
Efficient Resource Management on Template-based Web Servers

Eli Courtwright Chuan Yue Haining Wang

Department of Computer Science

The College of William and Mary

Williamsburg, VA 23187, USA

{eli,cyue,hnw}@cs.wm.edu

Abstract

The most commonly used request processing model in

multithreaded web servers is thread-per-request, in which

an individual thread is bound to serve each web request.

However, with the prevalence of using template techniques

for generating dynamic contents in modern web servers,

this conventional request processing model lags behind and

cannot provide efficient resource management support for

template-based web applications. More precisely, although

content code and presentation code of a template-based dy-

namic web page can be separated into different files, they

are still processed by the same thread. As a result, web

server resources, especially database connection resources,

cannot be efficiently shared and utilized. In this paper, we

propose a new request scheduling method, in which a single

web request is served by different threads in multiple thread

pools for parsing request headers, performing database

queries, and rendering templates. The proposed scheme en-

sures the high utilization of the precious database connec-

tions, while templates are being rendered or static contents

are being served. We implemented the proposed scheme in

CherryPy, a representative template-enabled multithreaded

web server, and we evaluated its performance using the

standard TPC-W benchmark implemented with the Django

web templates. Our evaluation demonstrates that the pro-

posed scheme reduces the average response times of most

web pages by two orders of magnitude and increases the

overall web server throughput by 31.3% under heavy loads.

Keywords: Web Server, Resource Management, Tem-

plates, Performance, Request Scheduling.

1 Introduction

There are two important trends in modern web applica-

tion development. One is the use of templates to dynami-

cally generate HTML web pages, and the other is the prac-

tice of storing a database connection in each web server

thread. We highlight both trends as follows.

• One of the main web design principles is to separate

content code from presentation code. This is one of the

primary design motivations behind Cascading Style

Sheets (CSS) [14], which let web designers separate

the display from the web content and specify how a

web page should be displayed in a file. Now many

templating languages exist and allow web authors to

write HTML files with special tags. These tags are

replaced at runtime when a template is rendered with

data, which is often pulled from a database.

• Connections to such a database are often stored in the

web server’s threads with two purposes. First, this

eliminates the overhead of establishing a new database

connection every time when a page is loaded. Second,

this keeps a programmer from having to close or free

up each connection in the code for each page, which is

often troublesome when dealing with multiple execu-

tion paths and thrown exceptions.

These two trends have become more apparent in mod-

ern web sites with the increasing need for providing the

efficient and mass generation of dynamic web pages. Un-

fortunately, the current request processing model in multi-

threaded web servers does not provide adequate resource

management support to these technical trends. The major

problem is that modern multithreaded web servers are still

using the traditional thread-per-request model to process re-

quests for template-based web applications. Thus, for a dy-

namic web page, although its content code and presentation

code are separated into different files, these files are still

processed by the same thread for a specific request. Conse-

quently, precious database connection resources cannot be

efficiently shared and utilized, because they cannot be used

by other threads to prepare data even if their holding threads

are rendering templates and do not need the database con-

nections at that time.

In this paper, we propose a new request scheduling

method under the consideration of both trends to greatly

improve multithreaded web server performance. In the pro-

posed method, a web server uses different threads in mul-

tiple thread pools for parsing request headers, generating

data, and rendering templates. By assigning database con-

nections only to data generation threads, we ensure that

these connections do not sit idle while templates are being

rendered or static contents are being served. This separa-

tion of request services into different thread pools makes

the database much less of a bottleneck. Without separation,

if each thread has its own connection, then the number of

threads cannot exceed the number of connections. Thus, a

request might wait for a thread loading static content or ren-

dering a template to finish before it can query the database.

Alternatively, if every single thread becomes tied up per-

forming lengthy database queries, then requests for static

content will have to wait for those queries to finish.

Our request scheduling method alleviates the problems

above even further by having different pools of threads for

serving quick and lengthy dynamic requests. This prevents

short database queries from being blocked by large ones and

thus achieves effects similar to Shortest Job First schedul-

ing, but without causing the starvation of lengthy jobs. In

addition, when measuring the time each page takes to gener-

ate data from database, the time it takes to render templates

will not be included because template rendering is now han-

dled by a separate pool of threads. This increased accuracy

of execution time measurement, in turn, helps us perform

better request scheduling and resource management.

To validate the efficacy of the proposed request schedul-

ing method, we implemented it into CherryPy [15], a repre-

sentative template-enabled multi-threaded web server, and

we implemented the standard TPC-W [24] benchmark in

Django template language [16]. Our evaluation demon-

strates that the proposed request scheduling method can re-

duce the average response times of most web pages by two

orders of magnitude and increase the overall web server

throughput by 31.3% under heavy loads.

