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Abstract
Biometric authentication verifies a user based on its inher-
ent, unique characteristics—who you are. In addition to
physiological biometrics, behavioral biometrics has proven
very useful in authenticating a user. Mouse dynamics, with
their unique patterns of mouse movements, is one such be-
havioral biometric. In this paper, we present a user verifica-
tion system using mouse dynamics, which is both accurate
and efficient enough for future usage. The key feature of
our system lies in using much more fine-grained (point-by-
point) angle-based metrics of mouse movements for user ver-
ification. These new metrics are relatively unique from per-
son to person and independent of the computing platform.
Moreover, we utilize support vector machines (SVMs) for ac-
curate and fast classification. Our technique is robust across
different operating platforms, and no specialized hardware is
required. The efficacy of our approach is validated through
a series of experiments. Our experimental results show that
the proposed system can verify a user in an accurate and
timely manner, and induced system overhead is minor.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection—authentication

General Terms
Security, Human Factors

Keywords
User verification, mouse dynamics, angle-based metrics

1. INTRODUCTION
In today’s Internet-centered world, the tasks of user au-

thentication and verification have become more important
than ever before [2, 7, 19, 24]. For highly sensitive systems
such as online banking, it is crucial to secure users’ accounts
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and protect their assets from malicious hands. Even in less
critical systems such as desktop machines in a computing
laboratory, online forums, or social networks, a hijacked ses-
sion can still be misused to spread viruses or post spam, pos-
sibly damaging a user’s reputation and other systems. The
most common approach to securing access to systems is the
use of a password [9, 11]. Unfortunately, passwords suffer
from two serious problems: password cracking and password
theft [25, 32]. Once a password is compromised, an adver-
sary can easily abuse a victim’s account. Thus, there is a
great demand to quickly and accurately verify that the per-
son controlling a given user’s account is who the user claims
to be, termed re-authentication [24].

Existing user verification and re-authentication methods
require human involvement, such as providing secret an-
swers to agreed-upon questions. Unfortunately, they only
provide one-time verification, and the verified users are still
vulnerable to both session hijacking and the divulging of
the secret information. To achieve a timely response to an
account breach, more frequent user verification is needed.
However, frequent verification must be passive and trans-
parent to users, as continually requiring a user’s involvement
for re-authentication is too obtrusive and inconvenient to be
acceptable.

In this paper, we propose a biometric-based approach to
verifying users based on passively observable mouse move-
ment behaviors. In general, in order for a re-authentication
system to be practical, it must have the following features:

• Accuracy. Not only must the system accurately iden-
tify an impostor, it must also have the probability of
rejecting a true user close to zero, to avoid inconve-
nience to true users.

• Quick response. The system should make a quick ver-
ification decision. In other words, it should be able to
distinguish a user in a timely manner.

• Difficult to forge. Even if a user’s profile template is
known by an impostor, it will be very hard to mimic
the normal biometric behaviors in a consistent manner
and then evade the verification system.

Our new approach meets all of these challenges, deliver-
ing an accurate and quick verification based on biometrics
which are difficult to forge. The basic working mechanism of
our approach is to passively monitor the mouse movements
of a user, extract angle-based metrics, and then use Support
Vector Machines (SVMs) for accurate user verification. The
key feature of our approach is to exploit the point-by-point



angle-based metrics of mouse movements, which are rela-
tively unique from person to person and independent of the
computing platform, for user verification.
Current biometric approaches are limited in applicabil-

ity: physiological biometrics, such as fingerprints and reti-
nal scans, provide accurate one-time authentication but re-
quire specialized hardware which may be expensive or un-
available on all users’ machines. On the other hand, be-
havioral biometrics such as keystroke and mouse dynam-
ics hold promise, because they can be obtained from com-
mon user interface (UI) devices that nearly every user can
be assumed to own. Compared with keystroke dynamics
[16, 20, 23], mouse dynamics has its own advantage for two
reasons. First, keystroke monitoring can record sensitive
user credentials like usernames and passwords, raising much
more serious privacy concerns than mouse movement moni-
toring. Second, keyboard is much more complex than mouse
in structure, and thus keystroke dynamics are more easily
affected by different kinds of keyboards in terms of shape,
size, and layout.
However, to date the existing mouse-based user verifica-

tion approaches have either resulted in unacceptably low
accuracy or have required an unacceptably long amount of
time to reach a decision, making them unsuitable for online
re-authentication. In contrast to previous research, our ap-
proach introduces a novel way—point-by-point angle-based
metrics—to characterize users’ mouse movements, which sig-
nificantly reduces verification time while keeping high accu-
racy.
We perform a measurement-based study, derived from

30 controllable users and a corpus of more than 1,000 real
users in the field. Based on these two sets of mouse move-
ment data, we evaluate the effectiveness of the proposed sys-
tem through a series of experiments, using the set of angle-
based metrics specifically chosen for being both platform-
independent and widely variant from user to user.
In summary, the major contributions of this paper include:

• We model behavioral biometrics using mouse dynam-
ics, and develop an efficient user verification system. It
achieves high accuracy and significantly outperforms
existing systems in terms of verification time.

• We propose a novel measurement strategy involving
a carefully chosen set of angle-based metrics, which
is relatively independent of the operating environment
and capable of uniquely identifying individual users.

• We conduct an experiment involving sessions from over
1,000 unique users, which is able to re-authenticate
a user within just a few clicks with a high accuracy.
This promising result could lead to a practical user
verification system, suitable for online deployment in
the future.

