold the enterprises back. When both personal
and enterprise applications are installed on the same mobile
system, adversaries may compromise the mobile OS kernel
by exploiting vulnerabilities in personal applications and then
steal data from enterprise applications [1], [2], [3].

Recent hardware progresses on ARM processors have
enabled mobile devices to protect secure code’s execution
in an isolated computing environment [4], [5], [6], [7], [8],
[9]. ARM introduces a new CPU mode called Hyp mode.
KVM/ARM [4], [5] utilizes Hyp mode to port Linux KVM
on ARM processors and run virtual machines with compara-
ble performance to native execution. One major concern of

Dr. Yuewu Wang is the corresponding author.

hypervisor-based solutions on mobile devices is the higher
power consumption due to virtualization operations. ARM also
introduces TrustZone technology to protect secure code from
insecure code by separating them into two isolated execution
domains [9].

Current TrustZone-based solutions [10], [9], [11], [12]
install a minimal secure OS in the secure domain and run
a number of secure applications in the secure OS. It faces two
major challenges. First, the attack surface in the secure domain
will increase along with the number of secure applications
installed in the secure OS. Moreover, the trusted computing
base (TCB) of the secure domain will increase along with the
number of kernel modules installed in the secure OS in order
to provide additional services and support more applications.
Since the secure domain has a higher privilege than the
normal domain, when the secure domain is compromised, the
normal domain will be compromised too. Second, for third-
party software developers, it may be an arduous process for
negotiating with OEMs and service providers to get their
code installed into the secure domain. Though ARM defines
an API specification TZAPI [9] for TrustZone, the detailed
implementation depends on the software vendors that typically
only have interests in providing their own closed source
solutions.

In this paper, we propose a novel TrustZone-based isolation
framework named TrustICE to provide isolated computing
environments (ICEs) on mobile devices. The basic idea of
TrustICE is to create ICEs in the normal domain rather than
in the secure domain. Instead of using a hypervisor, TrustICE
relies on TrustZone to ensure that the secure code in ICEs
is securely isolated from the untrusted and insecure code
including the Rich OS in the normal domain.

TrustICE aims at providing ICEs to protect secure code
without enlarging the attack surface and the TCB in the
secure domain. By moving the secure code from the secure
domain to the normal domain, the attack surface of the secure
domain hardly changes, no matter how many pieces of new
secure code are installed and executed on the mobile devices.
Similarly, the TCB is unchanged and minimized, since it



only consists of a Boot ROM and a small trusted domain
controller (283 lines of code). The trusted domain controller is
responsible for ensuring the integrity and authenticity of secure
code before being loaded into the memory, enforcing secure
isolation of secure code in the normal domain, and achieving
a secure switching between ICE and the Rich OS. Therefore,
TrustICE provides third-party software vendors and application
developers an isolated computing environment for integrating
their secure code into the TrustZone’s secure domain, without
the arduous negotiation with OEMs.

We can protect one ICE from being accessed by the Rich
OS and other ICEs by using TrustZone. First, when secure
code is running in an ICE, the Rich OS and other ICEs are all
suspended and thus cannot access the resource in the active
ICE. Second, when one ICE is in the suspend state, since it
may contain state information about secure code, we must
prevent the running Rich OS and other secure code from
reading the memory of the suspended secure code. Instead
of using the heavy encryption/decryption mechanisms, we
use the hardware-assisted Watermark technique [13] on ARM
processors to dynamically protect the memory regions of the
suspended secure code.

We implement a TrustICE prototype on Freescale i.MX53
QSB and develop two ICE usage instances to demonstrate the
usability of TrustICE. First, we can successfully run a self-
contained cryptographic library in one ICE to provide public
key operations. Second, we implement a trusted user interface
containing a touchscreen driver and a wireless communication
driver for users to interact with the ICE.

In summary, we make the following contributions in this
paper.

• We design a TrustZone-based isolation framework
named TrustICE to provide isolated computing envi-
ronments on mobile devices without using a hypervi-
sor.

• We enhance the system security. TrustICE can reduce
the attack surface of the secure domain and minimize
the system’s TCB by moving secure code from the
secure domain to the normal domain. TrustICE’s TCB
only includes a Boot ROM and a small trusted domain
controller, which is protected by TrustZone in the
secure domain.

• We can ensure the isolation of secure code in the
normal domain. Since all secure code will be executed
in the normal domain, we ensure that no matter
whether the secure code is running or suspended, the
untrusted Rich OS cannot access or manipulate it.

• We implement a TrustICE prototype on Freescale
i.MX53 QSB. The Rich OS is a customized Linux
2.6.35 and Android 2.3.4. The experimental results
show that our system can switch from the Rich OS
to ICE in 10.6 ms, and switch back from ICE to the
Rich OS in 0.8 ms.

The remainder of the paper is organized as follows. Sec-
tion II introduces TrustZone background. Section III describes
the threat model and assumptions. We present the TrustICE
framework in Section IV. A prototype implementation is

detailed in Section V. Section VI presents experimental results.
We perform a security analysis in Section VII. The related
work is described in Section VIII. Finally, we conclude the
paper in Section IX.

II. BACKGROUND

ARM TrustZone technology is a hardware security exten-
sion in ARM processors [9], [14], [15]. Commodity processor
chips with TrustZone extension have been introduced by
mainstream semiconductor corporations such as Freescale [16],
TI [17], and Samsung [18]. Figure 1 shows the TrustZone
architecture adopted by most trusted execution environment
(TEE) solutions (e.g. MobiCore (Trustonics) [12], Sierra-
TEE [19] and Trusted Logic [20]), which runs untrusted apps
on an untrusted Rich OS in the normal domain and protects
secure apps on a small customized secure OS in the secure
domain. The isolation between two domains is enforced by
a secure monitor in the secure domain to ensure CPU state
isolation, memory isolation, and I/O device isolation. When
the system boots up, a secure boot ensures the integrity and
authenticity of the secure OS.

Secure OSRich OS

Secure Monitor

App App App

Normal Domain Secure Domain

Trusted 
App

Trusted 
App

Trusted 
App

Secure Boot

TrustZone-enabled ARM processor

Fig. 1: Traditional TrustZone Architecture

A. CPU State Isolation

TrustZone supports two CPU states, secure state and non-
secure state, for the secure domain and the normal domain,
respectively. Two CPU states are separated through a set of
banked CP15 registers that could be assigned two values. Each
state consists of seven CPU modes: User, FIQ, IRQ, Supervi-
sor, Abort, Undefined, and System. All the modes, except the
User mode, are privileged modes. Mobile applications run in
the User mode, and the OS kernel runs in the privileged modes.
Secure and non-secure states can be distinguished by setting
the NS bit in the Secure Configuration Register (SCR), which
can only be modified in the secure state [14]. TrustZone adds a
new privileged Monitor mode that only runs in the secure state
to serve as a gatekeeper managing the switching between the
two states. Both states can call a privileged Secure Monitor
Call (SMC) instruction to enter the Monitor mode and then
switch to the other state. Moreover, a hypervisor mode called
HYP mode has been integrated in ARM Cortex A15 processor
family to support virtualization of non-secure operations [4],
[5].