The remainder of this paper is structured as follows. Sec-

tion 2 introduces the background of modern web application

techniques. Section 3 details the proposed request schedul-

ing method. Section 4 presents the evaluation results. Sec-

tion 5 discusses related work on request scheduling. Finally,

Section 6 concludes the paper.

2 Background

While the single-process event-driven architecture can

provide excellent performance for cached workloads and

static web contents, the multithreaded architecture usually

performs better for disk-bound workloads and dynamically

generated web contents. Currently most popular and com-

<%

pageid = FieldStorage(req).get("pageid")

dbconn = connect("localhost", "username",

"password", "db")

cursor = dbconn.cursor()

cursor.execute("SELECT title, heading FROM page

WHERE pageid=%s", pageid)

title, heading = cursor.fetchone()

%>

<html>

<head> <title> <%= title %> </title> </head>

<body>

<h2 align="center"> <%= heading %> </h2>

<%

cursor.execute("SELECT data FROM sometable

WHERE pageid=%s", pageid)

for row in cursor:

req.write("" + row[0] + "")

%>

</body>

</html>

<%

cursor.close()

dbconn.close()

%>

Figure 1. Traditional Python Server Page.

mercial web sites use multithreaded servers to provide web

services.

In this section, we detail two issues that motivate our

work: (1) the advantages of the web template model over

the traditional dynamic content generation model, and (2)

the drawbacks of the conventional request processing model

in multithreaded web servers.

2.1 Using Web Templates

The following example illustrates the difference between

using web template and traditional web programming. Fig-

ure 1 shows the traditional way of generating dynamic web

content. The code is written as a Python Server Page, which

allows us to embed Python code in HTML. This approach

mixes data generation and presentation code. Consequently,

a large project coded in this manner forces a programmer to

search through presentation code to find something related

to data generation, or vice versa. Unfortunately, this is the

traditional way to write code using techniques such as JSP

[20], PHP [21], and ASP [23].

In contrast, using a modern web server such as CherryPy

[15] and a templating language such as Django [16] allows

us to separate our content from presentation code. Thus, we

can write a function that performs the database queries of

the above code and then renders a template using that data.

def example(self, pageid):

data = {}

cursor = getconn().cursor()

cursor.execute("SELECT title, heading FROM page

WHERE pageid=%s", pageid)

data["title"], data["heading"] = cursor.fetchone()

cursor.execute("SELECT data FROM sometable

WHERE pageid=%s", pageid)

data["listitems"] = [row[0] for row in cursor]

cursor.close()

return get_template("tmpl.html").render(Context(data))

Figure 2. Data preparation function in
Django.

This function can also retrieve the existing database con-

nection from its web server thread, instead of opening and

closing a new one on every request. Figures 2 and 3 show

the data preparation function and the presentation template

written in Django template language, respectively.

<html>

<head> <title> {{ title }} </title> </head>

<body>

<h2 align="center"> {{ heading }} </h2>

{% for item in listitems %}

 {{ item }}

{% endfor %}

</body>

</html>

Figure 3. Presentation template (tmpl.html) in

Django.

The template itself is mostly simple HTML with just a

few special tags, which indicate how to render the template

with the given data. While very simple, the example should

give readers who are unfamiliar with modern templating

languages a good understanding of what they are and how

they are used.

2.2 Thread-per-request Model

The most commonly used request processing model in

multithreaded web servers is the thread-per-request model.

In this model as shown in Figure 4, an incoming request is

first accepted by the single listener thread. Then, the request

will be dispatched to a separate thread in the thread pool,

which processes the entire request and returns a result to

the client. To avoid the overuse of resources, the size of

the thread pool is often bounded in most web servers, and

meanwhile, a limited number of database connections are

stored and shared by the threads.

Single
Listener

Thread

Single Thread Pool

New Requests

Completed Requests

Figure 4. Thread-per-request model.

This model increases concurrency, improves perfor-

mance, and is easy for programming. Unfortunately, it

does not effectively support the recent trend of using web

templates to separate content code from presentation code.

More precisely, although content code and presentation

code can be separated into different files using modern tem-

plate techniques as shown in Figures 2 and 3, they are still

executed by the same thread for each specific request. Thus,

the precious database connection resources will be wasted

by those threads that are rendering the presentation code

while still holding database connections.

3 Design

In this section, we first introduce the necessary modifica-

tion on web templates to support our new request schedul-

ing method. Then, we detail the design of thread pools and

present the request scheduling policy. We use CherryPy as

an example of modern template-enabled multithreaded web

servers and use Django as an example of modern web tem-

plates to illustrate our design.

3.1 Modification to Web Templates

CherryPy is an object-oriented HTTP framework written

in Python, and it is designed to facilitate the development of

dynamic web applications. It conveniently maps URLs to

functions, converting each request’s query string into func-

tion parameters. This allows developers to write web code

in basically the same way as they would write code for con-

ventional applications.