The remainder of the paper is structured as follows. Sec-
tion 2 reviews the background and related work in the area
of mouse dynamics. Section 3 describes our data collection
and measurement, including our choice of angle-based met-
rics over more traditional metrics. Section 4 details the pro-
posed classifier for user verification. Section 5 presents our
experimental design and results. Section 6 discusses issues
which arise from the details of our approach, and Section 7
concludes.

2. BACKGROUND AND RELATED WORK
The underlying principle of biometric-based user authen-

tication is centered on “who you are”. This is very different
from conventional user authentication approaches, which are
mainly based on either“what you have”or“what you know”.
Unfortunately, a physical object such as a key or an ID card
can be lost or stolen. Similarly, a memorized password could
be forgotten or divulged to malicious users. Conversely,
a biometric-based approach relies on inherent and unique
characteristics of a human user being authenticated. The
biometrics can never be lost or forgotten, nor can another
user easily steal or acquire them. This makes biometrics
very attractive for user authentication.

Biometrics are categorized as either physiological or be-
havioral [31]. Physiological biometrics, like fingerprint and
facial recognition, have attracted considerable attention in
research [13, 18]. The downside of these biometrics is that
they need specialized hardware, which can be problematic
for wide deployment. For user authentication over the In-
ternet, one cannot always rely on the existence of hardware
at the client side. In contrast, behavioral biometrics using
human-computer interaction (HCI) can record data from
common input devices, such as keyboards and mice, pro-
viding user authentication in an accessible and convenient
manner.

Behavioral biometrics first gained popularity with keystroke
dynamics with Monrose et al.’s work on password hardening
in 1999 [19]. Later on, Ahmed and Traore [1] proposed an
approach combining keystroke dynamics with mouse dynam-
ics. Mouse dynamics for re-authentication have been previ-
ously studied as a standalone biometric by Pusara and Brod-
ley [24]. Unfortunately, their study is inconclusive with only
eleven users involved, prompting the authors to conclude
that mouse biometrics are insufficient for user re-authentication.
Our study relies on an improved verification methodology
and far more users, leading us to reverse their hypothesis.

In Ahmed et al.’s work [1, 2, 21], while achieving very
high accuracy, the number of mouse actions needed to verify
a user’s identity1 is too high to be practical. Specifically,
their experiment requires as many as 2,000 aggregate mouse
actions before a user can be recognized, and is not practical
for real-time deployment. Conversely, we aim to provide a
system suitable for online re-authentication. We first employ
a finer-grained data collection methodology, allowing us to
collect far more data in less time. We also employ support
vector machines (SVMs), which are considerably faster than
the neural networks employed in [2, 21]. Thus, our system
can make a decision in just several mouse clicks.

More recently, a survey covering the existing works in
mouse dynamics has been conducted with a comparative ex-
periment [15]. It points out that mouse dynamics research
should be more aware to reduce verification time and take
the effect of environmental variables into account. It can be
seen later that, compared to other works, our approach also
achieves high accuracy but only requires a small amount of
biometric data. Moreover, we explore the effects of envi-
ronmental factors (different machines, mice, and time) and
show that our approach is relatively robust across different
operating environments and times.

Graphical passwords [7, 27] are a related form of user au-
thentication, relying on HCI through a pointing device to

1referred to as session length in [2, 21].



authenticate a user. Mouse dynamics differ in that they dif-
ferentiate between users by how the users move and click the
mouse, rather than where the users click. Graphical pass-
words record where the user clicks on the screen, and subse-
quently use this sequence as a substitute password. Systems
such as these are complementary to our work, and can be
deployed together. For instance, one might employ a graphi-
cal password system while passively recording a user’s mouse
dynamics, utilizing the passively recorded measurements as
a secondary fail-safe to verify the user’s identity. This is
similar in spirit to using keystroke dynamics with password
hardening as in [19].

3. MOUSE MOVEMENT MEASUREMENT
AND CHARACTERIZATION

3.1 Data Collection
We collect two sets of data. The first data set is from

a controllable environment, referred to as the controllable
set; while the second data set is from an online forum in
the field, referred to as the field set. We have obtained
approval from the Institutional Review Board (IRB) of our
university, which ensures the appropriate and ethical use of
human input data in our work.
For the controllable set, 30 users are invited personally to

participate in the data collection. They are from different
ages, educational backgrounds, and occupations. We inten-
tionally set a normal environment for these users and inform
them to behave as naturally as possible. Mouse movement
data are recorded during their routine computing activities.
These activities range among word processing, surfing the
Internet, programming, online chatting, and playing games.
We make use of a logging tool RUI [17] to record their mouse
movement activities.
For the field set, more than 1,000 unique forum users’

mouse movements are recorded by JavaScript code, and
submitted passively via AJAX requests to the web server.
On one hand, these users are anonymous but identifiable
through unique login names. However, there is no guaran-
tee on the amount of data collected for a certain user. A
forum user could be logged in for a long time with frequent
mouse activities, or could perform just one click and then
leave. On the other hand, the breadth of this corpus of users
is utilized to serve as the base profile for both training and
testing purposes.
The raw mouse movements are represented as tuples of

timestamp and Cartesian coordinate pairs. Each tuple is
in the form of 〈action-type, t, x, y〉, where action-type is
the mouse action type (a mouse-move or mouse-click), t is
the timestamp of the mouse action, x is the x-coordinate,
and y is the y-coordinate. Timestamps in our data collection
are collected in milliseconds.