2



B. Memory Isolation

TrustZone provides virtual MMU mechanism to support
different virtual memory address spaces in the secure domain
and the normal domain. The same virtual memory address in
two domains will be mapped to different physical memory
addresses. TrustZone allows the secure domain to access the
virtual memory address space in the normal domain, but not
vice versa. Note that the virtual MMU mechanism can only
guarantee the isolation of virtual memory spaces, but not
the physical memory spaces. TrustZone includes a TrustZone
Address Space Controller (TZASC) to partition DRAM into
secure or non-secure memory regions. The normal domain can-
not access the physical memory regions assigned to the secure
domain. TZASC is accessed through Watermark technique on
Freescale’s i.MX53 QSB.

i.MX53 QSB provides two Watermark regions for each
external DDR memory. One of the Watermark regions is con-
figured to only allow access from the secure domain. The other
one is accessible only from the supervisor mode no matter what
domain it is in. A Watermark region must be continuous and its
size can be configured by setting the Watermark Start ADDR
Register and the Watermark End ADDR Register. Moreover,
the size of the region cannot exceed 256 MB. With the
watermark mechanism, a complete runtime isolation can be
implemented between the secure and normal domains.

C. I/O Device Isolation

Hardware Interrupt Isolation. The TrustZone Aware In-
terrupt Controller (TZIC) is a TrustZone-enabled interrupt
controller on i.MX53 QSB, which allows a fine-grained and
independent control over each interrupt connected to the
controller. There are two types of hardware interrupts: IRQ
(interrupt request) and FIQ (fast interrupt request). An interrupt
can be set as either secure or non-secure in the TZIC, and a
secure interrupt can only be configured by the secure domain
while a normal interrupt can be configured by both domains.
The secure interrupt can assert FIQ or IRQ while the non-
secure interrupt can only assert IRQ. The CPU is responsible
for identifying and redirecting the interrupts to the correct
domain.

DMA Isolation. Certain I/O devices, such as touchscreen
controller and storage controller, can transfer data to and from
memory using Direct Memory Access (DMA). A TrustZone-
aware DMA controller (DMAC) supports concurrent secure
and normal DMA accesses, each with independent interrupt
events. The DMAC can prevent a peripheral assigned to the
normal domain from performing a DMA transaction on the
memory regions of the secure domain.

III. THREAT MODEL AND ASSUMPTIONS

We trust the code in the Boot ROM and the domain
controller in the secure domain. An adversary is able to
exploit software vulnerabilities to compromise the Rich OS
and then launch attacks to compromise the code and data
in ICEs. Moreover, we assume the secure code may have
unknown bugs, which can be exploited by adversaries to
compromise one ICE and then target at compromising other
ICEs. Therefore, a malicious Rich OS or compromised ICE
may launch the following attacks:

• Faking an ICE to deceive a user. When the Rich
OS is requested to switch to an ICE, it may fake
an ICE and deceive the user to leak sensitive data
such as password. A mechanism should be provided
to authenticate an ICE.

• Tampering the static image of secure code. The Rich
OS may tamper with the code image saved on the
non-volatile storage. Thus, the code image should be
verified before being loaded into memory.

• Tampering the secure code and data in the memory.
Since TrustICE runs ICEs in the normal domain, the
Rich OS has the same level of privilege as the ICEs
to access their memory. We must protect the secure
code from being accessed by the Rich OS.

• Preventing the system from switching into the secure
domain. Attackers can launch denial-of-service (DoS)
attacks to prevent the system from switching to the
secure domain and preparing ICEs.

We assume that the attacker cannot access physical mobile
devices or launch local physical attacks, such as removing the
Micro SD card.

IV. TRUSTICE SYSTEM DESIGN

Figure 2 shows the TrustICE architecture. The Rich OS is
still installed and executed in the normal domain. In the secure
domain, besides the OEM software, a small trusted domain
controller (TDC) is responsible for loading secure code in one
ICE, enforcing secure isolation of the secure code from the
Rich OS, and achieving a secure switching between an ICE
and the Rich OS. Since both the Rich OS and ICEs are running
in the normal domain, a secure isolation must be enforced by
TDC.

TDCRich OS

Normal Domain Secure Domain

Secure Monitor Secure Boot

TrustZone-enabled ARM processor

App

App

App

ICE1

Secure Code
1

ICE2

ICEn

.

.

.

OEM 
Code

Secure Code
2

Secure Code
n

Fig. 2: TrustICE Architecture

Multiple ICEs can be dynamically created in the normal
domain to protect the execution of different secure code. We
call the code constructing an ICE as ICE code or ICE in short,
and we call the application code to be executed in one ICE as
secure code. Secure code can vary from simple self-contained
cryptographic operations to complex applications that rely on
system libraries and device drivers, etc. Accordingly, the ICE
code will vary from a simple memory controller to a thin OS.

3



S1: Power 
off

S2: Secure 
boot 

S3: TDC 

S4: Rich 
OS

S5: ICE

Fig. 3: TrustICE State Machine

A. System State Machine

Figure 3 shows the system state machine of TrustICE.
TrustICE has five system states: system power off (S1), secure
boot (S2), TDC (S3), the Rich OS (S4), and ICE (S5). At the
beginning, system is powered off (S1). When the system is
powered on, it first enters the secure domain. Then the system
enters into secure boot (S2). A secure bootloader is loaded
into the secure domain by the Boot ROM code. The secure
bootloader uses TrustZone to set a secure memory region that
only allows access from the secure domain and load the TDC
image into it. Then, the system enters into TDC (S3), which
loads the Rich OS’s bootloader to boot up the Rich OS. After
the Rich OS boots successfully, the system enters into the Rich
OS (S4).

When secure code needs to be executed, it makes an
SMC system call to switch the system to TDC (S3), which
suspends the Rich OS, saves the context information, and
disables interrupts and DMA. All these operations can be
conducted by configuring processor registers in the secure
domain. After verifying the integrity of the secure code and
the ICE code, TDC loads them into a secure memory region,
which is protected by the Watermark mechanism. Next, TDC
switches the system back to the normal domain to execute the
secure code in the ICE (S5). When the secure code ends, the
system switches back to TDC, which then resumes the Rich
OS. As we can see, the entire switching process is controlled
by TDC in the secure domain. Moreover, whenever the system
is shutdown, it returns to state S1.

B. Secure Isolation

By running TDC in the secure domain, we can utilize
TrustZone hardware security support to isolate TDC from the
Rich OS and ICEs. On the other hand, since both the Rich OS
and ICEs are running in the normal domain, we must ensure a
secure isolation that can protect one ICE from being accessed
by the Rich OS or other ICEs.

CPU Isolation. When one ICE is running, the Rich OS
and other ICEs are all being suspended by TDC. Before the
ICE is executed, TDC will save all CPU state information in a
secure memory storage. After the ICE accomplishes its mission
and switches back to TDC, TDC cleans up the footprint,
recovers the CPU state information, and resumes the Rich OS.

Therefore, the Rich OS cannot obtain any sensitive CPU states
from ICE.