In order to support the proposed request scheduling

method, a minor modification on a web application’s tem-

plates is needed. The modification does not significantly

change the way that CherryPy code is written. CherryPy

programmers write a function for each dynamic page, gen-

erate data in that function, and return a rendered template,

as shown in Figure 2. The only difference between this nor-

mal procedure and our modified version is that instead of

returning a rendered template, each function returns an un-

rendered template and the rendering data. Using the Django

template code as an example, the conventional way of ren-

dering templates is:

return get template(“tmpl.html”).render(Context(data)),

where tmpl.html is the name of the template file and data is

the dictionary (a.k.a. hashtable) used to render the template.

This conventional return statement will thus return a string

that contains a rendered dynamic web page. By contrast,

our modified version of rendering templates is:

return (“tmpl.html”, data),

and thus this new return statement simply returns the name

of the unrendered template and the data to be rendered later.

That is the only change made on web templates.

Such a minor modification maintains the consistency of

the way template code is written, which is very important

for the wide use of the proposed scheme. If a new web

server dramatically changes how programmers write code,

they will be reluctant to adopt it. This is why our modifica-

tion requires only the return statement of each function to

be different. For example, in our Django implementation of

TPC-W benchmark, only 14 lines of return statements (one

for each type of dynamic pages) need to be changed in order

for the whole benchmark to take advantage of the perfor-

mance benefits offered by the proposed request scheduling

method. Moreover, even if a function returns an already-

rendered template by mistake, the modified web server can

still handle this properly although it cannot apply our pro-

posed request scheduling method for rendering the template

in a different thread.

3.2 Thread Pools

Like most multithreaded web servers, CherryPy also

uses the common thread-per-request model as shown in Fig-

ure 4 to process client requests. It has a single listener thread

which accepts incoming TCP connections and places each

of them in a synchronized queue. A large pool of threads

waits on that queue, and once a connection is available, a

thread takes it from the queue and services the entire re-

quest before waiting on the queue again.

The key feature of our request scheduling method is to

use multiple thread pools rather than just one thread pool

to serve different web requests. Our new model has a lis-

tener thread with five different thread pools: Header Pars-

ing, Static Requests, General Dynamic Requests, Lengthy

Dynamic Requests, and Template Rendering. Each thread

pool waits on its own synchronized queue. An incoming re-

quest is first accepted by the single listener thread, and then

passed to the five thread pools for processing. The process-

ing flows are shown in Figure 5.

Single
Listener

Thread

Header

Parsing

New Requests

Completed Requests

 Static

Requests

 Lengthy

Dynamic

Requests

 Template

Rendering

Five Thread Pools

 General

Dynamic

Requests

Figure 5. Thread pools on the modified web

server.

The header parsing threads parse the first line of each

HTTP request. The first line contains the path of the re-

source being requested, which is critical to tell whether that

resource is a static file or a dynamically generated page.

Each request is then placed into either the static request

thread pool or one of the two dynamic request thread pools.

For example, one way to distinguish between static and dy-

namic requests is to check the extension of the requested

resource. Suppose that a header parsing thread reads the

line:

GET /img/flowers.gif HTTP/1.1

then the thread can examine the request and know that it is

requesting a file which ends in “.gif’— a static file. The

header parsing thread thus dispatches the request to the

static request thread pool. However, if the request is in-

stead:

GET /homepage?userid=5&popups=no HTTP/1.1

then the header parsing thread can check to ensure that the

resource “/homepage” does not have any kind of extension

and thus is a dynamic resource. Therefore, the header pars-

ing thread dispatches the request to one of the two dynamic

request pools. The criteria used for determining which dy-

namic request thread pool serves the request are explained

in Section 3.3.

If the request is for a dynamic page, the header pars-

ing thread also parses the rest of the HTTP request’s header

data. In our dynamic request example above, suppose that

the entire request is:

GET /homepage?userid=5&popups=no HTTP/1.1

User-Agent: Mozilla/1.7

Accept: text/html

......

then in addition to placing the request in one of the dy-

namic request queues, the header parsing thread will fur-

ther parse the query string “userid=5&popups=no” and the

two headers “User-Agent” and “Accept”. The headers and

query string will each be parsed into a dictionary (a.k.a.

hashtable). We perform these further parsings mainly be-

cause we do not want a thread with an open database con-

nection to waste time doing anything other than generating

data. This is not an issue for static requests, so we let the

threads which actually serve those static requests parse their

headers.

Each dynamic request thread maps the request string to

a function, then examines the function’s return value to see

whether it is a string or a template to be rendered. Every

function should return an unrendered template as described

in Section 3.1, and we perform this check to allow back-

ward compatibility so that unmodified template code can

still properly run on our modified web server. If the func-

tion returns a string, then the dynamic request thread di-

rectly sends the string to the client. If the function returns a

template, then the dynamic request thread passes the request

on to the pool of template rendering threads.