3.1.1 Data Processing
The purpose of preprocessing is to identify every point-

and-click action, which is defined as continuous mouse move-
ments followed by a click. Continuous mouse movements
are series of mouse movements with little or no pause be-
tween each adjacent step. Within the ith point-and-click
action for a user c, we denote the jth mouse move record as
〈mouse-move, ti, xi, yi〉c,j , where ti is the timestamp of the
ith mouse movement. Based on the record that belongs to
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Figure 1: Illustration of angle-based metrics.

each point-and-click action, we calculate angle-based met-
rics.

3.1.2 Metrics
To analyze the mouse movement data, we define three

fine-grained angle-based metrics: direction, angle of curva-
ture, and curvature distance. These newly-defined metrics
are different from the conventional metrics, such as speed
and acceleration, and can accurately characterize a user’s
unique mouse moving behaviors, independent of its running
platform.

• Direction. For any two consecutive recorded points A
and B, we record the direction traveled along the line−→
AB from the first point to the second. The direction

is defined as the angle between that line
−→
AB and the

horizontal (see angle x in Figure 1).

• Angle of Curvature. For any three consecutive recorded
points A, B, and C, the angle of curvature is angle
∠ABC; i.e., the angle between the line from A to B

(
−→
AB) and the line from B to C (

−−→
BC) (see angle y in

Figure 1).

• Curvature Distance. For any three recorded points A,
B, and C, consider the length of the line connecting

A to C (
−→
AC). The curvature distance is the ratio of

the length of
−→
AC to the perpendicular distance from

point B to the line
−→
AC (see the perpendicular lines in

Figure 1). Note that this metric is unitless because it
is the ratio of two distances.

As a comparison, we list the definition of two traditional
mouse movement metrics, speed and pause-and-click, as fol-
lows.

• Speed. For each point-and-click action, we calculate
the speed as the ratio of the total distance traveled for
that action divided by the total time taken to complete
the action.

• Pause-and-Click. For each point-and-click action, we
measure the amount of time between the end of the
movement and the click event. In other words, this
metric measures the amount of time spent pausing be-
tween pointing to an object and actually clicking on
it.
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Figure 2: Direction Angle metric plotted for two
different users on two different machines each.
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Figure 3: Angle of Curvature metric plotted for two
different users on two different machines each.

3.2 Mouse Movement Characterization

3.2.1 Dependence on Different Platforms
One problem we came across in analyzing our data is that

it may be difficult or meaningless to compare two users who
are using very different machines. The entire user’s environ-
ment can affect its data: the OS used, screen size and reso-
lution, font size, mouse pointer sensitivity, brand of mouse,
and even the amount of space available on the desk near the
mousepad. Metrics such as speed and acceleration, then, are
poor choices for comparison between users of arbitrary plat-
forms. This is because these two metrics can be skewed by
differences in screen resolution and pointer sensitivity. On
the other hand, metrics such as pause-and-click are highly
dependent on the content a user is reading. For example, a
user tends to pause longer before clicking a link on a rich
content page such as a wiki article, and hesitates for a much
shorter time before clicking a “submit” button.
This makes a good case to use angle-based metrics for

arbitrary user comparison instead. Direction and angle of
curvature are not based on screen size or any other element
of the user’s environment, and thus are relatively platform-
independent. Likewise, curvature distance is a ratio of dis-
tances on the screen, and thus self-adjusts for the user’s

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

C
D

F

Curvature Distance [no unit]

User1(Desktop)
User1(Laptop)

User2(Desktop)
User2(Laptop)

Figure 4: Curvature Distance metric plotted for two
different users on two different machines each.

specific environment. A ratio can be compared to another
user’s ratio across platforms.

Figures 2, 3, and 4 show the comparison of two users with
angle-based metrics. We can see that the cumulative distri-
bution function (CDF) curves for the same user’s individual
data are very similar and well synchronized in shape, even
across platforms. This indicates that angle-based metrics
are relatively stable on different platforms.

3.2.2 Uniqueness of Angle-Based Metrics Across Users
The other distinctive feature of angle-based metrics is that

they are unique across users. Not only does the same user
have very similar angle-based results on different platforms,
but different users have clearly different angle-based results,
even on similar platforms.

Again, as Figures 2, 3, and 4 show, even though each user’s
CDF is consistent across different platforms, there is a dis-
tinct gap between different users’ CDF curves, even on the
same platform. As a comparison, Figure 5 shows the CDF
curves with respect to the speed of the two users, a more
commonly-used metric. Figure 6 shows the CDF curves with
respect to the pause-and-click of the two users. While the
different users’ CDF curves in both speed and pause-and-
click are closely coupled on the same environment, there is
a distinct gap between the same user’s two curves for dif-
ferent environments. Since the closest matching curve for
either user is the curve of the other user under the same
environment, it can be very hard to uniquely differentiate
people using these metrics.

Together with the platform independence discussed above,
this makes angle-based metrics superior to speed and pause-
and-click for user verification. Note that for easy presenta-
tion, we only compare the difference of the mouse dynamics
between a pair of users. However, the similar observation
holds for the other users.

3.2.3 Distance Between Distributions
Using the distance between two probability distributions,

we further verify if the angle-based features of a user remain
relatively stable across different types of mice, platforms,
and time, in comparison with those of the other controllable
users.