Memory Isolation. When the system exits one ICE, TDC
protects both the secure code and the ICE code in a secure
memory storage using the memory Watermark mechanism.
Therefore, when the Rich OS resumes to run, it cannot access
the code and data in the secure memory storage. Since secure
code runs in the normal domain, TDC must move the secure
code to the normal memory storage before the code can
run. When secure code is running, the Rich OS still cannot
access its memory since it has been suspended by TDC. We
will describe the details of using the memory Watermark
mechanism to protect the secure code and the ICE’s memory
in Section V.

I/O Device Isolation. In the secure domain, we can simply
block all external interrupts from arriving at TDC. Thus, we
can protect TDC from being interrupted by external interrupts
issued by malicious devices. To protect ICE from being
intercepted by a malicious external interrupt, TDC disables all
the hardware interrupts before going to ICE. However, since
one ICE may need some interrupts enabled to interact with I/O
devices, we develop a fine-grained interrupt control method by
enabling a minimal set of required interrupts and disabling all
the other interrupts before switching to ICE.

C. Trusted Path

A trusted path should be guaranteed in both system booting
and system switching. A secure boot performs cryptographic
checks at each stage of the secure domain’s booting process.
The trusted code in the Boot ROM first verifies the signature
of the secure bootloader image using an RSA public key
stored in one electrically programmable Fuse (eFUSE). Since
the eFUSE and the RSA code in the Boot ROM cannot be
tampered, adversaries cannot manipulate the secure bootloader
image without being detected. Thus, a trusted secure boot-
loader can continue to secure the loading of TDC, which is
consequently responsible for ensuring the secure load of the
ICEs.

When the system switches from the Rich OS to one ICE,
a compromised Rich OS may fake an interface of the ICE
to deceive users to leak sensitive information. In this attack,
the trusted TDC is totally bypassed. To protect against this
attack, we need to make sure that TDC must be involved in
the switching process. One potential solution is to present users
an exclusive comprehensible signal that can only be controlled
by TDC. For instance, an LED light solely controlled by TDC
can be used as a trusted display signal to illustrate that one
ICE is running in the system.

V. IMPLEMENTATION

We implement a TrustICE prototype using Freescale’s
i.MX53 quick start board (QSB). i.MX53 QSB comes with
an ARM Cortex-A8 1 GHz application processor with 1 GB
DDR3 memory and a 4GB Micro SD card. It has a 64 KB Boot
ROM, which supports SHA-256 and 2048-bit RSA operations.
The touchscreen we use is MCIMX28LCD, a 4.3” 800x480
(WVGA) display with 4-wire resistive touchscreen. The board
is equipped with a HUAWEI MC323 CDMA wireless mod-
ule [21] as the cellular communication component.

4



A. Memory Map

�����������

�����������

�����������

�����������

�����������

�����������

Boot ROM (64KB)

Other Devices

ICE

Rich OS

Rich OS

TDC (64KB)

Other Devices
Boot ROM (64KB)

Other Devices

ICE

Rich OS

Rich OS

TDC (64KB)

Other Devices

Running area Watermark region

(a) Rich OS is running (b) ICE is running

Fig. 4: Memory Map with One ICE

Freescale i.MX53 QSB provides 1GB RAM memory with
two external DDR memories: one ranges from 0x70000000
to 0x8FFFFFFF and the other from 0xB0000000 to
0xCFFFFFFF. As described in Section II-B, watermark mem-
ory is the memory that can only be accessed by the secure
domain, so the Rich OS cannot access the watermark memory
from the normal domain. The TDC is always protected in
the watermark memory. Since the system only defines one
watermark memory area on each memory, we design different
memory mapping schemes to support different number of ICEs
in the system with one watermark.

Figure 4 shows the TrustICE memory map when only one
ICE is required in the system. We save the highest 64KB RAM
memory from 0xCFFF0000 to 0xCFFFFFFF for TDC. The
adjacent memory area is reserved for the ICE. The size of the
ICE depends on the complexity of the secure code plus its
required system libraries and functions in the ICE, which can
be either pre-loaded into memory when the system boots up or
dynamically loaded into memory when the secure code needs
to run. The remaining RAM memory is allocated to the Rich
OS. When the Rich OS is running, TDC extends the watermark
region to include the ICE memory, so that the Rich OS cannot
access the ICE. When the ICE needs to run in the normal
world, TDC dynamically changes the watermark configuration
to exclude the ICE memory from the watermark region. Note
that the Rich OS has been suspended at this time.

When two ICEs are required in the system, the memory
map is depicted in Figure 5. The challenge is to protect three
memory areas, namely, the TDC and two ICEs, using only
one watermark memory region. In particular, the TDC should
be always protected in the watermark memory. We solve
this problem by putting the TDC between two ICEs within
one continuous memory space and dynamically changing the
configurable watermark region. When the Rich OS is running,
the TDC and two ICEs are all covered by the watermark. When
one ICE is running, the TDC and the other ICE are protected
by a new watermark region.

When more than two ICEs are required, we cannot cover
all the other ICEs and the TDC while one ICE is running

TDC (64KB)

Rich OS

ICE 1

ICE 2

TDC (64KB)

Rich OS

ICE 1

ICE 2

TDC (64KB)

Rich OS

ICE 1

ICE 2

Running area Watermark region

(a) ICE 1 is running (b) Rich OS is running (c) ICE 2 is running

Fig. 5: Memory Map with Two ICEs

using one watermark region, since there is only one watermark
region and it must be continuous in the memory. To solve
this problem, we designate all ICEs and the TDC in one
continuous memory that can be protected by the watermark
region, as shown in Figure 6(a); however, whenever an ICE is
requested to run secure code, the TDC copies the active ICE to
a reserved memory region called ICE Runtime Environment to
run the secure code, as shown in Figure 6(b). Therefore, even
if the Rich OS or one ICE is malicious, the other ICEs are
still protected. All the codes of the ICEs are pre-loaded one
by one into the adjacent area of the TDC. The ICE Runtime
Environment is reserved at the adjacent area of the ICEs, and
it is also protected by the watermark when the Rich OS is
running. Since we need to copy one ICE to the ICE runtime
environment every time when one ICE needs to run, it will
increase the switching time between ICEs and the Rich OS. To
solve this problem, we would suggest more watermark memory
regions should be supported on the ARM platform.

TDC (64KB)

Rich OS

…...

ICE Runtime
Environment

ICE i
…...

ICE n

ICE 1

TDC (64KB)

Rich OS

…...

ICE i

ICE i
…...

ICE n

ICE 1

Running area Watermark region

(a) Rich OS is running (b) ICE i is running

Fig. 6: Memory Map with Multiple (> 2) ICEs

B. Loading TDC

Similar to other embedded systems, i.MX53 QSB starts
with the code in the Boot ROM when it is powered on. The
code memory address of ROM is between 0x00000000 and
0x0000FFFF. i.MX53 QSB provides a High Assurance Boot
(HAB) to ensure the authenticity and integrity of an image that
will be loaded into the processor chips [13], [22]. The Boot

5



ROM loads the secure bootloader image from the Micro SD
card, and then HAB verifies the integrity and authenticity of
the secure boot image using SHA-256 and RSA algorithms
embedded in the Boot ROM code. The hash of the public key
of the root certificate is stored at one electrically programmable
Fuse (eFUSE) named SRK HASH , whose value cannot be
changed after eFUSE blowing. The secure bootloader in this
work is developed based on Uboot [23]. It is responsible
for loading TDC into the watermark region using Uboot
mmc read command. A certificate signed by root certificate is
used as the developing certificate of TDC, and the developing
certificate is stored with TDC. The value of SRK HASH
is used to verify TDC’s developing certificate. TDC will be
loaded only if the verification succeeds.