After one of the template rendering threads finishes the

rendering of a dynamic page, it measures the size of the

output. Thus, it is able to set the Content-Length HTTP

response header appropriately, which cannot be achieved by

most existing methods in dynamic content generation. The

template rendering thread then transmits the response to the

user agent client.

3.3 Scheduling Policy

Our request scheduling method uses two thread pools for

serving dynamic requests: a general dynamic request thread

pool, and a lengthy dynamic request thread pool. We refer

these two pools as the general pool and the lengthy pool,

respectively. The lengthy pool only handles the requests

which take a long time to serve. We used a cutoff point

of two seconds to distinguish between quick and lengthy

requests, which is suitable for our benchmark.

The general pool handles both quick and lengthy dy-

namic requests, and the requests which can be processed

quickly are always served by this pool. Because our main

priority is to ensure that quick requests do not get stuck in

a queue behind a number of lengthy requests, the general

pool has four times as many threads as the lengthy pool.

In order to distinguish between quick and lengthy re-

quests, we track the average time spent in generating data

for each page. Specifically, we measure the time cost in

condition dispatch decision

a quick request send to general pool

a lengthy request and tspare > treserve send to general pool

a lengthy request and tspare ≤ treserve send to lengthy pool

Table 1. Dynamic request dispatching rules.

the dynamic request thread, from when the request is ac-

quired through when its unrendered template is placed in the

template rendering queue. This gives us the accurate mea-

surement of how much time is spent in performing database

queries.

To ensure that quick requests are almost always served

immediately, our web server tracks the number of spare

threads in the general pool, which we call tspare. It also

keeps updating a shifting minimum number of threads re-

served for quick requests, called treserve. The tspare is

a measured value that reflects the load of the web server,

while the treserve is a dynamically adjusted value that re-

flects the targeted number of threads that should be reserved

for quick requests. In the case of tspare being greater than

treserve, the spare threads in the general pool is abundant

and they can serve some lengthy requests in addition to pro-

cessing all the quick requests. In the case of tspare being no

greater than treserve, the spare threads in the general pool

fall short and should be dedicated to serving quick requests.

Therefore, when a header parsing thread receives a lengthy

request, it sends the request to the general pool if tspare is

greater than treserve; otherwise the request is sent to the

lengthy pool. Table 1 summarizes the three rules for dis-

patching a dynamic request by a header parsing thread.

Our web server checks and modifies treserve once per

second in order to deal with traffic spikes. Because we

want to prevent quick requests from being queued behind

lengthy requests, we increase treserve anytime we suspect

that a traffic spike is occurring. Specifically, whenever ts-

pare drops under treserve, we increase treserve by the dif-

ference, plus the amount that tspare has dropped beneath a

configured minimum value of treserve, if applicable.

We lower treserve more slowly to avoid prematurely as-

suming that a traffic spike has ended. When tspare rises

above treserve, we lower treserve by half the difference but

without making it less than the configured minimum value.

Table 2 lists the dynamics of treserve vs. tspare over a 10-

second period with the minimum value of treserve config-

ured as 20. Intuitively, whenever a traffic spike is occurring

and spare threads in the general pool become scarce, we in-

crease the treserve so that more lengthy dynamic requests

can be dispatched to the lengthy pool, thus reserving the

threads in the general pool only for quick requests. By con-

trast, when a traffic spike tends to disappear and the spare

threads in the general pool become abundant, we decrease

the treserve so that these spare threads can also be used to

process incoming lengthy dynamic requests.

time tspare treserve ∆treserve

1s 35 20 +0

2s 24 20 +0

3s 17 20 +6

4s 21 26 +5

5s 30 31 +1

6s 36 32 -2

7s 38 30 -4

8s 37 26 -5

9s 35 21 -1

10s 39 20 +0

Table 2. Changes to treserve over an example

10-second period.

Note that while we have multiple thread pools for serving

dynamic requests, we only have one thread pool for static

requests and one thread pool for template rendering. This

is because the time difference in serving different static re-

quests or rendering different templates is much less signif-

icant than that caused by different requests which require

database queries. However, applying this technique to static

requests and template rendering might be worthwhile on a

different benchmark or web application.

4 System Evaluation

In this section, we first describe the experimental setup

including the TPC-W benchmark implemented with Django

web templates, and the testbed configuration. Then we

present the experimental results.

4.1 Experimental Setup

We employ TPC-W, a transactional web e-commerce

benchmark [24] for the performance evaluation of the pro-

posed request scheduling method. TPC-W exercises an on-

line bookstore, which supports a full range of activities,

such as multiple on-line sessions, dynamic page generation,

and online transactions. It also specifies a workload gen-

erator that simulates many clients visiting a web site. This

benchmark is well designed to mimic a typical real world

web application, particularly by having database accesses

be the bottleneck when the site comes under heavy load.