We define the distance between two probability distribu-
tions as follows. Since angle-based features are continuous
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Figure 5: Speed metric plotted for two different
users under two different environments each.
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Figure 6: Pause-and-click metric plotted for two dif-
ferent users under two different environments each.

variables, we divide their whole range into discrete intervals,
called bins, and calculate the probability density functions
(PDFs) regarding to each bin. Consider two distributions:
the first is expressed as PDF {p1, p2, ..., pn}, where pi rep-
resents the probability of falling into the ith bin; the second
distribution is expressed similarly as PDF {q1, q2, ..., qn}.
The distance between the two distributions is the accumu-
lated deviation from each other over all bins:

D(p, q) =
∑
i

|pi − qi|.

Of course, the distance here is dependent on the size of each
interval. The smaller we divide the interval, the more subtle
differences the distance reflects. However, the bin should
not be so small as to enlarge noise.
Figure 7 plots the distances of a user from the other users,

as well as from itself using a different mouse on a different
machine at very different time. Each user’s PDF is com-
puted over 1,000 curvature angles randomly selected from
its data, and loops for 10 times. The height of each bar is
the average distance from the target user (labeled as user 1)
in setting A (indexed by 1-A in the figure), and each error
bar is standard deviation over the 10 times. Data 1-A, 1-B,
and 1-C are all from user 1. The details of these three set-
tings are listed in Table 1. Moreover, data 1-B are recorded
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Figure 7: Distances from one user’s curvature angle
distribution to those of others, as well as to itself in
different settings.

Setting Machine Type Mouse Type

1-A Dell Precision T3500 Dell MOC5UO
Two-Button
Scroll-Wheel

1-B Apple Macbook MB990LL/A Apple A1152
One-Button
Trackball

1-C Apple Macbook MB990LL/A Dell MOC5UO
Two-Button
Scroll-Wheel

Table 1: Setting Details

two and half months later than data 1-A, and data 1-C are
recorded two days later than data 1-B.

It is clear that the distances from user 1 to itself using dif-
ferent mice, at different machines, and over different times
are the two smallest in the figure, i.e., both are smaller than
the distances from user 1 to any other users with the same
setting. This implies that the angle-based behavior of a
user has its own inherent pattern which is relatively stable
across different settings and times; meanwhile, it is also dis-
tinguishable from the behaviors of other users. Note that
in Figure 7, the distance values between user 1-A and some
users are very close to each other (e.g. the distance value of
user 23 and that of user 27). However, it does not indicate
that the behaviors of those users are similar, because the
definition of distance here is an accumulation of deviations
at different bins. The dynamics of two users’ PDFs could be
totally different, but at the same time both deviate equally
from a third user.

Note that to achieve accurate measurement results, there
are two prerequisites in characterizing mouse movement un-
der different environments. First, the polling rates of mouse
recorders at different platforms should be configured to the
same level. Second, prior to characterizing a user’s mouse
movement, sufficient mouse events must be collected to cre-
ate a profile of the user’s mouse movement. In particular,
we observed that 1,000 mouse actions (which on average can
be collected in 2 hours) are large enough to profile a user’s
mouse behavior well.
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3.2.4 Number of Mouse Clicks in a Real Session
For the field set, drawn from 1,074 real users on an online

forum over the course of an hour, we recorded an average of
15.14 clicks per user session. Note that because this data was
gathered over a one-hour window, this value is a lower bound
on the actual number of clicks in an average user session.
Any user who was logged in before the window began or
stayed logged in after the window ended (including users
who stayed logged in longer than an hour) would necessarily
have more clicks than recorded. Thus, the actual average is
almost certainly higher, and probably much higher.
The number of mouse clicks per user session is closely

related to verification time. With the average number of
mouse clicks per session being about 15, a verification system
based on mouse dynamics must be able to identify a user in
fewer than 15 clicks in order to ensure that, on average,
a decision is made within one user session. As shown in
Section 5, our approach can verify a user’s identity with
high accuracy in only 15 clicks, so our system can reliably
make the right decision before the user logs off in a majority
of cases.

4. SYSTEM ARCHITECTURE
As shown in Figure 8, our proposed user verification sys-

tem consists of four components—recorder, preprocessor,
classifier, and decision maker.
The design of the first two components is straightforward.

The main task of the recorder is to record users’ mouse move-
ments, while the preprocessor computes the angle-based met-
rics based on the recorded raw data. The focus of this sec-
tion is on the design of the classifier and that of the decision
maker.

4.1 SVM Classifier
We choose Support Vector Machines (SVMs) as our clas-

sifier to differentiate users based on their mouse movement
dynamics. SVMs have been successfully used in resolv-
ing real-life classification problems, including handwritten
digit recognition [29], object recognition [22], text classifi-
cation [14], and image retrieval [28]. In general, SVMs are
able to achieve comparable or even higher accuracy with a
simpler and thus faster scheme than neural networks.
In the two-class formulation, the basic idea of SVMs is to

map feature vectors to a high dimensional space and com-
pute a hyperplane, which separates the training vectors from
different classes and further maximizes this separation by
making the margin as large as possible. SVMs classify data
by determining a set of support vectors, which are mem-
bers of the set of training inputs outlining a hyper plane in
feature space [30].
For a binary classification problem, given l training sam-

ples {xi, yi}, i = 1, . . . , l, each sample has d features, ex-
pressed as a d-dimensional vector xi (xi ∈ R

d), and a class

Small Margin Large MarginSupport Vectors

Figure 9: SVM hyperplane in two dimensional fea-
ture space [10].

label yi with one of two values (yi ∈ {−1, 1}). A hyperplane
in d-dimensional space can be expressed as w · x + b = 0,
where w is a constant vector in d dimensions, and b is a
scalar constant. We aim to find a hyperplane that not only
separates the data points but also maximizes the separation.
As Figure 9 shows, the distance between the dashed lines is
called the margin. The vectors (points) that constrain the
width of the margin are the support vectors. The formula-
tion of our binary class SVM problem is to:

minimize: W (α) = −αT1+
1

2
αTHα,

such that: αT y = 0, 0 ≤ α ≤ C1,

where matrix (H)ij = yiyj(xi · xj), α is the vector of l
non-negative Lagrangian multipliers to be determined, and
C is a constant. This minimization problem is known as a
Quadratic Programming Problem (QP), which is well studied
with many proposed efficient algorithms.