C. System State Switching

TDC is responsible for enforcing a secure switching from
the Rich OS to one ICE and then back to the Rich OS. Figure 7
shows the switching steps when an application needs to execute
secure code. When one application is running in the user mode
of the normal domain, an SMC instruction must be called
to switch from the normal domain to the TDC in the secure
domain; however, SMC is a privileged instruction and cannot
be called directly by applications. Hence, we add an SMC
system call into the Rich OS to allow applications to call the
SMC instruction. The system call contains an SMC instruction
to forward the request from the application to TDC.

(1) System Call

(2)Call SMC

TDC

(3) Configure 
ICE

(4) Enter ICE 

Rich OS
(Running)

ICE
(Suspended)

Rich OS
(Suspended)

ICE
(Running)

(5) System Call

(6)Call SMC

(7) Restore 
Rich OS

(8) Enter Rich 
OS

Normal Code Secure Code Normal CodeAPP:

Fig. 7: Switching between Rich OS and ICE

When secure code needs to be executed, the SMC system
call is triggered to make the system enter the TDC in the
secure domain, and the code indexed by the SMC offset (which
is 0x8) in the exception vector table of the monitor mode is
invoked. The integrity of ICE code is checked by verifying the
signature generated by its developing certificate. The signature
verification algorithm, RSA in our prototype, is implemented
in TDC. The validity of the developing certificate is ensured
by SRK HASH eFUSE. Next, TDC proceeds the switching
process through following operations.

1) Backing up the translation tables, the exception vector
table, and related registers used by the Rich OS. TDC
overwrites the translation table to include the memory
map of ICE; the start address of ICE’s exception

vector table is written into the Non-secure Vector
Base Address Register. Then, only the interrupts
required by the ICE are enabled while others are
masked off in the TZIC.

2) Verifying the signature of the secure code with RSA
algorithm. Loading the secure code into ICE and
generating the security attestation of ICE execution
with TDC’s private key.

3) Switching the system back into the normal domain
to run the secure code in its ICE.

4) Resuming the Rich OS. At the end of the secure code,
the SMC system call will be called again to switch
the system into TDC, which cleans up CPU registers
and resumes the Rich OS.

With the interrupt control in the TZIC, the execution of ICE
will not be intercepted by unnecessary interrupts. The desired
interrupts will be handled in the exception vector table of ICE.
Since the Rich OS may hijack the SMC system call to deceive
the user into a fake ICE to perform sensitive transactions, our
prototype uses an LED light that is solely controlled by TDC
on the development board to notify the user if one ICE is
running or not.

D. ICE Development

Our ICE prototype implements a number of basic li-
brary functions for the secure code to call, including a self-
contained cryptographic library that supports RSA signature
and SHA-1 hash, a user interface using LCD touchscreen, and
a network interface based on HUAWEI MC323 CDMA radio
module [21].

ICE code is running in the non-secure Supervisor mode,
which allows secure code running in the non-secure
User mode to call system functions by making system calls.
We have defined five system calls numbered from 1 to 5: (1)
ICE exit call, (2) RSA signature call, (3) SHA-1 hash call, (4)
network interface call, and (5) user interface call. Among the
five system calls, only the first ICE exit call is a must for any
ICE to return to the Rich OS.

The ICE exit call is implemented to call the SMC instruc-
tion to clean up the trace of ICE and resume the Rich OS.
The RSA algorithm is ported from an open-source library
PolarSSL [24]. In our prototype, SHA-1 algorithm uses the
hardware accelerator (SAHARA [13]) on board. The HUAWEI
MC323 CDMA radio module includes a complete TCP/IP
stack, so using AT command, ICE code can easily communi-
cate with a remote server through cellular network. The radio
module is an independent device and its logic code is fixed, so
it cannot be tampered after being deployed on mobile devices.
The user interface call is based on a driver for touchscreen to
display pictures in the format of RGB565 on an 800*480-pixel
screen. It can render any words and pictures fitting into the
screen. When the ICE is running, an interrupt rises as soon as
there is a touch on the screen. The touchscreen driver captures
the interrupt and reads the X-Y coordinates of the touch point.
Figure 8 shows a snapshot of the screen that asks the user
to input a passcode before entering an ICE. In our future
work, we will support additional system functions in ICE, such
as an openGL library and a Wi-Fi driver. Furthermore, more
powerful ICEs can be developed by third-party programmers
and service providers.

6



Fig. 8: Snapshot of Passcode Input

The secure code can be a code segment of an application
that makes system calls in ICE to request corresponding
services. In this case, the beginning and ending of the secure
code are both marked by SMC system calls. The system call
to mark the beginning of the code is executed in the Rich OS,
and the ending system call is the ICE exit call that is handled
in ICE. An example of secure code is listed in Appendix A.
In the secure code, all privileged functions are implemented
in the ICE. In other words, the secure code cannot rely on the
untrusted Rich OS.

VI. PERFORMANCE EVALUATION

The implementation of TrustICE should satisfy the follow-
ing two performance requirements. First, the switching time
between the Rich OS and one ICE should be small. Second,
the ICE should have small performance impacts on the Rich
OS. We conduct experiments to evaluate the performance on
two ICEs: the encryption ICE includes a self-contained library
for RSA and SHA-1 algorithms and the interface ICE includes
a touchscreen interface and a cellular network interface. For
the encryption ICE, since no interrupts are needed, all the
interrupts are masked. For the interface ICE, only the interrupt
of the 4-wire resistive touchscreen is enabled.

The size of the encryption ICE is 46,424 bytes, and the size
of the interface ICE is 1,050,892 bytes including the display
picture of 1,041,832 bytes. The size of the interface ICE can
be further reduced by compressing the image or choosing a
low-quality picture. We use the performance monitor in the
Cortex-A8 core processor to count the CPU cycles and then
convert the cycles to time by multiplying 1 ns / cycle. We
repeat the experiments 100 times and take the average value.

A. Switching Time

We measure the switching times from the Rich OS to ICE
and from ICE to the Rich OS, respectively. Table I shows the
switching time for our two prototype ICEs.

TABLE I: TrustICE Switching Time

Operation Encryption ICE (us) Interface ICE (us)

From the Rich OS to ICE 527.77 10611.21
From ICE to the Rich OS 783.47 782.96

The time latency for switching from the Rich OS to ICE
includes (1) exiting the Rich OS, (2) loading and verifying
the ICE code, (3) loading and verifying the secure code, (4)
suspending the Rich OS and configuring the ICE, and (5)
entering the ICE. A breakdown of the switching times are
shown in Table II. It spends 0.5 ms to switch from the Rich
OS to the encryption ICE and 10 ms for switching into the
interface ICE. This is because the interface ICE has a larger
code base, which makes the TDC spend more time verifying
its integrity when loading it into the memory. We use the SHA-
1 algorithm to verify the ICE code and the secure code. The
switching time will increase along with the code size of the
ICE and the secure code. However, since ICE is protected by
the watermark when suspended, if we do not worry about ICE
being compromised during its runtime, we can skip the stage
of verifying the ICE code integrity. If so, the switching time
for any ICEs will have a similar value.