Unfortunately, existing TPC-W implementations are all

written using the traditional techniques for dynamic web

content generation. For example, PHARM team of the Uni-

versity of Wisconsin - Madison [17] developed Java servlets

implementation of TPC-W benchmark, and a team of Rice

Web/Application Server Database ServerClient Emulator

HTTP

requests/

responses

Database

requests/

responses

Figure 6. Experimental testbed.

University [18] developed PHP, Java Servlets, and EJB im-

plementations of TPC-W benchmark. Therefore, we have

to implement TPC-W benchmark from scratch using a mod-

ern web template technique. We choose Django template,

which is supported by CherryPy web server and is used by

the Washington Post for much of its online content. Our

implementation of the TPC-W benchmark consists of 455

lines of Python code and 704 lines of template code (most

of which is pure HTML). It’s worth noting that this imple-

mentation has less than 1/4 as many lines of code as the Java

Servlets implementation by PHARM team.

In our experimental testbed shown in Figure 6, three

computers are used to perform the TPC-W benchmark. One

computer is used to run the MySQL 5.0 database server,

one is used as the CherryPy web server to host both the

static and dynamic content, and one is used as the workload

generator. Each computer has 8 different 3.7GHz CPUs,

each with 16KB of L1 cache and 2MB of L2 cache. They

each have 8GB of RAM and run Linux with kernel version

2.6.18, and are all connected to the same local area network

with a 100Mb network interface card. The duration of each

experiment is one hour and the measurement interval is 50

minutes. The first five-minute ramp up time and the last

five-minute cool down time are not included.

The TPC-W database is configured to have one million

books, 2.88 million customers, and 2.59 million book or-

ders. All experimental runs described in this paper are con-

ducted with standard “browsing mix” workload, and each

simulated client waits the standard time of 0.7 to 7 seconds

before visiting a new page. The workload generator simu-

lates 400 clients in order to put the web server under a heavy

load.

The servers are set up as in a production environment,

where the web and database servers would certainly be on

the same LAN. Of course, most clients would not be con-

nected from the same network, so the transfer times for this

benchmark are far below what they would be for a real web

site. However, this should not be a problem here because we

are primarily interested in the decrease of database query

response times rather than transfer latencies.

4.2 Experimental Results

We use two performance metrics to compare our

proposed scheme with the traditional thread-per-request

scheme: web interaction response time and web server

throughput. In TPC-W, a web interaction refers to a com-

plete cycle of the communication between an emulated

client and the server system under test. The web interac-

tion response time is measured at the client-side by calcu-

lating the time lapsed from the first byte of a web interac-

tion request sent out by a client to the last byte of the web

interaction response received by the client. The web server

throughput is measured at the server-side in terms of the

number of completed web interactions per minute.

In the rest of this section, we use the term “unmodified

web server” to refer to the conventional thread-per-request

CherryPy web server, on which TPC-W benchmark with

unmodified Django web templates is run. We use the term

“modified web server” to refer to our proposed multiple-

thread-pool CherryPy web server, on which TPC-W bench-

mark with modified Django web templates is run.

4.2.1 Web Interaction Response Time

The average response times of running the benchmark with

the unmodified and modified web servers are listed in Ta-

ble 3. For 11 out of the 14 pages of the benchmark web

site, the proposed scheme significantly shortens the web in-

teraction response times. The average response times of

many pages like the homepage (TPC-W home interaction)

are decreased by two orders of magnitude. One slow page

(TPC-W new products) stays about the same, one (TPC-

W execute search) becomes slightly slower to respond, and

one (TPC-W admin response) is clearly taken longer time

to respond.

The sharp performance dichotomy between the ex-

tremely fast and very slow pages in the modified web server

is partially due to the TPC-W benchmark itself. Most of the

queries are either select statements making use of an index,

or insert statements adding a new row. Neither of these op-

erations are very slow even on extremely large databases;

creating a database with 10 times the size of the current one

does not cause the fast queries to become noticeably slower.

Of the 14 pages in the TPC-W benchmark, 10 are in-

herently very fast (less than 10 seconds) for the reasons

described above, three are very slow because they perform

large and very complex queries, and the last one is very slow

because it performs an update on a frequently used table.