In reality, not all data points can be linearly separated as
we assumed. To handle this issue, SVMs use a“kernel trick”.
The data are pre-processed in such a way that the problem is
transformed into a higher dimension, where they are linearly
separable in the new feature space. Given a mapping z =
φ(x), and defining the kernel function as K(xa,xb) = φ(xa)·
φ(xb), our classifier would be

f(x) = sign

(∑
i

αiyi(K(xi,x)) + b

)
.

A popular choice of kernel function is the Gaussian Radial
Basis Function (RBF) K(xa,xb) = exp

(−γ ‖xa − xb‖2
)
,

where γ > 0, and is a tunable parameter. In practice, RBF
is a reasonable first choice among other kernels, due to its
generality and computational efficiency [6].

Thus, the procedure to resolve a classification problem
using SVMs is: (1) choosing a kernel function, (2) setting
the penalty parameter C and kernel parameters as well, if
any, (3) resolving the quadratic programming problem, and
(4) constructing the discriminant function from the support
vectors. In particular, we view the user verification problem
as a two-class classification problem, and the learning task
is to build a classifier based on the user mouse movements.

In our proof-of-concept implementation, we used the open
source SVM package LIBSVM 3.0 [6] for building the pro-
totype. LIBSVM is an integrated tool for support vector
classification. We used the default RBF kernel and the cross-
validation to find the best parameter C and γ. In our study,
all impostors are classified as +1, and normal data are clas-
sified as -1. The detailed experiment setups will be discussed
in Section 5.



4.2 Decision Making
In the design of the decision maker, we use two mecha-

nisms, threshold and majority vote, to further improve ver-
ification accuracy.

4.2.1 Threshold
The threshold determines how SVMs’ output is interpreted:

a value over the threshold indicates an impostor, while a
value under the threshold indicates a true user. To make a
user verification system deployable in practice, minimizing
the probability of rejecting a true user is sometimes even
more important than lowering the probability of accepting
an impostor.
By default, in a binary classification problem with labels

in {+1,−1}, LIBSVM outputs a score called a decision value
for each testing sample. If the decision value is greater than
0, the sample is classified as +1, otherwise it is classified as
−1.

4.2.2 Majority Votes
To build the profile for an authorized user, in training, we

randomly pick m/2 samples that belong to the user, labeled
as negative (non-impostor), and another random m/2 from
the field set, labeled as positive (impostor). We employ
a simple majority vote decision making scheme in order to
improve and stabilize the verification accuracy. Specifically,
before verifying if a sample belongs to the target user, we
train the user’s profile 2n+1 times. Each time the training
samples are different since they are randomly selected. In
this way, there will be 2n + 1 votes about the predicted
label for each testing sample.The label that is voted by the
majority, i.e., with greater than n votes, will be the final
predicted label. With majority votes, the decision maker
can significantly reduce the randomness of the results and
improve verification accuracy.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate the effectiveness of our mouse

movement based verification system through a series of ex-
periments, in terms of verification accuracy, verification time,
and system overhead. The verification accuracy of our sys-
tem is measured using (1) the false reject rate (FRR), which
is the probability that a user is wrongly identified as an im-
postor, and (2) the false accept rate (FAR), which is the
probability that an impostor is incorrectly identified as a
user. Here we define a block as follows:

Block (or detecting block) A block is composed of mouse
movements in a group of point-and-click actions. Sta-
tistical features are calculated based on all mouse move-
ments in one block.

Note that choosing different sizes (that is, choosing differ-
ent number of point-and-click actions contained) of a block
greatly affects verification accuracy, in terms of FAR and
FRR.
The verification time is the mean time needed to detect

an identity mismatch. This corresponds to the sum of the
time for the user to generate mouse actions needed to make
a decision, the time to extract the features for this session,
and the time to classify the identity. In our approach, the
number of mouse actions needed to make a decision equals
to the number of clicks contained in one block. As described

before, a block corresponds to one sample in either training
or testing. Verification time is determined by the total num-
ber of actions needed to make decisions and the average time
cost per action. In general, the larger the number of actions
required for decisions and the higher the average time cost
per action, the longer the verification time becomes.

5.1 Experimental Setup
As described in Section 3.1, our experiments are based on

two sets of data. The first data set is collected in controllable
environments. A total of 81,218 point-and-click actions are
captured, with an average 5,801 point-and-click actions per
user. Overall, 150 hours of raw mouse data are collected.
The second data set is recorded from 1,074 anonymous users
in an online forum for one hour.