TABLE II: Time Breakdown: From the Rich OS to ICE

Operation Encryption ICE (us) Interface ICE (us)

exiting the Rich OS 5.84 5.93
verifying secure code 9.76 9.75

verifying the ICE 475.85 10559.37
configuring the ICE 35.05 34.89

entering ICE 1.27 1.27
total 527.77 10611.21

After executing the secure code, the system can switch
from the encryption ICE to the Rich OS in 783.47 us and
switch from the interface ICE to the Rich OS in 782.96 us.
A breakdown of the switching time includes (1) exiting ICE,
(2) restoring the Rich OS and DMA, and (3) entering the Rich
OS. The breakdown results are listed in Table III. Since we
do not need to perform the expensive SHA-1 operations, the
switching time is much smaller than switching from the Rich
OS to one ICE. Moreover, the switching times are almost the
same for different ICEs. Overall, the switching times in both
directions are very small and can barely be perceived by a
user.

TABLE III: Time Breakdown: From ICE to the Rich OS

Operation Encryption ICE (us) Interface ICE (us)

exiting ICE 0.49 0.48
restoring the Rich OS 19.26 19.41
entering the Rich OS 763.72 763.07

total 783.47 782.96

B. Performance Comparison between ICE, TDC and the Rich
OS

We compare the performance differences when the system
runs in ICE, TDC, and the Rich OS, respectively. We first

7



0x1 0xF 0xFF 0xFFF 0xFFFF

0.0

5.0x106

1.0x107

1.5x107

2.0x107

2.5x107

3.0x107

Ex
ec

ut
io

n 
Ti

m
e 

(n
s)

scale

 Rich OS
 ICE
 TDC

Fig. 9: Absolute time of code execution

study the performance in ICE, and then use it as a baseline
to compare the other two environments. Then we evaluate
the performance of Android in the secure domain and the
normal domain, respectively. Also, we compare the power
consumption in these three cases.

We run a piece of self-contained code in TDC, ICE, and the
Rich OS, respectively, to compare their execution performance.
The code is shown in Listing 1. We run the code with
five different scales, namely, 0x1, 0xF, 0xFF, 0xFFF, and
0xFFFF. In each scale, we run the code in each environment
100 times and show the average results in Figure 9.

Listing 1: The Self-Contained Code
unsigned int i,j,scale;
const char* msg="!!!Hello World!!!";
char dest[17];

for(j=0;j<scale);j++){
for(i=0;i<17;i++)
dest[i]=msg[i];
}

From the figure, we can see that the code running in the
TDC is the fastest. The average execution time ranges from
950 ns to 0.03 s. Hence, we use the time in ICE as the standard
time, and generate two ratios by dividing the other two times
with the standard time. The comparison result is shown in
Figure 10. We can see that the Rich OS is faster than the ICE
when the scale is small, and ICE is faster when the scale is
larger than 0xFFF . This is because when the execution time
is small, no interrupts in the Rich OS will break the execution
of the self-contained code. However, as the scale increases, the
execution in the Rich OS will be interrupted more frequently
and the execution time thus increases.

Since there are devices that can only be accessed in the
secure domain, the Rich OS is designed to run in the secure
domain when only the Rich OS is deployed on i.MX53
QSB. In TrustICE, when the Rich OS needs to access those
devices that are only open to the secure domain, it issues a

0x1 0xF 0xFF 0xFFF 0xFFFF

0.6

0.7

0.8

0.9

1.0

R
at
io

scale

 Rich OS
 ICE
 TDC

Fig. 10: Relative time of code execution

request to switch to the secure domain by calling the SMC
instruction. Then the secure domain helps access the devices
and returns the result back to the Rich OS. To evaluate the
impact of moving the Rich OS from the secure domain to
the normal domain, we measure the benchmarks of Android
in both the normal domain and the secure domain. We install
Quadrant [25], a benchmark app for mobile devices, to run on
both domains to compare their performance. The app available
on Google Play is capable of measuring CPU, memory, I/O,
and 3D graphics performance. The overall and categorical
Quadrant benchmark scores are shown in Figure 11. The higher
the score is, the better the performance is. The results show
that ICE has little impact on the Rich OS. The performance
of CPU and memory is barely affected. The I/O performance
in the secure domain is better than that in the normal domain.
This is due to the existence of those I/O devices that are open
only in the secure domain. Thus, there is no direct access to
those I/O devices in the normal domain while we can directly
access all the I/O devices in the secure domain.

We also measure the system power consumption in the
three different environments. As the input DC voltage of
i.MX53 QSB is approximately fixed at 5 V , we measure the
input current to the board and multiply it with the 5 V voltage
to derive the power consumption. We record the current data
when the current keeps constant. From Table IV, we can see
that the system power consumption in three cases are almost
the same. Due to the constrained functions and operations in
the TDC and the ICE, the power consumptions of these two
cases are slightly lower than that in the normal domain.

TABLE IV: Comparison on Power Consumption

System Power (W )

The Rich OS 2.49
TDC 2.47
ICE 2.47

8



1700

4215

1160

2803

1639

4195

1150

2469

total CPU Memory I/O
0

1k

2k

3k

4k

B
en
ch
m
ar
k

Category

 Secure Domain
 Normal Domain

Fig. 11: Android Benchmark

C. Comparison with Other Solutions

Emulated hardware platforms with TrustZone support
have been developed [26], [27]; however, those emulation
frameworks do not contain many useful security features of
TrustZone. Besides, the real platform devices are not very
“friendly” [10]. This is because there is little open-source
software system for TrustZone, and the security datasheet of
hardware is not fully open to the public. This prevents users
from utilizing the security features of TrustZone to develop
comprehensive TrustZone-based software systems.

TrustZone has been proposed to be used in many ARM ar-
chitectures [28], [29], [30]; however, there are no detailed per-
formance evaluations available for public access. Some archi-
tectures have been proposed in commercial use [12], [20], but
they are not open-source. The open-source SierraTEE [19]
must be loaded on the emulated Fast Models or on pro-
grammable Zynq-7000 AP SOC [31]. Since those experimental
results are not collected on real platforms, it is difficult for us
to compare our system to their solutions.

D. Performance Comparison between One and Multiple ICEs

We have different memory maps of TrustICE when we
load only one ICE or multiple ICEs in the system. Since the
memory maps have impacts on setting the watermark regions,
we conduct experiments to study and compare their perfor-
mance. Our experimental results show that the only difference
is the switching time when the system switches from the Rich
OS to ICE. In one-ICE and two-ICE scenarios, the switching
time from the Rich OS to ICE is almost the same, since
we only need to reconfigure the watermark registers in TDC.
However, in the more-than-two-ICE scenario, the switching
time is much larger. In our prototype with 2 encryption ICEs
and one interface ICE, it takes 2.85 ms to copy the encryption
ICE and 68.44 ms to copy the interface ICE to the runtime
environment. This overhead can be reduced if the hardware
platforms can provide a flexible watermark solution to protect
a large number of memory regions for ICEs.