This last page is the TPC-W admin response page, which

is the only page to experience a significant slowdown with

our modified web server. In order to perform its update, it

must acquire a lock on a database table, forcing it to wait for

other threads to finish the use of the table. Ironically, this

web page name unmodified modified

TPC-W admin request 4.89 0.62

TPC-W admin response 12.35 18.85

TPC-W best sellers 18.49 12.88

TPC-W buy confirm 3.86 0.18

TPC-W buy request 3.74 0.07

TPC-W customer registration 4.46 0.01

TPC-W execute search 11.05 13.21

TPC-W home interaction 2.54 0.03

TPC-W new products 20.30 21.39

TPC-W order display 2.78 0.54

TPC-W order inquiry 4.84 0.04

TPC-W product detail 1.10 0.01

TPC-W search request 5.44 0.01

TPC-W shopping cart interaction 6.82 0.27

Table 3. TPC-W pages and their average re-
sponse times (seconds) on the unmodified

and modified web servers.

 0

 50

 100

 150

 200

 250

 300

 0 500 1000 1500 2000 2500 3000

#
 o

f
q

u
e

u
e

d
 r

e
q

u
e

s
ts

Time (seconds)

Figure 7. Length of the queue for dynamic re-

quests on the unmodified web server.

page is slower to respond for our modified server because

the other pages are so much more efficient, lengthening the

wait time to acquire the table lock. In fact, in the absence of

any considerable load on the server, this page is quite fast.

A slow admin page is not as troublesome as a slow page

visible to customers on an e-commerce site. While paying

customers might leave a site which is slow in response, this

problem does not exist for the pages only visible to admins.

Thus, the mostly suffered page in the modified server is the

page that matters least to the profitability of an online book-

store.

Figure 7 illustrates the effect that these slow queries

have on the response times of other web pages by show-

ing the length of the request queue for the unmodified web

server. It is clear that the queue length tends to be very

large when short requests get stuck behind lengthy requests

in the queue. As comparison, Figures 8(a) and 8(b) show

the length of queues that are associated with the two dy-

namic request thread pools in the modified web server. On

the one hand, the short queries are able to execute almost

immediately because there are threads reserved for them

in the general dynamic request thread pool. On the other

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000

#
 o

f
q

u
e

u
e

d
 r

e
q

u
e

s
ts

Time (seconds)

(a) Queue on General Pool

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500 3000

#
 o

f
q

u
e

u
e

d
 r

e
q

u
e

s
ts

Time (seconds)

(b) Queue on Lengthy Pool

Figure 8. Length of the queues for dynamic
requests on the modified web server. (a)

General; (b) Lengthy.

hand, this is also why we cannot obtain the same large per-

formance gains for the lengthy requests as we do for the

quick requests. Many of the lengthy requests get stuck in

their own queue behind a number of other lengthy requests.

Lowering the number of threads set aside for the quick re-

quests improves the response time of lengthy requests, but

at the cost of sacrificing much of the performance gains for

those quick requests, particularly during traffic spikes. This

would not be an acceptable tradeoff for a real web site.

While the response times for slow web pages are still

high, on a real web site there are a number of things we

could do to mitigate this. For example, we could add in-

dexes to all fields in order to prevent queries from having to

scan through an entire table to find fields with certain val-

ues. We could also regularly precompute expensive queries

which do not change from user to user, such as which books

are new or best sellers. Of course, to do these would change

the TPC-W benchmark itself, and would deviate from the

purpose of using such a standardized benchmark.

4.2.2 Web Server Throughput

Figure 9 illustrates the overall throughputs for all types of

requests on the unmodified and modified web servers. It is

clear that our proposed scheme consistently performs better

than the traditional thread-per-request scheme. Figure 10

shows the detailed throughput comparison for four types of

requests: static requests, all dynamic requests, quick dy-

namic requests, and lengthy dynamic requests. We can see

that the throughput gains are obvious for all the four types

of requests.

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35 40 45 50

In
te

ra
c
ti
o

n
s
 p

e
r

m
in

u
te

Time (minutes)

Unmodified
Modified

Figure 9. Throughput for all types of requests

on the unmodified and modified web servers.

web page name unmodified modified

TPC-W admin request 74 81

TPC-W admin response 71 72

TPC-W best sellers 7602 9646

TPC-W buy confirm 395 547

TPC-W buy request 429 596

TPC-W customer registration 469 642

TPC-W execute search 7307 9723

TPC-W home interaction 19586 25608

TPC-W new products 7406 9758

TPC-W order display 184 206

TPC-W order inquiry 219 255

TPC-W product detail 14002 18608

TPC-W search request 7994 10543

TPC-W shopping cart interaction 1173 1536

Table 4. The total numbers of completed web
interactions for each type of TPC-W pages on

unmodified and modified web servers.