These two data sets serve different purposes. A target
user is selected from the first data set as the user to be ver-
ified, while forum users from the second data set are used
as the background. Whereas we can identify a forum user
based on its unique login name, the lack of guarantee on
its collected data makes it unsuitable to be the verified tar-
get. The preprocessor extracts each user’s point-and-click
actions and computes the angle-based metrics correspond-
ing to each point-and-click. Each of those generated files
containing point-and-click actions is divided into two halves.
The training data will be extracted from the first half, while
the testing data will be from the second half. Therefore,
there is no overlap between the training data and the test-
ing data.

5.2 Verification Results
We construct our classification model based on self and

non-self discrimination. That is, for a given user, its profile
is learned from a certain number of its own mouse move-
ment samples and an equal number of others’ mouse move-
ment samples. Therefore, the training data is composed of
positive samples and an equal number of negative samples.
We train a separate model for each user in the controllable
set. In the training file for a given user, a negative case is a
block of point-and-click actions that belongs to itself, while
a positive case is a block of clicks that belongs to others.
Here, others’ mouse movement blocks are randomly chosen
from the forum set, due to its large user population.

There are four configurable parameters in our system: the
size of a detecting block, the size of the training data, the
threshold, and the number of votes. The first two are associ-
ated with the SVM training process. Increasing the thresh-
old value directly lowers false reject rate (FRR), but at the
cost of raising false accept rate (FAR). Increasing the num-
ber of votes improves verification accuracy in terms of both
FRR and FAR, but increases the verification time.

To fully evaluate verification accuracy, we conduct two
sets of experiments. In the first set of experiments, we test
our classification model trained in the same environment.
In the second set of experiments, we test the classification
model trained in a different environment.

5.2.1 Self and Non-Self Discrimination in Same En-
vironment

We first configure the number of mouse clicks per block
and the size of the training data. The FRR and FAR with
different sizes of detecting blocks and training data are shown
in Figures 10(a) and 10(b), respectively. These tests are
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Figure 10: Variation of FRR and FAR with the num-
ber of clicks. Error bars indicate standard deviation.

performed with the default threshold of 0.5 and 5 out of
9 (5/9) majority votes. As larger detecting block size and
training data are provided, the SVM classifier becomes more
accurate, but we see diminishing returns in accuracy as the
number of actions increases, e.g., going from 10 clicks to
25 clicks requires 150% more input but only provides a rela-
tively small increase in verification accuracy; also going from
100 training samples to 300 training samples requires 200%
more data, but only returns a relatively small increase in
verification accuracy.
With the SVM classifier configured, the last two parame-

ters, the threshold and the number of votes, determine the
overall performance of the system.
The threshold can be increased or decreased from the de-

fault value of 0.0 to bias the classifier towards authentic
users or impostors, lowering the FRR or FAR, respectively.
As mentioned in Section 4.2.1, this is a tradeoff between
user inconvenience level and system security level. After
multiple tests, we observe that setting the threshold value
to 0.5 yields a false reject rate 1% on average. Therefore,
throughout this paper, we only show results with a thresh-
old value of 0.5. Setting the threshold value affects both
FRR and FAR. Figure 11 shows that increasing the thresh-
old value greatly lowers FRR at different sizes of a detecting
block.
The use of majority votes increases the verification accu-

racy of the system, in terms of both FRR and FAR. Fig-
ure 12 shows the improvement of FRR by majority votes.
However, increasing the number of votes means longer veri-
fication time, since for n votes the classifier needs to be run
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Figure 11: Variation of FRR and FAR with thresh-
old.

n times. Figure 12 indicates that the improvement by 2/3
majority votes is comparable to that of 3/5 majority votes.

With a fully configured system (500 training blocks, a
threshold of 0.5, and 3/5 majority votes), Table 2 lists FRR
and FAR averaged over 30 users in the controllable set. It
can be seen that, if there are 25 clicks in one block, the aver-
age false reject rate is 0.86%, so there is only a little chance
that an authenticated user is misclassified as an impostor.
Meanwhile, we achieve an average false accept rate of 2.96%.

Number of Clicks FRR FAR

1 4.57% 18.79%
3 2.59% 10.81%
5 2.02% 7.67%
10 1.27% 5.23%
15 1.03% 3.13%
20 0.70% 3.32%
25 0.86% 2.96%

Table 2: Variation of FRR and FAR with different
number of clicks in one block

5.2.2 Self and Non-Self Discrimination in Different
Environment

To verify that our approach also works in different envi-
ronments with different machines, we conduct another self
vs. non-self discrimination experiment on two different ma-
chines. More specifically, the user’s profile is trained from
its mouse movements in a work environment on a desktop,
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Figure 12: Variation of FRR and FAR with majority
votes.

while its mouse movements in a home environment on a lap-
top are tested. The testing user base includes 5 users. The
corresponding FRR and FAR are shown in Figure 13, each
represented by a single curve, respectively. Note that a user
is profiled on one platform but tested on a different one, and
hence a single plot shows the result of the test.
It can be seen that our approach works well across dif-

ferent environments and platforms. It further confirms that
our classification model indeed captures those features that
are intrinsic to a user and not affected by environmental
factors.