VII. SECURITY ANALYSIS

As we point out in the threat model, the Rich OS may be
compromised by an adversary exploiting known or unknown
OS vulnerabilities. Therefore, we must prevent the malicious
OS from compromising the code and data in TDC and ICEs.

Data Exfiltration Attack. TDC is the only trusted computing
base in our system, which is always protected by the TrustZone
hardware security mechanism. We trust the TrustZone hard-
ware design and implementation to protect TDC from being
tampered by a malicious Rich OS. TDC guarantees that all
ICEs are securely isolated from the Rich OS. When the system
switches to ICE, the Rich OS has been suspended and cannot
be resumed to run until the system exits ICE. When the Rich
OS is running, all ICE’s memory regions are protected by
the watermark region that can only be configured by TDC.
Therefore, even if an adversary can compromise the Rich OS,
it still cannot access the code and data in ICEs.

Similarly, TDC guarantees that one ICE cannot access
the memory content of another ICE. One ICE may contain
malicious code targeting at stealing sensitive information from
other ICEs. However, when one ICE is running in the normal
domain, it cannot access other ICEs’ memory spaces that
are protected by the watermark region, which can only be
configured by TDC in the secure domain. Due to the limited
number and the size of watermark regions on i.MX53 QSB,
we cannot prevent an ICE from accessing the resources in the
Rich OS. However, it is a minor issue as our goal is to protect
the secure code in ICEs.

Secure Boot. TrustICE ensures a trusted path when booting the
system and switching between different computing environ-
ments. i.MX53 QSB includes a High Assurance Boot (HAB)
to ensure the authenticity and integrity of an image that will be
loaded on the processor chips [13], [22]. Through validating
the signature of image code, HAB can assure that the code
is originated from a trusted authority and the code is in its
original form. Therefore, if the Rich OS tampers with the
images of TDC, ICEs, or the secure code on the non-volatile
storage, TrustICE can detect it and refuse to load them into
memory.

Spoofing ICE Attack. When the Rich OS is requested to
switch to an ICE, it may fake an ICE and deceive a user to
input secret credentials such as password in the faked ICE. We
use an exclusive hardware signal such as an LED that can only
be controlled by TDC in the secure domain to prevent this kind
of fake ICE attacks. When the system switches from the Rich
OS to one ICE, it is not required to check the integrity of the
ICE again. This is because the ICE memory is protected by
watermark that can only be controlled by the trusted TDC.

Denial-of-Service Attack. A malicious Rich OS may launch
denial-of-service (DoS) attacks to prevent the system from
switching into one ICE; however, such attacks can be easily
detected by a user. When the ICE cannot be entered, the
LED light will not be turned on and the user can notice it
immediately. The user then can launch further investigation or
reinstall the system.

Side-Channel Attack. The Rich OS can hardly use side-
channel to steal sensitive data from ICEs. Though the Rich
OS and ICEs all run in the normal domain, when one ICE

9



is running, the Rich OS is suspended and cannot obtain
the system status information. Before the Rich OS resumes
execution, TDC has cleaned up the CPU context information.
Therefore, it is difficult for the Rich OS to launch side-channel
attacks.

Our design can reduce the attack surface in the secure
domain and the size of the system’s TCB; however, since we
run the secure code in the normal domain, our system may not
provide equivalent isolation that ARM TrustZone guarantees
in the secure domain. ARM TrustZone can ensure isolation
on CPU, memory, and I/O devices. We use the hardware-
assisted watermark mechanism to successfully ensure the
memory isolation between ICEs and the Rich OS. However,
for the CPU and I/O devices, we have to rely on the careful
design of TDC to clean up the CPU states and control the
interrupts for the ICEs. Our design can be integrated with
the traditional TrustZone architecture to provide a three-level
trusted execution environments, where the secure domain is for
the highest-level secure code, the ICE is for the medium-level
secure code, and the Rich OS is for the normal code.

VIII. RELATED WORK

A number of research efforts have been attempted to solve
the data leaking problem, and they can be classified into
two general categories: access control policy based solutions
(e.g., [32], [33], [34], [35], [36], [37], [38]) and isolated com-
puting environment based solutions (e.g., [10], [29], [9], [39],
[40], [41], [8]). Current Android relies on Linux discretionary
access control (DAC) to achieve application isolation [32]. Fur-
thermore, mandatory access control (MAC) has been integrated
into mobile OS kernel to achieve a stronger isolation [33], [34].

An isolated computing environment can be accommodated
on mobile devices to protect the execution of secure code.
For instance, the SIM card in our cellphones is actually a
small computer, with its own memory and even an operating
system to protect the credentials stored in the card. Square [7]
is another example that processes the credit card sensitive data
in an isolated chip that can be connected to the smart phone
through the audio interface. ARM processors are extended
with a new hardware security support called TrustZone [9]
to help construct an ICE using the application processor.
TrustZone can isolate a secure OS from a Rich OS into two
isolated computing domains. Thus, untrusted applications in
a compromised Rich OS cannot access secure applications in
the secure OS [10], [9], [11], [12]. Texas Instruments (TI)
developed its own TrustZone solution and named it M-Shield
[8].

TrustZone has been adopted to secure a number of appli-
cations. For instance, a location-based second-factor authen-
tication for mobile payments uses TrustZone to protect its
secure enrollment schemes [42]. A TrustZone-based memory
acquisition mechanism called TrustDump is capable of reliably
obtaining the RAM memory and CPU registers of the mobile
OS even if the Rich OS has crashed or has been compro-
mised [43]. Santos et al. [44] took advantage of TrustZone to
construct a Trusted Language Runtime (TLR). TLR protects
the secure code of .NET mobile applications from the rest of
the application, and isolates it from the OS and other apps. It
also provides runtime support for the secure code.

Several TrustZone-based systems (e.g., Mobicore/Truston-
ics [12], Trusted Logic [11], ObCs [29], [40], and KNOX [45])
have been developed to enhance the security of mobile de-
vices. MobiCore [12] is a secure OS for TrustZone enabled
ARM controllers including ARM1176 or CortexA8/A9. It
provides development tools called Trustlets for third-party
application developers. For all existing TrustZone-based so-
lutions, a customized secure OS runs in TrustZone’s secure
domain to execute secure applications. This type of TrustZone
architecture has two major problems. First, the system attack
surface increases along with the number of installed trusted
applications. Second, it is difficult for third-party developers
to get their code into the secure domain. Our solution can
mitigate these problems by running the secure code in trusted
ICEs in the normal domain.

Virtualization has been adopted to provide isolated virtual
machines on mobile devices [46]. Also, there emerges hard-
ware virtualization supports on ARM processors [47], [48],
[4]. KVM/ARM [5] utilizes recent ARM hardware virtual-
ization extensions to run virtual machines with comparable
performance to native execution. Secure code can be protected
in an isolated virtual machine that is protected by a trusted
hypervisor. However, due to the size of the Linux kernel,
the trusted computing base (TCB) of the hypervisor is still
quite large and may contain unknown vulnerabilities that may
be exploited to compromise the hypervisor and the virtual
machines.