Table 4 further lists the total number of completed web

interactions for each type of TPC-W pages during the 50-

minute measurement interval. Obviously, by improving

the utilization of database connections and enabling bet-

ter scheduling, our scheme can increase the throughput of

each type of web interactions. Overall, our scheme im-

proves web server throughput over the traditional thread-

per-request scheme by 31.3%. Note that for some requests,

there is no strong correlation between the response time re-

sults (Table 3) and the throughput results (Table 4), while

one expects them to follow Little’s law. For instance, in case

of the TPC admin response page, the average response time

is increased by 52.6% in the modified web server (row 2 of

Table 3), but the total number of completed web interactions

remains almost the same (row 2 of Table 4). We conjecture

that this irregularity is mainly due to the fact that TPC-W

benchmark is a closed queuing system. Meanwhile, since

the standard “browsing mix” workload of TPC-W is used

in our experiments, the response time is not necessarily in-

versely proportional to throughput for each type of requests.

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35 40 45 50

In
te

ra
c
ti
o
n
s
 p

e
r

m
in

u
te

Time (minutes)

Unmodified
Modified

(a) Static Requests

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35 40 45 50

In
te

ra
c
ti
o
n
s
 p

e
r

m
in

u
te

Time (minutes)

Unmodified
Modified

(b) All Dynamic Requests

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35 40 45 50

In
te

ra
c
ti
o
n
s
 p

e
r

m
in

u
te

Time (minutes)

Unmodified
Modified

(c) Quick Dynamic Requests

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

In
te

ra
c
ti
o
n
s
 p

e
r

m
in

u
te

Time (minutes)

Unmodified
Modified

(d) Lengthy Dynamic Requests

Figure 10. Throughput for each type of re-
quests on the unmodified and modified web

servers.

5 Related Work

Welsh and Culler [11] proposed a web server with a sim-

ilar concept to ours. Each type of action such as querying

databases, accessing files, and serving static contents would

be handled by a different pool of threads. However, their

focus is on load shedding at each stage rather than mit-

igating database latency. More important, they proposed

to change the way that web developers write web applica-

tions, which severely limits the adoption of their approach.

The main goal of our work is to achieve comparable results

while keeping the programming model intact.

Considering both the size of a request and how long the

request has been queued, Cherkasova [3] proposed a so-

lution to overcome the shortcomings of Shortest Job First

scheduling in web servers. She demonstrated that the pro-

posed scheduling method can improve the average response

time per HTTP request more than three times under heavy

loads. Our approach makes a similar tradeoff among mul-

tiple queues without actually using any kind of priority

queue.

Our scheme is also closely related to the work done by

Elnikety et al. [5], which performs scheduling directly to

database queries. Our scheme accomplishes much the same

thing inside the web server and does not require an addi-

tional server to sit between the web and database servers.

Thus, their work is more transparent to the actual applica-

tion but requires more effort and hardware support to set up

on the part of the site administrators.

In [6], Fowler et al. grew and shrunk thread pools to

respond to demand. Their approach is complementary to

ours. While we concentrate on using different thread pools

to lower response times and increase web server through-

puts, they adjusted thread pools to seek the optimal levels

for different server loads. Indeed, they also used the TPC-

W benchmark to demonstrate the effectiveness of their ap-

proach.

Crovella et al. [4] proposed shortest-connection-first

scheduling to approximate the effects of Shortest Re-

maining Processing Time (SRPT) scheduling. Schroeder

and Harchol-Balter [9] provided a detailed implementation

study on SRPT scheduling and demonstrated its effective-

ness in improving the performance of web servers during

transient periods of overload. However, SRPT is more ap-

plicable to web servers that serve static content, i.e., files

whose size can be determined in advance. In contrast, our

method is a generic approach that specifically considers the

trend of generating dynamic web pages with templates in

modern web applications.

Some other work employ intelligent queuing and load

balancing to improve web server performance, albeit with

slightly different goals. Guitart et al. [7] proposed a

session-based adaptive overload control mechanism to pri-

oritize requests from existing SSL sessions rather than pri-

oritizing small requests, because of the high overhead in

setting up an SSL session. This work is complementary

to ours, as it could be integrated with our queuing strategy

if we run our benchmark over HTTPS. In [2], Bhoj et al.

used a queuing strategy to improve quality of service for

its more important clients. Each request is given a priority

based on the user’s classification rather than any particu-

lar property of the request itself. In [1], Abdelzaher and

Bhatti proposed a web server QoS management architec-

ture that relies on web content adaptation. Such an adapta-

tion architecture enables a server to cope with overload in

a graceful manner. Ranjan et al. [8] proposed to perform

priority scheduling to mitigate distributed denial of service

attacks. Instead of scheduling requests based on the esti-

mated service time, they prioritized the requests which are

more likely to originate from legitimate clients. Totok and

Karamcheti [10] proposed a reward-driven request priori-

tization mechanism. This mechanism predicts the future

structure of web sessions and gives higher execution pri-

ority to the requests whose sessions are likely to bring more

reward.