5.2.3 Partial Movements
Partial movements are a series of continuous mouse move-

ments without ending in a click. On one hand, unlike point-
and-click actions that have a certain object to reach as a
target, some partial movements could be aimless. For ex-
ample, a user may move its mouse just to stop the screen
saver when watching a video. Thus, we observe that the
movements of point-and-clicks demonstrate a more consis-
tent pattern than those of partial movements. However,
most partial movements are intentionally performed. For
example, a user may often move its mouse to aid reading. In
addition, some partial movements are just as well-motivated
as point-and-clicks. A user could start moving the mouse to
a link, but then decide not to click on it.
Moreover, in a real user session, partial movements occur

much more frequently than point-and-clicks. From the fo-
rum data we collected, there are only 0.53 mouse clicks per
minute on average, but 6.58 partial mouse movements per
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Figure 13: FRR and FAR for one user profiled on
one platform and tested on another platform.
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Figure 14: ROC curves with and without partial
movements.

minute. Figure 14 shows the comparison of ROC (Receiver
Operating Characteristic) curves with and without partial
movements for a randomly selected user (other users’ ROC
curves are similar).

Suppose we choose 20 mouse clicks in a detecting block.
On one hand, without partial movements − that is, when
only point-and-clicks are included − the EER (equal error
rate) is 1.3%; with partial movements, the EER increases
to 1.9%. On the other hand, using partial movements can
lower the average verification time by one order of magni-
tude (about 12 times) in our experiments. Therefore, using
partial movements will significantly reduce verification time,
but at the cost of accuracy degradation.

5.2.4 Subtleties on Verification Time
The verification time is the time required by a verification

system to collect sufficient behavioral data and then make
a classification decision. The value of the verification time
heavily depends on two factors: (1) the number of required
mouse clicks (or mouse movements if partial movements are
included) in a detecting block, and (2) how frequently a user
generates mouse actions. If the number of mouse actions in
a detecting block is already configured, the verification time
will be mainly determined by the latter.

There are two verification scenarios, static and continuous,
when estimating the number of mouse actions a user gener-
ates per unit time. In the scenario of static verification, a
user is required to perform a series of mouse movements and
its mouse data is verified within a certain amount of time
(e.g., login time). A good example of this scenario is a click-



based graphical password for user login, where five clicks
are estimated to be made in no more than 25 seconds [4, 8].
This implies that the verification time will be less than 100
seconds if 20 mouse clicks are needed in a testing block. By
contrast, in the scenario of continuous verification, a user’s
mouse data is continuously collected and verified throughout
the entire session. This is non-intrusive to users and meets
the goal of passive monitoring. However, the frequency of
user mouse actions varies significantly in different sessions.
In general, the average frequency of user mouse actions will
be much lower than that of the static scenario. The reason
is that often there is a period of silence between a user’s
previous and next mouse actions while a user is reading or
typing. An observation from the forum data we collected
indicates, on average, it takes 1.89 minutes for one mouse
click to happen. If we choose 20 mouse clicks in a detecting
block, the verification time could be as long as 37.73 min-
utes; however, the verification time will be reduced to 3.03
minutes if partial movements are used.

5.2.5 System Overhead
The verification system can be deployed in two different

scenarios. In the first scenario, for example, it can be used
for access control in a computer lab or on a personal com-
puter. In this case, it will be installed at the client side by
the system administrator. In this standalone scenario, nor-
mally only a single user is present for verification at any one
time, and the end host has a plenty of resources to fulfill the
verification tasks. Thus, the performance impact caused by
the verification on the host is minor.
In the second scenario, for an online application such as

banking account verification, the system will be placed at the
server side, with JavaScript embedded inside users’ account
home page. Deployed at the server side, our system needs
to be able verify hundreds or even thousands of users simul-
taneously in real-time. Thus, system overhead becomes an
issue, and the system must be efficient in terms of memory
and CPU costs.
We first estimate the memory overhead of the verifica-

tion process. We profile the verification process using the
Linux tool valgrind, and find out that it only consumes
3.915 KBytes of memory per testing block during the op-
eration. The prototype of our system is designed to use a
single-thread multiple-client model with time-multiplexing,
and thus only one process is used. The primary memory cost
is to accommodate the accumulated user-input actions and
SVM outputs for each online user. A single user-input action
consumes 12 bytes, 4 bytes each for the 3 angle-based met-
rics. A detecting block of 10 user-input actions consumes 120
bytes, and this is the per-user memory requirement. If 120
bytes is scaled to 1,000 online users, it is only 117.19KBytes
in total, which is negligible considering that online websites
currently store the user name, password, IP address, secu-
rity questions and literally dozens of other attributes for
each user.
The computational overhead is the sum of CPU costs in

pre-processing and detecting (including classifying and de-
cision making). The pre-processing on 15 minutes’ user in-
puts from more than 1,000 users in a typical website, includ-
ing 5,270 point-and-click actions, takes only 20.937 seconds.
The CPU cost is measured on a Pentium 4 Xeon 3.0Ghz, us-
ing the Linux command time. Note that the forum trace is
collected during 15 minutes from about 1,000 online users,

implying that it takes about 23.3 milliseconds to process
data generated in one second. At the same time, the verifi-
cation takes only 229 milliseconds over 5,801 point-and-click
actions. In comparison to pre-processing, this is negligible.
Therefore, the induced computational overhead is minor on
the server.

In terms of disk space for storing user profiles, the signa-
ture of a single user profile generated by the training process
consumes 203.32KBytes. If it is scaled to 100,000 users, that
is 19.4GBytes, which is very affordable at a personal com-
puter, let alone a high end server.

5.3 Comparison with Existing Works
We compare our evaluation results with those of existing

works in terms of verification accuracy and time, which are
listed in Table 3. As described in Section 5.2.4, the veri-
fication time is highly dependent on the number of mouse
events needed to make a decision, the type of mouse events
used (mouse click, mouse move, or drag-and-drop), as well as
how fast a user generates mouse events. Even for the same
user at different times, the number of mouse events per unit
time varies a lot. However, to the best of our knowledge, our
work is the first to achieve high accuracy with a reasonably
small number of mouse events.