Researchers have investigated on how to use specific
hardware supports to create an isolated execution environ-
ment from an untrusted operating system on x86 processors
(e.g.,Inktag [49], Overshadow [50], TrustVisor [51], SICE [52],
and SGX [53]). However, these hardware supports are only
available on x86 architecture.

IX. CONCLUSIONS

Based on the ARM TrustZone technology, we design
a novel TrustICE framework to create isolated computing
environments for executing secure code in the normal domain.
Contrast to traditional TrustZone solutions, TrustICE has a
small TCB that only consists of a Boot ROM and a Trusted
Domain Controller (TDC), which are protected by TrustZone.
Our design allows application developers to better utilize the
TrustZone technology without the arduous negotiation with the
OEMs and service providers to get their code into TrustZone’s
secure domain. Our prototype on Freescale i.MX53 QSB can
switch from the Rich OS to ICE in less than 12 ms. In the
future, we will study how to develop more powerful system
functions or a thin OS in ICE.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
valuable comments and suggestions. Dr. Kun Sun’s work is
partially supported by U.S. Army Research Office under Grant
W911NF-12-1-0060 and U.S. Office of Naval Research under
Grant N00014-15-1-2026 and N00014-15-1-2012. He Sun,
Yuewu Wang and Jiwu Jing are supported by National 973
Program of China under award No. 2014CB340603.

10



REFERENCES

[1] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in IEEE Symposium on Security and Privacy, SP 2012,
21-23 May 2012, San Francisco, California, USA, pp. 95–109.

[2] L. Wu, M. C. Grace, Y. Zhou, C. Wu, and X. Jiang, “The impact of
vendor customizations on android security,” in 2013 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS’13, Berlin,
Germany, November 4-8, 2013, pp. 623–634.

[3] “CVE Details. Google: Android: Security Vulnerabilities,”
http://cvedetails.com/vulnerability-list/vendor id-1224/product
id-19997/Google-Android.html, 2013.

[4] L. Rasmusson and D. Corcoran, “Performance overhead of KVM on
linux 3.9 on ARM cortex-a15,” SIGBED Review, vol. 11, no. 2, pp.
32–38, 2014.

[5] C. Dall and J. Nieh, “KVM/ARM: the design and implementation of
the linux ARM hypervisor,” in Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, Salt Lake City, UT,
USA, March 1-5, 2014, pp. 333–348.

[6] M. Reveilhac and M. Pasquet, “Promising secure element alternatives
for nfc technology,” in Near Field Communication, 2009. NFC ’09.
First International Workshop on, Feb 2009, pp. 75–80.

[7] “Square Security.” https://squareup.com/security, accessed in Febuary
2014.

[8] J. Azema and G. Fayad., “ M-Shield mobile security: Making wireless
secure.” Texas Instruments WhitePaper, 2008.

[9] T. Alves and D. Felton, “TrustZone: Integrated hardware and software
security,” ARM white paper, vol. 3, no. 4, 2004.

[10] J. Winter, “Experimenting with ARM trustzone - or: How I met friendly
piece of trusted hardware,” in 11th IEEE International Conference
on Trust, Security and Privacy in Computing and Communications,
TrustCom 2012, Liverpool, United Kingdom, June 25-27, 2012, pp.
1161–1166.

[11] Trusted Logic, “Trusted Foundations by Trusted Logic Mobility,”
http://www.arm.com/community/partners/display product/rw/
ProductId/5393/.

[12] Giesecke & Devrient, “MobiCore,” http://www.gi-de.com/en/trends
and insights/mobicore/trusted-mobile-services.jsp.

[13] Freescale, “i.MX53 Reference Manual with fusemap addendum,”
http://www.freescale.com/webapp/sps/site/prod summary.jsp?code=i.
MX537&fpsp=1&tab=Documentation Tab.

[14] ARM, “Cortex-A8 Technical Reference Manual,” http:
//infocenter.arm.com/help/topic/com.arm.doc.ddi0344k/DDI0344K
cortex a8 r3p2 trm.pdf.

[15] ARM, “Cortex-A9 Technical Reference Manual,” http:
//infocenter.arm.com/help/topic/com.arm.doc.ddi0388f/DDI0388F
cortex a9 r2p2 trm.pdf.

[16] Freescale, “i.MX53 Processors,” http://www.freescale.com/webapp/sps/
site/taxonomy.jsp?code=IMX53 FAMILY.

[17] Texas Instruments , “Get Into the Zone: Building Secure Systems
with ARM TrustZone Technology,” http://www.ti.com/lit/wp/spry228/
spry228.pdf.

[18] Samsung Electronics, “Samsung S5PC100, ARM Cortex A8 based Mo-
bile Application Processor,” http://www.samsung.com/global/business/
semiconductor/file/media/s5pc100 brochure 200902-0.pdf.

[19] Sierraware, “Open Virtualization’s SierraVisor and SierraTEE,” http:
//www.openvirtualization.org.

[20] Trusted Logic, “TrustZone Software Porting Kits,”
http://www.trusted-logic.com/Presentations/Trusted Logic
TrustZoneSoftwarePortingKits ccolas 2007Sept13.pdf.

[21] HUAWEI, “HUAWEI MC323 CDMA M2M Module,” https://techship.
se/products/huawei-mc323/.

[22] Package, Plastic, “i. mx 6solo/6duallite applications processors for
industrial products,” 2012.

[23] “Das U-Boot,” http://www.denx.de/wiki/U-Boot.
[24] Paul Bakker, “PolarSSL,” https://polarssl.org/.
[25] Aurora Softworks, “Quadrant,” https://play.google.com/store/apps/

details?id=com.aurorasoftworks.quadrant.ui.standard.

[26] ARM, “Fast Models,” http://www.arm.com/products/tools/models/
fast-models/index.php.

[27] J. Winter, P. Wiegele, M. Pirker, and R. Tögl, “A flexible software
development and emulation framework for ARM trustzone,” in Trusted
Systems - Third International Conference, INTRUST 2011, Beijing,
China, November 27-29, 2011, Revised Selected Papers, pp. 1–15.

[28] W. H. W. Hussin, P. Coulton, and R. Edwards, “Mobile ticketing system
employing trustzone technology,” in 2005 International Conference on
Mobile Business (ICMB 2005), 11-13 July 2005, Sydney, Australia, pp.
651–654.

[29] K. Kostiainen, J. Ekberg, N. Asokan, and A. Rantala, “On-board
credentials with open provisioning,” in Proceedings of the 2009 ACM
Symposium on Information, Computer and Communications Security,
ASIACCS 2009, Sydney, Australia, March 10-12, 2009, pp. 104–115.

[30] M. Pirker and D. Slamanig, “A framework for privacy-preserving mobile
payment on security enhanced ARM trustzone platforms,” in 11th IEEE
International Conference on Trust, Security and Privacy in Computing
and Communications, TrustCom 2012, Liverpool, United Kingdom, June
25-27, 2012, 2012, pp. 1155–1160.