In comparison with these previous work, our approach

is novel because it separates template rendering from data

generation, which significantly decreases the response la-

tency and increases the accuracy of execution time mea-

surement. Our request scheduling method also has a much

higher chance of gaining widespread adoption than many of

previous solutions, as it has little to no effect on how pro-

grammers write code. As mentioned at the beginning of

the paper, separating content and presentation code has be-

come common in the field of web programming. Similar

to the Django framework, other modern web programming

frameworks such as the Apache Struts [12], the ASP.NET

MVC [13], the JavaServer Faces [19], and the Ruby on

Rails [22] all separate their program logic from their HTML

generation. It is this separation that enables the optimiza-

tions presented in the paper; therefore, our request schedul-

ing method could be applied to each of those frameworks as

well.

6 Conclusion

This paper presents a new request scheduling method

to efficiently support the resource management of mod-

ern template-based web applications in multithreaded web

servers. In this method, a web request is served by dif-

ferent threads in multiple thread pools for parsing head-

ers, performing database queries, and rendering templates.

By assigning database connections only to data generation

threads, the proposed scheme ensures that open database

connections spend less time idle, and hence, improves the

utilization of the precious database connection resources.

Meanwhile, using different threads increases the measure-

ment accuracy of the service time for each type of requests,

and thus enable us to provide better scheduling for dy-

namic web requests. We implemented our request schedul-

ing method in CherryPy, a representative template-enabled

multithreaded web server, and we evaluated its performance

using the standard TPC-W benchmark implemented with

Django web templates. Our evaluation results demonstrate

that the proposed scheme reduces the average response

times of most web pages by two orders of magnitude and

increases the overall web server throughput by 31.3% un-

der heavy loads.

Acknowledgments: We thank anonymous reviewers for

their valuable comments and suggestions. This work was

partially supported by NSF grants CNS-0627339 and CNS-

0627340.

References

[1] T. F. Abdelzaher and N. Bhatti. Web server qos management

by adaptive content delivery. In Proc. of the IWQoS, 1999.
[2] P. Bhoj, S. Ramanathan, and S. Singhal. Web2K: Bringing

QoS to Web Servers. Technical Report HPL-2000-61, HP

Laboratories, May 2000.
[3] L. Cherkasova. Scheduling strategy to improve response

time for web applications. In Proc. of the HPCN Europe,

pages 305–314, 1998.
[4] M. E. Crovella, R. Frangioso, and M. Harchol-Balter. Con-

nection scheduling in web servers. In Proc. of the USITS,

pages 22–22, 1999.
[5] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel.

A method for transparent admission control and request

scheduling in e-commerce web sites. In Proc. of the Inter-

national World Wide Web Conference, 2004.
[6] R. Fowler, A. Cox, S. Elnikety, and W. Zwaenepoel. Using

performance reflection in systems software. In Proc. of the

HotOS, 2003.
[7] J. Guitart, D. Carrera, V. Beltran, J. Torres, and E. Ayguade.

Session-based adaptive overload control for secure dynamic

web applications. In Proc. of the ICPP, 2005.
[8] S. Ranjan, R. Swaminathan, M. Uysal, and E. W. Knightly.

Ddos-resilient scheduling to counter application layer at-

tacks under imperfect detection. In Proc. of the INFOCOM,

2006.
[9] B. Schroeder and M. Harchol-Balter. Web servers under

overload: How scheduling can help. ACM Trans. Inter.

Tech., 6(1):20–52, 2006.
[10] A. Totok and V. Karamcheti. Improving performance of in-

ternet services through reward-driven request prioritization.

In Proc. of the IWQoS, 2006.
[11] M. Welsh and D. Culler. Adaptive overload control for busy

Internet servers. In Proc. of the USITS, 2003.
[12] Apache Struts. http://struts.apache.org/.
[13] ASP.NET MVC. http://www.asp.net/mvc/.
[14] Cascading Style Sheets. http://www.w3.org/Style/CSS/.
[15] CherryPy - Trac. http://www.cherrypy.org/.
[16] Django — The Web framework for perfectionists with dead-

lines. http://www.djangoproject.com/.
[17] Java TPC-W Implementation Distribution by PHARM team.

http://www.ece.wisc.edu/ pharm/.
[18] Java TPC-W Implementation Distribution by Rice Univer-

sity. http://www.cs.rice.edu/CS/Systems/DynaServer.
[19] JavaServer Faces Technology. http://java.sun.com/javaee/

javaserverfaces/.
[20] JavaServer Pages Technology.

http://java.sun.com/products/jsp/.
[21] PHP: Hypertext Preprocessor. http://www.php.net/.
[22] Ruby on Rails. http://rubyonrails.org/.
[23] The Official Microsoft ASP.NET 2.0 Site.

http://www.asp.net/.
[24] Transaction Processing Performance Council Benchmark W

(TPC-W). http://www.tpc.org/tpcw/default.asp.