6. DISCUSSION
Since our verification system records users’ mouse move-

ments and clicks, privacy concerns may arise. However,
compared to keystroke dynamics, the amount of personal
information included in mouse dynamics is minimal. In the
process of recording keystrokes, the system would record the
user’s passwords, user names, and other sensitive textual in-
formation. By contrast, recording mouse dynamics only re-
veals the physical movements of a mouse and its clicks within
a certain period of time, giving away little to no information
about user credentials. Even with the perfect knowledge of
a user’s mouse movements, the only things an adversary can
figure out are when the user clicked and on which position
of the screen. Thus, we believe that our verification system
will not cause any privacy violations.

In general, mouse-dynamics-based re-authentication tech-
niques are robust against online forgery. A person’s unique
mouse dynamics are similar to its signature, and like a sig-
nature, it is difficult to mimic even with the complete knowl-
edge of the original. In fact, a user’s mouse dynamics is a
continuous process, making it much harder to forge than
a signature. Unlike forging a signature, which only has to
be accomplished once, the adversary of our verification sys-
tem would need to mimic the true user’s mouse patterns
continuously for the entire length of the session. It is ex-
tremely difficult for one user to force itself to consistently
move the mouse in such a mechanical way that it matches
specific angles, even if those metrics are known ahead of
time. Thus, mouse dynamics generally and our fine-grained
angle-based approach in particular, are very robust against
online forgery. However, how vulnerable mouse-dynamics-
based approaches are to offline attacks, especially generative
attacks which create concatenative synthetic forgeries [3], is
still an open question and will be investigated in our future
work.

The retraining of our classifier is necessary to deal with
sudden, perhaps temporary, changes in a user’s mouse pro-
file. If the user’s behavior suddenly changes, due to an unex-



Source FRR FAR Data required Settings Notes
[2] 2.4649% 2.4614% 2000 mouse actions Continuous Free mouse movements
[21] 0% 0.36% 2000 mouse actions Continuous Free mouse movements
[12] 2% 2% 50 mouse strokes Static Mouse movements from a memory game
[24] 1.75% 0.43% Not specified Continuous Applies to a certain application
[26] 11.2% 11.2% 3600 mouse curves Continuous Free mouse movements
Ours 1.3% 1.3% 20 mouse clicks Continuous Free mouse movements

Table 3: Comparison with Existing Works

pected complication such as a sprained wrist, the difference
in mouse usage could be large enough for the user to be un-
recognizable by the verification system. The system would
classify the user as an impostor and prevent that user from
accessing its own account. While these sorts of occurrences
are relatively rare, to avoid the possible rejection, the user
can easily appeal to a system administrator to retrain the
classifier with the user’s new movement patterns. Once the
user’s behavior returns to normal (for example, the user’s
wrist heals), we can either retrain the system again, or sim-
ply reuse the previous classifier if a backup is available.
Although our approach is relatively independent of the

running environments, it is sensitive to the polling rate of
mouse movement recording. In the mouse data collection, a
continuous mouse movement is discretized to a set of mouse
coordinates, which are sampled at a certain rate. Thus,
the measured resolution of mouse movements is dependent
on the polling rate of a recorder. The faster the polling
rate is, the more fine-grained movements we capture. For
example, given a mouse movement curve, a high polling rate
can render a smooth accurate shape, but a low polling rate
more likely profiles it as a zigzag path. For this reason, in our
data collection on different environments, the polling rates of
the recorders are configured to the same value. In fact, it is
not difficult to maintain a given polling rate under different
running environments. Through I/O methods provided in
most common programming languages, we are able to set
timers and capture mouse cursor position at a fixed interval.
It is true that with an increase in user population, there is

a higher chance that two users share the similar mouse move-
ments. In fact, known as “the scalability problem”, this is
a common problem for almost all biometrics approaches. In
face recognition, if more people are tested, it is more likely
that two users’ faces are similar and could make the clas-
sifier fail. The same thing happens in keystroke dynamics,
and it has been determined that the accuracy of keystroke
dynamics decreases with the increase in sample size [5, 23].
Though promising, our accuracy is unable to reach the

European Standard for Access Control Systems, which re-
quires a false acceptance rate (FAR) of under 0.001% and a
false rejection rate (FRR) of under 1%. Therefore, we be-
lieve that our scheme is more suitable to work together with
other authentication methods for user verification, instead
of working as a stand-alone authentication system.

7. CONCLUSION
In this paper, we present a new approach to user re-

authentication using the behavioral biometrics provided by
mouse dynamics. Our approach focuses on fine-grained angle-
based metrics, which have two advantages over previously
studied metrics. First, angle-based metrics can distinguish

a user accurately with very few mouse clicks. Second, angle-
based metrics are relatively independent of the operating
environment of a user, making them suitable for online re-
authentication.

Our system mainly consists of a recorder, which gath-
ers a user’s mouse dynamics, and a support vector machine
(SVM) classifier, which seeks to verify a user as either an
impostor or an authenticated party. We gathered two sets
of data: one set of 30 users under controlled circumstances,
and another set of over 1,000 users on a forum website. We
evaluated the system performance in terms of verification
accuracy and time, resulting in a equal error rate (EER) of
1.3% with just 20 mouse clicks. We also showed that, for
a system deployed at server side, the overhead required for
online verification is negligible.
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