[31] Zynq-7000, “Zynq-7000 AP SOC,” http://www.xilinx.com/products/
silicon-devices/soc/zynq-7000/.

[32] Android Open Source Project., “Android Security Overview,” http://
source.android.com/tech/security/.

[33] S. Smalley and R. Craig, “Security enhanced (SE) android: Bringing
flexible MAC to android,” in 20th Annual Network and Distributed
System Security Symposium, NDSS 2013, San Diego, California, USA,
February 24-27, 2013.

[34] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A. Sadeghi, and B. Shas-
try, “Towards taming privilege-escalation attacks on android,” in 19th
Annual Network and Distributed System Security Symposium, NDSS
2012, San Diego, California, USA, February 5-8, 2012.

[35] M. Nauman, S. Khan, and X. Zhang, “Apex: extending android permis-
sion model and enforcement with user-defined runtime constraints,” in
Proceedings of the 5th ACM Symposium on Information, Computer and
Communications Security, ASIACCS 2010, Beijing, China, April 13-16,
2010, pp. 328–332.

[36] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach, “QUIRE:
lightweight provenance for smart phone operating systems,” in 20th
USENIX Security Symposium, San Francisco, CA, USA, August 8-12,
2011, Proceedings.

[37] P. Hornyack, S. Han, J. Jung, S. E. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: retrofitting android to protect
data from imperious applications,” in Proceedings of the 18th ACM
Conference on Computer and Communications Security, CCS 2011,
Chicago, Illinois, USA, October 17-21, 2011, pp. 639–652.

[38] M. Ongtang, K. R. B. Butler, and P. D. McDaniel, “Porscha: policy
oriented secure content handling in android,” in Twenty-Sixth Annual
Computer Security Applications Conference, ACSAC 2010, Austin,
Texas, USA, 6-10 December 2010, pp. 221–230.

[39] A. Vasudevan, E. Owusu, Z. Zhou, J. Newsome, and J. M. McCune,
“Trustworthy execution on mobile devices: What security properties can
my mobile platform give me?” in Trust and Trustworthy Computing -
5th International Conference, TRUST 2012, Vienna, Austria, June 13-
15, 2012. Proceedings, pp. 159–178.

[40] J. Ekberg, K. Kostiainen, and N. Asokan, “Trusted execution envi-
ronments on mobile devices,” in 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS’13, Berlin, Germany,
November 4-8, 2013, pp. 1497–1498.

[41] J.-E. Ekberg et al., “Mobile trusted module (mtm)–an introduction,”
2007.

[42] C. Marforio, N. Karapanos, C. Soriente, K. Kostiainen, and S. Capkun,
“Smartphones as practical and secure location verification tokens for
payments,” in 21st Annual Network and Distributed System Security
Symposium, NDSS 2014, San Diego, California, USA, February 23-26,
2013.

[43] H. Sun, K. Sun, Y. Wang, J. Jing, and S. Jajodia, “Trustdump: Reliable
memory acquisition on smartphones,” in Computer Security - ESORICS
2014 - 19th European Symposium on Research in Computer Security,
Wroclaw, Poland, September 7-11, 2014. Proceedings, Part I, 2014, pp.
202–218.

11



[44] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using ARM trustzone
to build a trusted language runtime for mobile applications,” in Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS ’14, Salt Lake City, UT, USA, March 1-5, 2014, 2014, pp.
67–80.

[45] Samsung Electronics, “White Paper: An Overview of Samsung KNOX,”
http://www.samsung.com/global/business/business-images/resource/
white-paper/2013/06/Samsung KNOX whitepaper June-0.pdf.

[46] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh, “Cells: a
virtual mobile smartphone architecture,” in Proceedings of the 23rd
ACM Symposium on Operating Systems Principles 2011, SOSP 2011,
Cascais, Portugal, October 23-26, 2011, pp. 173–187.

[47] P. Varanasi and G. Heiser, “Hardware-supported virtualization on
ARM,” in APSys ’11 Asia Pacific Workshop on Systems, Shanghai,
China, July 11-12, 2011, p. 11.

[48] ARM, “ARM Virtualization Extensions,” http://www.arm.com/products/
processors/technologies/virtualization-extensions.php.

[49] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel,
“Inktag: secure applications on an untrusted operating system,” in Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS ’13, Houston, TX, USA - March 16 - 20, 2013, pp. 265–278.

[50] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Wald-
spurger, D. Boneh, J. S. Dwoskin, and D. R. K. Ports, “Overshadow:
a virtualization-based approach to retrofitting protection in commodity
operating systems,” in Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2008, Seattle, WA, USA, March 1-5, 2008, pp. 2–13.

[51] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. D. Gligor, and
A. Perrig, “Trustvisor: Efficient TCB reduction and attestation,” in 31st
IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May 2010,
Berleley/Oakland, California, USA, pp. 143–158.

[52] A. M. Azab, P. Ning, and X. Zhang, “SICE: a hardware-level strongly
isolated computing environment for x86 multi-core platforms,” in Pro-
ceedings of the 18th ACM Conference on Computer and Communica-
tions Security, CCS 2011, Chicago, Illinois, USA, October 17-21, 2011,
pp. 375–388.

[53] A. Baumann, M. Peinado, and G. C. Hunt, “Shielding applications
from an untrusted cloud with haven,” in 11th USENIX Symposium on
Operating Systems Design and Implementation, OSDI ’14, Broomfield,
CO, USA, October 6-8, 2014., pp. 267–283.

APPENDIX A
AN EXAMPLE OF SECURE CODE

An example of secure code is shown in Listing 2. Line 7
shows the user-space SMC system call, with the first parameter
showing the system call number 366 and the second parameter
showing the length of the secure code as 0x18 bytes. The third
parameter indicates which ICE is used. Bit 0 tells TDC to

switch the Rich OS to the encryption ICE while bit 1 corre-
sponds to the interface ICE. Then, the secure code between
Line 9 and Line 26 is executed in ICE. To call the functions
provided by ICE, the secure code just makes the corresponding
SVC calls and transfers the required parameters. To make
the code self-contained, we use inline assembly instead of C
functions to make system calls. From line 13 to line 21, the
secure code calls the second system call in ICE to generate
an RSA signature. The result is stored in sig[128]. From
line 23 to line 26, the secure code calls the first system call
to exit ICE. At last the Rich OS wakes up and the application
outputs the string "app ends" in the Rich OS.

Listing 2: A typical application containing secure code
1 #include <iostream>
#include <unistd.h>
#include<sys/syscall.h>
using namespace std;

5 int main() {

syscall(366, 0x18, 0);
/*start of secure code*/

unsigned int length=128;
10 unsigned char start[128];

unsigned char sig[128];

asm volatile(
"ldr r0, =0x2\n\t"

15 "mov r1, %0\n\t"
"mov r2, %1\n\t"
"mov r3, %2\n\t"
"svc 0x0\n\t"
:

20 :"r"(length),"r"(start),"r"(sig)
);

asm volatile(
"ldr r0, =0x1\n\t

25 "svc 0x0\n\t"
);

/*end of secure code*/
cout<<"app ends"<<endl;

return 0;
30 }

12


